Nix/src/libexpr/eval.cc

2530 lines
76 KiB
C++

#include "eval.hh"
#include "hash.hh"
#include "types.hh"
#include "util.hh"
#include "store-api.hh"
#include "derivations.hh"
#include "globals.hh"
#include "eval-inline.hh"
#include "filetransfer.hh"
#include "function-trace.hh"
#include <algorithm>
#include <chrono>
#include <iostream>
#include <cstring>
#include <optional>
#include <unistd.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <iostream>
#include <fstream>
#include <functional>
#include <sys/resource.h>
#include <nlohmann/json.hpp>
#if HAVE_BOEHMGC
#define GC_INCLUDE_NEW
#include <gc/gc.h>
#include <gc/gc_cpp.h>
#include <boost/coroutine2/coroutine.hpp>
#include <boost/coroutine2/protected_fixedsize_stack.hpp>
#include <boost/context/stack_context.hpp>
#endif
using json = nlohmann::json;
namespace nix {
static char * allocString(size_t size)
{
char * t;
#if HAVE_BOEHMGC
t = (char *) GC_MALLOC_ATOMIC(size);
#else
t = (char *) malloc(size);
#endif
if (!t) throw std::bad_alloc();
return t;
}
static char * dupString(const char * s)
{
char * t;
#if HAVE_BOEHMGC
t = GC_STRDUP(s);
#else
t = strdup(s);
#endif
if (!t) throw std::bad_alloc();
return t;
}
// When there's no need to write to the string, we can optimize away empty
// string allocations.
// This function handles makeImmutableString(std::string_view()) by returning
// the empty string.
static const char * makeImmutableString(std::string_view s)
{
const size_t size = s.size();
if (size == 0)
return "";
auto t = allocString(size + 1);
memcpy(t, s.data(), size);
t[size] = '\0';
return t;
}
RootValue allocRootValue(Value * v)
{
#if HAVE_BOEHMGC
return std::allocate_shared<Value *>(traceable_allocator<Value *>(), v);
#else
return std::make_shared<Value *>(v);
#endif
}
void Value::print(const SymbolTable & symbols, std::ostream & str,
std::set<const void *> * seen) const
{
checkInterrupt();
switch (internalType) {
case tInt:
str << integer;
break;
case tBool:
str << (boolean ? "true" : "false");
break;
case tString:
str << "\"";
for (const char * i = string.s; *i; i++)
if (*i == '\"' || *i == '\\') str << "\\" << *i;
else if (*i == '\n') str << "\\n";
else if (*i == '\r') str << "\\r";
else if (*i == '\t') str << "\\t";
else if (*i == '$' && *(i+1) == '{') str << "\\" << *i;
else str << *i;
str << "\"";
break;
case tPath:
str << path; // !!! escaping?
