Systemd/src/resolve/resolved-dns-answer.c

822 lines
23 KiB
C

/* SPDX-License-Identifier: LGPL-2.1-or-later */
#include <stdio.h>
#include "alloc-util.h"
#include "dns-domain.h"
#include "resolved-dns-answer.h"
#include "resolved-dns-dnssec.h"
#include "string-util.h"
static void dns_answer_item_hash_func(const DnsAnswerItem *a, struct siphash *state) {
assert(a);
assert(state);
siphash24_compress(&a->ifindex, sizeof(a->ifindex), state);
dns_resource_record_hash_func(a->rr, state);
}
static int dns_answer_item_compare_func(const DnsAnswerItem *a, const DnsAnswerItem *b) {
int r;
assert(a);
assert(b);
r = CMP(a->ifindex, b->ifindex);
if (r != 0)
return r;
return dns_resource_record_compare_func(a->rr, b->rr);
}
DEFINE_PRIVATE_HASH_OPS(dns_answer_item_hash_ops, DnsAnswerItem, dns_answer_item_hash_func, dns_answer_item_compare_func);
DnsAnswer *dns_answer_new(size_t n) {
_cleanup_set_free_ Set *s = NULL;
DnsAnswer *a;
if (n > UINT16_MAX) /* We can only place 64K RRs in an answer at max */
n = UINT16_MAX;
s = set_new(&dns_answer_item_hash_ops);
if (!s)
return NULL;
/* Higher multipliers give slightly higher efficiency through hash collisions, but the gains
* quickly drop off after 2. */
if (set_reserve(s, n * 2) < 0)
return NULL;
a = malloc0(offsetof(DnsAnswer, items) + sizeof(DnsAnswerItem) * n);
if (!a)
return NULL;
a->n_ref = 1;
a->n_allocated = n;
a->set_items = TAKE_PTR(s);
return a;
}
static void dns_answer_flush(DnsAnswer *a) {
DnsResourceRecord *rr;
if (!a)
return;
a->set_items = set_free(a->set_items);
DNS_ANSWER_FOREACH(rr, a)
dns_resource_record_unref(rr);
a->n_rrs = 0;
}
static DnsAnswer *dns_answer_free(DnsAnswer *a) {
assert(a);
dns_answer_flush(a);
return mfree(a);
}
DEFINE_TRIVIAL_REF_UNREF_FUNC(DnsAnswer, dns_answer, dns_answer_free);
static int dns_answer_add_raw(DnsAnswer *a, DnsResourceRecord *rr, int ifindex, DnsAnswerFlags flags) {
int r;
assert(rr);
if (!a)
return -ENOSPC;
if (a->n_rrs >= a->n_allocated)
return -ENOSPC;
a->items[a->n_rrs] = (DnsAnswerItem) {
.rr = rr,
.ifindex = ifindex,
.flags = flags,
};
r = set_put(a->set_items, &a->items[a->n_rrs]);
if (r < 0)
return r;
if (r == 0)
return -EEXIST;
dns_resource_record_ref(rr);
a->n_rrs++;
return 1;
}
static int dns_answer_add_raw_all(DnsAnswer *a, DnsAnswer *source) {
DnsResourceRecord *rr;
DnsAnswerFlags flags;
int ifindex, r;
DNS_ANSWER_FOREACH_FULL(rr, ifindex, flags, source) {
r = dns_answer_add_raw(a, rr, ifindex, flags);
if (r < 0)
return r;
}
return 0;
}
int dns_answer_add(DnsAnswer *a, DnsResourceRecord *rr, int ifindex, DnsAnswerFlags flags) {
DnsAnswerItem tmp, *exist;
assert(rr);
if (!a)
return -ENOSPC;
if (a->n_ref > 1)
return -EBUSY;
tmp = (DnsAnswerItem) {
.rr = rr,
.ifindex = ifindex,
};
exist = set_get(a->set_items, &tmp);
if (exist) {
/* There's already an RR of the same RRset in place! Let's see if the TTLs more or less
* match. We don't really care if they match precisely, but we do care whether one is 0 and
* the other is not. See RFC 2181, Section 5.2. */
if ((rr->ttl == 0) != (exist->rr->ttl == 0))
return -EINVAL;