break;
case tNull:
str << "null";
break;
case tAttrs: {
if (seen && !attrs->empty() && !seen->insert(attrs).second)
str << "«repeated»";
else {
str << "{ ";
for (auto & i : attrs->lexicographicOrder(symbols)) {
str << symbols[i->name] << " = ";
i->value->print(symbols, str, seen);
str << "; ";
}
str << "}";
}
break;
}
case tList1:
case tList2:
case tListN:
if (seen && listSize() && !seen->insert(listElems()).second)
str << "«repeated»";
else {
str << "[ ";
for (auto v2 : listItems()) {
if (v2)
v2->print(symbols, str, seen);
else
str << "(nullptr)";
str << " ";
}
str << "]";
}
break;
case tThunk:
case tApp:
str << "<CODE>";
break;
case tLambda:
str << "<LAMBDA>";
break;
case tPrimOp:
str << "<PRIMOP>";
break;
case tPrimOpApp:
str << "<PRIMOP-APP>";
break;
case tExternal:
str << *external;
break;
case tFloat:
str << fpoint;
break;
default:
abort();
}
}
void Value::print(const SymbolTable & symbols, std::ostream & str, bool showRepeated) const
{
std::set<const void *> seen;
print(symbols, str, showRepeated ? nullptr : &seen);
}
// Pretty print types for assertion errors
std::ostream & operator << (std::ostream & os, const ValueType t) {
os << showType(t);
return os;
}
std::string printValue(const EvalState & state, const Value & v)
{
std::ostringstream out;
v.print(state.symbols, out);
return out.str();
}
const Value * getPrimOp(const Value &v) {
const Value * primOp = &v;
while (primOp->isPrimOpApp()) {
primOp = primOp->primOpApp.left;
}
assert(primOp->isPrimOp());
return primOp;
}
std::string_view showType(ValueType type)
{
switch (type) {
case nInt: return "an integer";
case nBool: return "a Boolean";
case nString: return "a string";
case nPath: return "a path";
case nNull: return "null";
case nAttrs: return "a set";
case nList: return "a list";
case nFunction: return "a function";
case nExternal: return "an external value";
case nFloat: return "a float";
case nThunk: return "a thunk";
}
abort();
}
std::string showType(const Value & v)
{
switch (v.internalType) {
case tString: return v.string.context ? "a string with context" : "a string";
case tPrimOp:
return fmt("the built-in function '%s'", std::string(v.primOp->name));
case tPrimOpApp:
return fmt("the partially applied built-in function '%s'", std::string(getPrimOp(v)->primOp->name));
case tExternal: return v.external->showType();
case tThunk: return "a thunk";
case tApp: return "a function application";
case tBlackhole: return "a black hole";
default:
return std::string(showType(v.type()));
}
}
PosIdx Value::determinePos(const PosIdx pos) const
{
switch (internalType) {
case tAttrs: return attrs->pos;
case tLambda: return lambda.fun->pos;
case tApp: return app.left->determinePos(pos);
default: return pos;
}
}
bool Value::isTrivial() const
{
return
internalType != tApp
&& internalType != tPrimOpApp
&& (internalType != tThunk
|| (dynamic_cast<ExprAttrs *>(thunk.expr)
&& ((ExprAttrs *) thunk.expr)->dynamicAttrs.empty())
|| dynamic_cast<ExprLambda *>(thunk.expr)
|| dynamic_cast<ExprList *>(thunk.expr));
}
#if HAVE_BOEHMGC
/* Called when the Boehm GC runs out of memory. */
static void * oomHandler(size_t requested)
{
/* Convert this to a proper C++ exception. */
throw std::bad_alloc();
}
class BoehmGCStackAllocator : public StackAllocator {
boost::coroutines2::protected_fixedsize_stack stack {
// We allocate 8 MB, the default max stack size on NixOS.
// A smaller stack might be quicker to allocate but reduces the stack
// depth available for source filter expressions etc.
std::max(boost::context::stack_traits::default_size(), static_cast<std::size_t>(8 * 1024 * 1024))
};
// This is specific to boost::coroutines2::protected_fixedsize_stack.
// The stack protection page is included in sctx.size, so we have to
// subtract one page size from the stack size.
std::size_t pfss_usable_stack_size(boost::context::stack_context &sctx) {
return sctx.size - boost::context::stack_traits::page_size();
}
public:
boost::context::stack_context allocate() override {
auto sctx = stack.allocate();
// Stacks generally start at a high address and grow to lower addresses.
// Architectures that do the opposite are rare; in fact so rare that
// boost_routine does not implement it.
// So we subtract the stack size.
GC_add_roots(static_cast<char *>(sctx.sp) - pfss_usable_stack_size(sctx), sctx.sp);
return sctx;
}
void deallocate(boost::context::stack_context sctx) override {
GC_remove_roots(static_cast<char *>(sctx.sp) - pfss_usable_stack_size(sctx), sctx.sp);
stack.deallocate(sctx);
}
};
static BoehmGCStackAllocator boehmGCStackAllocator;
#endif
static Symbol getName(const AttrName & name, EvalState & state, Env & env)
{
if (name.symbol) {
return name.symbol;
} else {
Value nameValue;
name.expr->eval(state, env, nameValue);
state.forceStringNoCtx(nameValue, noPos, "while evaluating an attribute name");
return state.symbols.create(nameValue.string.s);
}
}
static bool gcInitialised = false;
void initGC()
{
if (gcInitialised) return;
#if HAVE_BOEHMGC
/* Initialise the Boehm garbage collector. */
/* Don't look for interior pointers. This reduces the odds of
misdetection a bit. */
GC_set_all_interior_pointers(0);
/* We don't have any roots in data segments, so don't scan from
there. */
GC_set_no_dls(1);
GC_INIT();
GC_set_oom_fn(oomHandler);
StackAllocator::defaultAllocator = &boehmGCStackAllocator;
/* Set the initial heap size to something fairly big (25% of
physical RAM, up to a maximum of 384 MiB) so that in most cases
we don't need to garbage collect at all. (Collection has a
fairly significant overhead.) The heap size can be overridden
through libgc's GC_INITIAL_HEAP_SIZE environment variable. We
should probably also provide a nix.conf setting for this. Note
that GC_expand_hp() causes a lot of virtual, but not physical
(resident) memory to be allocated. This might be a problem on
systems that don't overcommit. */
if (!getEnv("GC_INITIAL_HEAP_SIZE")) {
size_t size = 32 * 1024 * 1024;
#if HAVE_SYSCONF && defined(_SC_PAGESIZE) && defined(_SC_PHYS_PAGES)
size_t maxSize = 384 * 1024 * 1024;
long pageSize = sysconf(_SC_PAGESIZE);
long pages = sysconf(_SC_PHYS_PAGES);
if (pageSize != -1)
size = (pageSize * pages) / 4; // 25% of RAM
if (size > maxSize) size = maxSize;
#endif
debug(format("setting initial heap size to %1% bytes") % size);
GC_expand_hp(size);
}
#endif
gcInitialised = true;
}
/* Very hacky way to parse $NIX_PATH, which is colon-separated, but
can contain URLs (e.g. "nixpkgs=https://bla...:foo=https://"). */
static Strings parseNixPath(const std::string & s)
{
Strings res;
auto p = s.begin();
while (p != s.end()) {
auto start = p;
auto start2 = p;
while (p != s.end() && *p != ':') {
if (*p == '=') start2 = p + 1;
++p;
}
if (p == s.end()) {
if (p != start) res.push_back(std::string(start, p));
break;
}
if (*p == ':') {
auto prefix = std::string(start2, s.end());
if (EvalSettings::isPseudoUrl(prefix) || hasPrefix(prefix, "flake:")) {
++p;
while (p != s.end() && *p != ':') ++p;
}
res.push_back(std::string(start, p));
if (p == s.end()) break;
}
++p;
}
return res;
}
ErrorBuilder & ErrorBuilder::atPos(PosIdx pos)
{
info.errPos = state.positions[pos];
return *this;
}
ErrorBuilder & ErrorBuilder::withTrace(PosIdx pos, const std::string_view text)
{
info.traces.push_front(Trace{ .pos = state.positions[pos], .hint = hintformat(std::string(text)), .frame = false });
return *this;
}
ErrorBuilder & ErrorBuilder::withFrameTrace(PosIdx pos, const std::string_view text)
{
info.traces.push_front(Trace{ .pos = state.positions[pos], .hint = hintformat(std::string(text)), .frame = true });
return *this;
}
ErrorBuilder & ErrorBuilder::withSuggestions(Suggestions & s)
{
info.suggestions = s;
return *this;
}
ErrorBuilder & ErrorBuilder::withFrame(const Env & env, const Expr & expr)
{
// NOTE: This is abusing side-effects.