/* Entry already exists, keep the entry with the higher TTL. */
if (rr->ttl > exist->rr->ttl) {
dns_resource_record_unref(exist->rr);
exist->rr = dns_resource_record_ref(rr);
}
exist->flags |= flags;
return 0;
}
return dns_answer_add_raw(a, rr, ifindex, flags);
}
static int dns_answer_add_all(DnsAnswer *a, DnsAnswer *b) {
DnsResourceRecord *rr;
DnsAnswerFlags flags;
int ifindex, r;
DNS_ANSWER_FOREACH_FULL(rr, ifindex, flags, b) {
r = dns_answer_add(a, rr, ifindex, flags);
if (r < 0)
return r;
}
return 0;
}
int dns_answer_add_extend(DnsAnswer **a, DnsResourceRecord *rr, int ifindex, DnsAnswerFlags flags) {
int r;
assert(a);
assert(rr);
r = dns_answer_reserve_or_clone(a, 1);
if (r < 0)
return r;
return dns_answer_add(*a, rr, ifindex, flags);
}
int dns_answer_add_soa(DnsAnswer *a, const char *name, uint32_t ttl, int ifindex) {
_cleanup_(dns_resource_record_unrefp) DnsResourceRecord *soa = NULL;
soa = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_SOA, name);
if (!soa)
return -ENOMEM;
soa->ttl = ttl;
soa->soa.mname = strdup(name);
if (!soa->soa.mname)
return -ENOMEM;
soa->soa.rname = strjoin("root.", name);
if (!soa->soa.rname)
return -ENOMEM;
soa->soa.serial = 1;
soa->soa.refresh = 1;
soa->soa.retry = 1;
soa->soa.expire = 1;
soa->soa.minimum = ttl;
return dns_answer_add(a, soa, ifindex, DNS_ANSWER_AUTHENTICATED);
}
int dns_answer_match_key(DnsAnswer *a, const DnsResourceKey *key, DnsAnswerFlags *ret_flags) {
DnsAnswerFlags flags = 0, i_flags;
DnsResourceRecord *i;
bool found = false;
int r;
assert(key);
DNS_ANSWER_FOREACH_FLAGS(i, i_flags, a) {
r = dns_resource_key_match_rr(key, i, NULL);
if (r < 0)
return r;
if (r == 0)
continue;
if (!ret_flags)
return 1;
if (found)
flags &= i_flags;
else {
flags = i_flags;
found = true;
}
}
if (ret_flags)
*ret_flags = flags;
return found;
}
int dns_answer_contains_nsec_or_nsec3(DnsAnswer *a) {
DnsResourceRecord *i;
DNS_ANSWER_FOREACH(i, a) {
if (IN_SET(i->key->type, DNS_TYPE_NSEC, DNS_TYPE_NSEC3))
return true;
}
return false;
}
int dns_answer_contains_zone_nsec3(DnsAnswer *answer, const char *zone) {
DnsResourceRecord *rr;
int r;
/* Checks whether the specified answer contains at least one NSEC3 RR in the specified zone */
DNS_ANSWER_FOREACH(rr, answer) {
const char *p;
if (rr->key->type != DNS_TYPE_NSEC3)
continue;
p = dns_resource_key_name(rr->key);
r = dns_name_parent(&p);
if (r < 0)
return r;
if (r == 0)
continue;
r = dns_name_equal(p, zone);
if (r != 0)
return r;
}
return false;
}
int dns_answer_find_soa(DnsAnswer *a, const DnsResourceKey *key, DnsResourceRecord **ret, DnsAnswerFlags *flags) {
DnsResourceRecord *rr, *soa = NULL;
DnsAnswerFlags rr_flags, soa_flags = 0;
int r;
assert(key);
/* For a SOA record we can never find a matching SOA record */
if (key->type == DNS_TYPE_SOA)
return 0;
DNS_ANSWER_FOREACH_FLAGS(rr, rr_flags, a) {
r = dns_resource_key_match_soa(key, rr->key);
if (r < 0)
return r;
if (r > 0) {
if (soa) {
r = dns_name_endswith(dns_resource_key_name(rr->key), dns_resource_key_name(soa->key));
if (r < 0)
return r;
if (r > 0)
continue;
}
soa = rr;
soa_flags = rr_flags;
}
}
if (!soa)
return 0;
if (ret)