// TODO: check compatibility with nested debugger calls.
state.debugTraces.push_front(DebugTrace {
.pos = nullptr,
.expr = expr,
.env = env,
.hint = hintformat("Fake frame for debugging purposes"),
.isError = true
});
return *this;
}
EvalState::EvalState(
const Strings & _searchPath,
ref<Store> store,
std::shared_ptr<Store> buildStore)
: sWith(symbols.create("<with>"))
, sOutPath(symbols.create("outPath"))
, sDrvPath(symbols.create("drvPath"))
, sType(symbols.create("type"))
, sMeta(symbols.create("meta"))
, sName(symbols.create("name"))
, sValue(symbols.create("value"))
, sSystem(symbols.create("system"))
, sOverrides(symbols.create("__overrides"))
, sOutputs(symbols.create("outputs"))
, sOutputName(symbols.create("outputName"))
, sIgnoreNulls(symbols.create("__ignoreNulls"))
, sFile(symbols.create("file"))
, sLine(symbols.create("line"))
, sColumn(symbols.create("column"))
, sFunctor(symbols.create("__functor"))
, sToString(symbols.create("__toString"))
, sRight(symbols.create("right"))
, sWrong(symbols.create("wrong"))
, sStructuredAttrs(symbols.create("__structuredAttrs"))
, sBuilder(symbols.create("builder"))
, sArgs(symbols.create("args"))
, sContentAddressed(symbols.create("__contentAddressed"))
, sImpure(symbols.create("__impure"))
, sOutputHash(symbols.create("outputHash"))
, sOutputHashAlgo(symbols.create("outputHashAlgo"))
, sOutputHashMode(symbols.create("outputHashMode"))
, sRecurseForDerivations(symbols.create("recurseForDerivations"))
, sDescription(symbols.create("description"))
, sSelf(symbols.create("self"))
, sEpsilon(symbols.create(""))
, sStartSet(symbols.create("startSet"))
, sOperator(symbols.create("operator"))
, sKey(symbols.create("key"))
, sPath(symbols.create("path"))
, sPrefix(symbols.create("prefix"))
, sOutputSpecified(symbols.create("outputSpecified"))
, repair(NoRepair)
, emptyBindings(0)
, store(store)
, buildStore(buildStore ? buildStore : store)
, debugRepl(nullptr)
, debugStop(false)
, debugQuit(false)
, trylevel(0)
, regexCache(makeRegexCache())
#if HAVE_BOEHMGC
, valueAllocCache(std::allocate_shared<void *>(traceable_allocator<void *>(), nullptr))
, env1AllocCache(std::allocate_shared<void *>(traceable_allocator<void *>(), nullptr))
#endif
, baseEnv(allocEnv(128))
, staticBaseEnv{std::make_shared<StaticEnv>(false, nullptr)}
{
countCalls = getEnv("NIX_COUNT_CALLS").value_or("0") != "0";
assert(gcInitialised);
static_assert(sizeof(Env) <= 16, "environment must be <= 16 bytes");
/* Initialise the Nix expression search path. */
evalSettings.nixPath.setDefault(evalSettings.getDefaultNixPath());
if (!evalSettings.pureEval) {
for (auto & i : _searchPath) addToSearchPath(i);
for (auto & i : evalSettings.nixPath.get()) addToSearchPath(i);
}
if (evalSettings.restrictEval || evalSettings.pureEval) {
allowedPaths = PathSet();
for (auto & i : searchPath) {
auto r = resolveSearchPathElem(i);
if (!r.first) continue;
auto path = r.second;
if (store->isInStore(r.second)) {
try {
StorePathSet closure;
store->computeFSClosure(store->toStorePath(r.second).first, closure);
for (auto & path : closure)
allowPath(path);
} catch (InvalidPath &) {
allowPath(r.second);
}
} else
allowPath(r.second);
}
}
createBaseEnv();
}
EvalState::~EvalState()
{
}
void EvalState::allowPath(const Path & path)
{
if (allowedPaths)
allowedPaths->insert(path);
}
void EvalState::allowPath(const StorePath & storePath)
{
if (allowedPaths)
allowedPaths->insert(store->toRealPath(storePath));
}
void EvalState::allowAndSetStorePathString(const StorePath & storePath, Value & v)
{
allowPath(storePath);
auto path = store->printStorePath(storePath);
v.mkString(path, PathSet({path}));
}
Path EvalState::checkSourcePath(const Path & path_)
{
if (!allowedPaths) return path_;
auto i = resolvedPaths.find(path_);
if (i != resolvedPaths.end())
return i->second;
bool found = false;
/* First canonicalize the path without symlinks, so we make sure an
* attacker can't append ../../... to a path that would be in allowedPaths
* and thus leak symlink targets.
*/
Path abspath = canonPath(path_);
if (hasPrefix(abspath, corepkgsPrefix)) return abspath;
for (auto & i : *allowedPaths) {
if (isDirOrInDir(abspath, i)) {
found = true;
break;
}
}
if (!found) {
auto modeInformation = evalSettings.pureEval
? "in pure eval mode (use '--impure' to override)"
: "in restricted mode";
throw RestrictedPathError("access to absolute path '%1%' is forbidden %2%", abspath, modeInformation);
}
/* Resolve symlinks. */
debug(format("checking access to '%s'") % abspath);
Path path = canonPath(abspath, true);
for (auto & i : *allowedPaths) {
if (isDirOrInDir(path, i)) {
resolvedPaths[path_] = path;
return path;
}
}
throw RestrictedPathError("access to canonical path '%1%' is forbidden in restricted mode", path);
}
void EvalState::checkURI(const std::string & uri)
{
if (!evalSettings.restrictEval) return;
/* 'uri' should be equal to a prefix, or in a subdirectory of a
prefix. Thus, the prefix https://github.co does not permit
access to https://github.com. Note: this allows 'http://' and
'https://' as prefixes for any http/https URI. */
for (auto & prefix : evalSettings.allowedUris.get())
if (uri == prefix ||
(uri.size() > prefix.size()
&& prefix.size() > 0
&& hasPrefix(uri, prefix)
&& (prefix[prefix.size() - 1] == '/' || uri[prefix.size()] == '/')))
return;
/* If the URI is a path, then check it against allowedPaths as
well. */
if (hasPrefix(uri, "/")) {
checkSourcePath(uri);
return;
}
if (hasPrefix(uri, "file://")) {
checkSourcePath(std::string(uri, 7));
return;
}
throw RestrictedPathError("access to URI '%s' is forbidden in restricted mode", uri);
}
Path EvalState::toRealPath(const Path & path, const PathSet & context)
{
// FIXME: check whether 'path' is in 'context'.
return
!context.empty() && store->isInStore(path)
? store->toRealPath(path)
: path;
}
Value * EvalState::addConstant(const std::string & name, Value & v)
{
Value * v2 = allocValue();
*v2 = v;
addConstant(name, v2);
return v2;
}
void EvalState::addConstant(const std::string & name, Value * v)
{
staticBaseEnv->vars.emplace_back(symbols.create(name), baseEnvDispl);
baseEnv.values[baseEnvDispl++] = v;
auto name2 = name.substr(0, 2) == "__" ? name.substr(2) : name;
baseEnv.values[0]->attrs->push_back(Attr(symbols.create(name2), v));
}
Value * EvalState::addPrimOp(const std::string & name,
size_t arity, PrimOpFun primOp)
{
return addPrimOp(PrimOp { .fun = primOp, .arity = arity, .name = name });
}
Value * EvalState::addPrimOp(PrimOp && primOp)
{
/* Hack to make constants lazy: turn them into a application of
the primop to a dummy value. */
if (primOp.arity == 0) {
primOp.arity = 1;
auto vPrimOp = allocValue();
vPrimOp->mkPrimOp(new PrimOp(primOp));
Value v;
v.mkApp(vPrimOp, vPrimOp);
return addConstant(primOp.name, v);
}
auto envName = symbols.create(primOp.name);
if (hasPrefix(primOp.name, "__"))
primOp.name = primOp.name.substr(2);
Value * v = allocValue();
v->mkPrimOp(new PrimOp(primOp));
staticBaseEnv->vars.emplace_back(envName, baseEnvDispl);
baseEnv.values[baseEnvDispl++] = v;
baseEnv.values[0]->attrs->push_back(Attr(symbols.create(primOp.name), v));
return v;
}
Value & EvalState::getBuiltin(const std::string & name)
{
return *baseEnv.values[0]->attrs->find(symbols.create(name))->value;
}
std::optional<EvalState::Doc> EvalState::getDoc(Value & v)
{
if (v.isPrimOp()) {
auto v2 = &v;
if (v2->primOp->doc)
return Doc {
.pos = {},
.name = v2->primOp->name,
.arity = v2->primOp->arity,
.args = v2->primOp->args,
.doc = v2->primOp->doc,
};
}
return {};
}
// just for the current level of StaticEnv, not the whole chain.