*ret = soa;
if (flags)
*flags = soa_flags;
return 1;
}
int dns_answer_find_cname_or_dname(DnsAnswer *a, const DnsResourceKey *key, DnsResourceRecord **ret, DnsAnswerFlags *flags) {
DnsResourceRecord *rr;
DnsAnswerFlags rr_flags;
int r;
assert(key);
/* For a {C,D}NAME record we can never find a matching {C,D}NAME record */
if (!dns_type_may_redirect(key->type))
return 0;
DNS_ANSWER_FOREACH_FLAGS(rr, rr_flags, a) {
r = dns_resource_key_match_cname_or_dname(key, rr->key, NULL);
if (r < 0)
return r;
if (r > 0) {
if (ret)
*ret = rr;
if (flags)
*flags = rr_flags;
return 1;
}
}
return 0;
}
int dns_answer_merge(DnsAnswer *a, DnsAnswer *b, DnsAnswer **ret) {
_cleanup_(dns_answer_unrefp) DnsAnswer *k = NULL;
int r;
assert(ret);
if (a == b) {
*ret = dns_answer_ref(a);
return 0;
}
if (dns_answer_size(a) <= 0) {
*ret = dns_answer_ref(b);
return 0;
}
if (dns_answer_size(b) <= 0) {
*ret = dns_answer_ref(a);
return 0;
}
k = dns_answer_new(a->n_rrs + b->n_rrs);
if (!k)
return -ENOMEM;
r = dns_answer_add_raw_all(k, a);
if (r < 0)
return r;
r = dns_answer_add_all(k, b);
if (r < 0)
return r;
*ret = TAKE_PTR(k);
return 0;
}
int dns_answer_extend(DnsAnswer **a, DnsAnswer *b) {
DnsAnswer *merged;
int r;
assert(a);
r = dns_answer_merge(*a, b, &merged);
if (r < 0)
return r;
dns_answer_unref(*a);
*a = merged;
return 0;
}
int dns_answer_remove_by_key(DnsAnswer **a, const DnsResourceKey *key) {
bool found = false, other = false;
DnsResourceRecord *rr;
size_t i;
int r;
assert(a);
assert(key);
/* Remove all entries matching the specified key from *a */
DNS_ANSWER_FOREACH(rr, *a) {
r = dns_resource_key_equal(rr->key, key);
if (r < 0)
return r;
if (r > 0)
found = true;
else
other = true;
if (found && other)
break;
}
if (!found)
return 0;
if (!other) {
*a = dns_answer_unref(*a); /* Return NULL for the empty answer */
return 1;
}
if ((*a)->n_ref > 1) {
_cleanup_(dns_answer_unrefp) DnsAnswer *copy = NULL;
DnsAnswerFlags flags;
int ifindex;
copy = dns_answer_new((*a)->n_rrs);
if (!copy)
return -ENOMEM;
DNS_ANSWER_FOREACH_FULL(rr, ifindex, flags, *a) {
r = dns_resource_key_equal(rr->key, key);
if (r < 0)
return r;
if (r > 0)
continue;
r = dns_answer_add_raw(copy, rr, ifindex, flags);
if (r < 0)
return r;
}
dns_answer_unref(*a);
*a = TAKE_PTR(copy);
return 1;
}
/* Only a single reference, edit in-place */
i = 0;
for (;;) {
if (i >= (*a)->n_rrs)
break;
r = dns_resource_key_equal((*a)->items[i].rr->key, key);
if (r < 0)
return r;
if (r > 0) {
/* Kill this entry */
dns_resource_record_unref((*a)->items[i].rr);
memmove((*a)->items + i, (*a)->items + i + 1, sizeof(DnsAnswerItem) * ((*a)->n_rrs - i - 1));
(*a)->n_rrs--;
continue;
} else
/* Keep this entry */
i++;
}
return 1;
}
int dns_answer_remove_by_rr(DnsAnswer **a, DnsResourceRecord *rm) {
bool found = false, other = false;
DnsResourceRecord *rr;
size_t i;
int r;
assert(a);
assert(rm);
/* Remove all entries matching the specified RR from *a */
DNS_ANSWER_FOREACH(rr, *a) {
r = dns_resource_record_equal(rr, rm);
if (r < 0)
return r;
if (r > 0)
found = true;
else
other = true;
if (found && other)
break;
}
if (!found)