void printStaticEnvBindings(const SymbolTable & st, const StaticEnv & se)
{
std::cout << ANSI_MAGENTA;
for (auto & i : se.vars)
std::cout << st[i.first] << " ";
std::cout << ANSI_NORMAL;
std::cout << std::endl;
}
// just for the current level of Env, not the whole chain.
void printWithBindings(const SymbolTable & st, const Env & env)
{
if (env.type == Env::HasWithAttrs) {
std::cout << "with: ";
std::cout << ANSI_MAGENTA;
Bindings::iterator j = env.values[0]->attrs->begin();
while (j != env.values[0]->attrs->end()) {
std::cout << st[j->name] << " ";
++j;
}
std::cout << ANSI_NORMAL;
std::cout << std::endl;
}
}
void printEnvBindings(const SymbolTable & st, const StaticEnv & se, const Env & env, int lvl)
{
std::cout << "Env level " << lvl << std::endl;
if (se.up && env.up) {
std::cout << "static: ";
printStaticEnvBindings(st, se);
printWithBindings(st, env);
std::cout << std::endl;
printEnvBindings(st, *se.up, *env.up, ++lvl);
} else {
std::cout << ANSI_MAGENTA;
// for the top level, don't print the double underscore ones;
// they are in builtins.
for (auto & i : se.vars)
if (!hasPrefix(st[i.first], "__"))
std::cout << st[i.first] << " ";
std::cout << ANSI_NORMAL;
std::cout << std::endl;
printWithBindings(st, env); // probably nothing there for the top level.
std::cout << std::endl;
}
}
void printEnvBindings(const EvalState &es, const Expr & expr, const Env & env)
{
// just print the names for now
auto se = es.getStaticEnv(expr);
if (se)
printEnvBindings(es.symbols, *se, env, 0);
}
void mapStaticEnvBindings(const SymbolTable & st, const StaticEnv & se, const Env & env, ValMap & vm)
{
// add bindings for the next level up first, so that the bindings for this level
// override the higher levels.
// The top level bindings (builtins) are skipped since they are added for us by initEnv()
if (env.up && se.up) {
mapStaticEnvBindings(st, *se.up, *env.up, vm);
if (env.type == Env::HasWithAttrs) {
// add 'with' bindings.
Bindings::iterator j = env.values[0]->attrs->begin();
while (j != env.values[0]->attrs->end()) {
vm[st[j->name]] = j->value;
++j;
}
} else {
// iterate through staticenv bindings and add them.
for (auto & i : se.vars)
vm[st[i.first]] = env.values[i.second];
}
}
}
std::unique_ptr<ValMap> mapStaticEnvBindings(const SymbolTable & st, const StaticEnv & se, const Env & env)
{
auto vm = std::make_unique<ValMap>();
mapStaticEnvBindings(st, se, env, *vm);
return vm;
}
void EvalState::runDebugRepl(const Error * error, const Env & env, const Expr & expr)
{
// double check we've got the debugRepl function pointer.
if (!debugRepl)
return;
auto dts =
error && expr.getPos()
? std::make_unique<DebugTraceStacker>(
*this,
DebugTrace {
.pos = error->info().errPos ? error->info().errPos : static_cast<std::shared_ptr<AbstractPos>>(positions[expr.getPos()]),
.expr = expr,
.env = env,
.hint = error->info().msg,
.isError = true
})
: nullptr;
if (error)
{
printError("%s\n\n", error->what());
if (trylevel > 0 && error->info().level != lvlInfo)
printError("This exception occurred in a 'tryEval' call. Use " ANSI_GREEN "--ignore-try" ANSI_NORMAL " to skip these.\n");
printError(ANSI_BOLD "Starting REPL to allow you to inspect the current state of the evaluator.\n" ANSI_NORMAL);
}
auto se = getStaticEnv(expr);
if (se) {
auto vm = mapStaticEnvBindings(symbols, *se.get(), env);
(debugRepl)(ref<EvalState>(shared_from_this()), *vm);
}
}
void EvalState::addErrorTrace(Error & e, const char * s, const std::string & s2) const
{
e.addTrace(nullptr, s, s2);
}
void EvalState::addErrorTrace(Error & e, const PosIdx pos, const char * s, const std::string & s2, bool frame) const
{
e.addTrace(positions[pos], hintfmt(s, s2), frame);
}
static std::unique_ptr<DebugTraceStacker> makeDebugTraceStacker(
EvalState & state,
Expr & expr,
Env & env,
std::shared_ptr<AbstractPos> && pos,
const char * s,
const std::string & s2)
{
return std::make_unique<DebugTraceStacker>(state,
DebugTrace {
.pos = std::move(pos),
.expr = expr,
.env = env,
.hint = hintfmt(s, s2),
.isError = false
});
}
DebugTraceStacker::DebugTraceStacker(EvalState & evalState, DebugTrace t)
: evalState(evalState)
, trace(std::move(t))
{
evalState.debugTraces.push_front(trace);
if (evalState.debugStop && evalState.debugRepl)
evalState.runDebugRepl(nullptr, trace.env, trace.expr);
}
void Value::mkString(std::string_view s)
{
mkString(makeImmutableString(s));
}
static void copyContextToValue(Value & v, const PathSet & context)
{
if (!context.empty()) {
size_t n = 0;
v.string.context = (const char * *)
allocBytes((context.size() + 1) * sizeof(char *));
for (auto & i : context)
v.string.context[n++] = dupString(i.c_str());
v.string.context[n] = 0;
}
}
void Value::mkString(std::string_view s, const PathSet & context)
{
mkString(s);
copyContextToValue(*this, context);
}
void Value::mkStringMove(const char * s, const PathSet & context)
{
mkString(s);
copyContextToValue(*this, context);
}
void Value::mkPath(std::string_view s)
{
mkPath(makeImmutableString(s));
}
inline Value * EvalState::lookupVar(Env * env, const ExprVar & var, bool noEval)
{
for (auto l = var.level; l; --l, env = env->up) ;
if (!var.fromWith) return env->values[var.displ];
while (1) {
if (env->type == Env::HasWithExpr) {
if (noEval) return 0;
Value * v = allocValue();
evalAttrs(*env->up, (Expr *) env->values[0], *v, noPos, "<borked>");
env->values[0] = v;
env->type = Env::HasWithAttrs;