return 0;
if (!other) {
*a = dns_answer_unref(*a); /* Return NULL for the empty answer */
return 1;
}
if ((*a)->n_ref > 1) {
_cleanup_(dns_answer_unrefp) DnsAnswer *copy = NULL;
DnsAnswerFlags flags;
int ifindex;
copy = dns_answer_new((*a)->n_rrs);
if (!copy)
return -ENOMEM;
DNS_ANSWER_FOREACH_FULL(rr, ifindex, flags, *a) {
r = dns_resource_record_equal(rr, rm);
if (r < 0)
return r;
if (r > 0)
continue;
r = dns_answer_add_raw(copy, rr, ifindex, flags);
if (r < 0)
return r;
}
dns_answer_unref(*a);
*a = TAKE_PTR(copy);
return 1;
}
/* Only a single reference, edit in-place */
i = 0;
for (;;) {
if (i >= (*a)->n_rrs)
break;
r = dns_resource_record_equal((*a)->items[i].rr, rm);
if (r < 0)
return r;
if (r > 0) {
/* Kill this entry */
dns_resource_record_unref((*a)->items[i].rr);
memmove((*a)->items + i, (*a)->items + i + 1, sizeof(DnsAnswerItem) * ((*a)->n_rrs - i - 1));
(*a)->n_rrs--;
continue;
} else
/* Keep this entry */
i++;
}
return 1;
}
int dns_answer_copy_by_key(DnsAnswer **a, DnsAnswer *source, const DnsResourceKey *key, DnsAnswerFlags or_flags) {
DnsResourceRecord *rr_source;
int ifindex_source, r;
DnsAnswerFlags flags_source;
assert(a);
assert(key);
/* Copy all RRs matching the specified key from source into *a */
DNS_ANSWER_FOREACH_FULL(rr_source, ifindex_source, flags_source, source) {
r = dns_resource_key_equal(rr_source->key, key);
if (r < 0)
return r;
if (r == 0)
continue;
/* Make space for at least one entry */
r = dns_answer_reserve_or_clone(a, 1);
if (r < 0)
return r;
r = dns_answer_add(*a, rr_source, ifindex_source, flags_source|or_flags);
if (r < 0)
return r;
}
return 0;
}
int dns_answer_move_by_key(DnsAnswer **to, DnsAnswer **from, const DnsResourceKey *key, DnsAnswerFlags or_flags) {
int r;
assert(to);
assert(from);
assert(key);
r = dns_answer_copy_by_key(to, *from, key, or_flags);
if (r < 0)
return r;
return dns_answer_remove_by_key(from, key);
}
void dns_answer_order_by_scope(DnsAnswer *a, bool prefer_link_local) {
DnsAnswerItem *items;
size_t i, start, end;
if (!a)
return;
if (a->n_rrs <= 1)
return;
start = 0;
end = a->n_rrs-1;
/* RFC 4795, Section 2.6 suggests we should order entries
* depending on whether the sender is a link-local address. */
items = newa(DnsAnswerItem, a->n_rrs);
for (i = 0; i < a->n_rrs; i++) {
if (a->items[i].rr->key->class == DNS_CLASS_IN &&
((a->items[i].rr->key->type == DNS_TYPE_A && in_addr_is_link_local(AF_INET, (union in_addr_union*) &a->items[i].rr->a.in_addr) != prefer_link_local) ||
(a->items[i].rr->key->type == DNS_TYPE_AAAA && in_addr_is_link_local(AF_INET6, (union in_addr_union*) &a->items[i].rr->aaaa.in6_addr) != prefer_link_local)))
/* Order address records that are not preferred to the end of the array */
items[end--] = a->items[i];
else
/* Order all other records to the beginning of the array */
items[start++] = a->items[i];
}
assert(start == end+1);
memcpy(a->items, items, sizeof(DnsAnswerItem) * a->n_rrs);
}
int dns_answer_reserve(DnsAnswer **a, size_t n_free) {
DnsAnswer *n;
assert(a);
if (n_free <= 0)
return 0;
if (*a) {
size_t ns;
int r;
if ((*a)->n_ref > 1)
return -EBUSY;
ns = (*a)->n_rrs + n_free;
if (ns > UINT16_MAX) /* Maximum number of RRs we can stick into a DNS packet section */
ns = UINT16_MAX;
if ((*a)->n_allocated >= ns)
return 0;
/* Allocate more than we need */
ns *= 2;
if (ns > UINT16_MAX)
ns = UINT16_MAX;
/* This must be done before realloc() below. Otherwise, the original DnsAnswer object
* may be broken. */
r = set_reserve((*a)->set_items, ns);
if (r < 0)
return r;
n = realloc(*a, offsetof(DnsAnswer, items) + sizeof(DnsAnswerItem) * ns);
if (!n)
return -ENOMEM;
n->n_allocated = ns;
/* Previously all items are stored in the set, and the enough memory area is allocated
* in the above. So set_put() in the below cannot fail. */
set_clear(n->set_items);
for (size_t i = 0; i < n->n_rrs; i++)
assert_se(set_put(n->set_items, &n->items[i]) > 0);
} else {
n = dns_answer_new(n_free);
if (!n)
return -ENOMEM;
}
*a = n;
return 0;
}
int dns_answer_reserve_or_clone(DnsAnswer **a, size_t n_free) {
_cleanup_(dns_answer_unrefp) DnsAnswer *n = NULL;
int r;
assert(a);
/* Tries to extend the DnsAnswer object. And if that's not
* possible, since we are not the sole owner, then allocate a
* new, appropriately sized one. Either way, after this call
* the object will only have a single reference, and has room
* for at least the specified number of RRs. */
r = dns_answer_reserve(a, n_free);
if (r != -EBUSY)
return r;
assert(*a);
n = dns_answer_new(((*a)->n_rrs + n_free) * 2);
if (!n)
return -ENOMEM;
r = dns_answer_add_raw_all(n, *a);
if (r < 0)
return r;
dns_answer_unref(*a);
*a = TAKE_PTR(n);
return 0;
}
/*
* This function is not used in the code base, but is useful when debugging. Do not delete.
*/
void dns_answer_dump(DnsAnswer *answer, FILE *f) {
DnsResourceRecord *rr;
DnsAnswerFlags flags;
int ifindex;
if (!f)
f = stdout;
DNS_ANSWER_FOREACH_FULL(rr, ifindex, flags, answer) {
const char *t;
fputc('\t', f);
t = dns_resource_record_to_string(rr);
if (!t) {
log_oom();
continue;
}
fputs(t, f);
if (ifindex != 0 || flags != 0)
fputs("\t;", f);
if (ifindex != 0)
fprintf(f, " ifindex=%i", ifindex);
if (flags & DNS_ANSWER_AUTHENTICATED)
fputs(" authenticated", f);
if (flags & DNS_ANSWER_CACHEABLE)
fputs(" cacheable", f);
if (flags & DNS_ANSWER_SHARED_OWNER)
fputs(" shared-owner", f);
if (flags & DNS_ANSWER_CACHE_FLUSH)
fputs(" cache-flush", f);
if (flags & DNS_ANSWER_GOODBYE)
fputs(" goodbye", f);
fputc('\n', f);
}
}
int dns_answer_has_dname_for_cname(DnsAnswer *a, DnsResourceRecord *cname) {
DnsResourceRecord *rr;
int r;
assert(cname);
/* Checks whether the answer contains a DNAME record that indicates that the specified CNAME record is
* synthesized from it */
if (cname->key->type != DNS_TYPE_CNAME)
return 0;
DNS_ANSWER_FOREACH(rr, a) {
_cleanup_free_ char *n = NULL;
if (rr->key->type != DNS_TYPE_DNAME)
continue;
if (rr->key->class != cname->key->class)
continue;
r = dns_name_change_suffix(cname->cname.name, rr->dname.name, dns_resource_key_name(rr->key), &n);
if (r < 0)
return r;
if (r == 0)
continue;
r = dns_name_equal(n, dns_resource_key_name(cname->key));
if (r < 0)
return r;
if (r > 0)
return 1;
}
return 0;
}