}
Bindings::iterator j = env->values[0]->attrs->find(var.name);
if (j != env->values[0]->attrs->end()) {
if (countCalls) attrSelects[j->pos]++;
return j->value;
}
if (!env->prevWith)
error("undefined variable '%1%'", symbols[var.name]).atPos(var.pos).withFrame(*env, var).debugThrow<UndefinedVarError>();
for (size_t l = env->prevWith; l; --l, env = env->up) ;
}
}
void EvalState::mkList(Value & v, size_t size)
{
v.mkList(size);
if (size > 2)
v.bigList.elems = (Value * *) allocBytes(size * sizeof(Value *));
nrListElems += size;
}
unsigned long nrThunks = 0;
static inline void mkThunk(Value & v, Env & env, Expr * expr)
{
v.mkThunk(&env, expr);
nrThunks++;
}
void EvalState::mkThunk_(Value & v, Expr * expr)
{
mkThunk(v, baseEnv, expr);
}
void EvalState::mkPos(Value & v, PosIdx p)
{
auto pos = positions[p];
if (auto path = std::get_if<Path>(&pos.origin)) {
auto attrs = buildBindings(3);
attrs.alloc(sFile).mkString(*path);
attrs.alloc(sLine).mkInt(pos.line);
attrs.alloc(sColumn).mkInt(pos.column);
v.mkAttrs(attrs);
} else
v.mkNull();
}
/* Create a thunk for the delayed computation of the given expression
in the given environment. But if the expression is a variable,
then look it up right away. This significantly reduces the number
of thunks allocated. */
Value * Expr::maybeThunk(EvalState & state, Env & env)
{
Value * v = state.allocValue();
mkThunk(*v, env, this);
return v;
}
Value * ExprVar::maybeThunk(EvalState & state, Env & env)
{
Value * v = state.lookupVar(&env, *this, true);
/* The value might not be initialised in the environment yet.
In that case, ignore it. */
if (v) { state.nrAvoided++; return v; }
return Expr::maybeThunk(state, env);
}
Value * ExprString::maybeThunk(EvalState & state, Env & env)
{
state.nrAvoided++;
return &v;
}
Value * ExprInt::maybeThunk(EvalState & state, Env & env)
{
state.nrAvoided++;
return &v;
}
Value * ExprFloat::maybeThunk(EvalState & state, Env & env)
{
state.nrAvoided++;
return &v;
}
Value * ExprPath::maybeThunk(EvalState & state, Env & env)
{
state.nrAvoided++;
return &v;
}
void EvalState::evalFile(const Path & path_, Value & v, bool mustBeTrivial)
{
auto path = checkSourcePath(path_);
FileEvalCache::iterator i;
if ((i = fileEvalCache.find(path)) != fileEvalCache.end()) {
v = i->second;
return;
}
Path resolvedPath = resolveExprPath(path);
if ((i = fileEvalCache.find(resolvedPath)) != fileEvalCache.end()) {
v = i->second;
return;
}
printTalkative("evaluating file '%1%'", resolvedPath);
Expr * e = nullptr;
auto j = fileParseCache.find(resolvedPath);
if (j != fileParseCache.end())
e = j->second;
if (!e)
e = parseExprFromFile(checkSourcePath(resolvedPath));
cacheFile(path, resolvedPath, e, v, mustBeTrivial);
}
void EvalState::resetFileCache()
{
fileEvalCache.clear();
fileParseCache.clear();
}
void EvalState::cacheFile(
const Path & path,
const Path & resolvedPath,
Expr * e,
Value & v,
bool mustBeTrivial)
{
fileParseCache[resolvedPath] = e;
try {
auto dts = debugRepl
? makeDebugTraceStacker(
*this,
*e,
this->baseEnv,
e->getPos() ? static_cast<std::shared_ptr<AbstractPos>>(positions[e->getPos()]) : nullptr,
"while evaluating the file '%1%':", resolvedPath)
: nullptr;
// Enforce that 'flake.nix' is a direct attrset, not a
// computation.
if (mustBeTrivial &&
!(dynamic_cast<ExprAttrs *>(e)))
error("file '%s' must be an attribute set", path).debugThrow<EvalError>();
eval(e, v);
} catch (Error & e) {
addErrorTrace(e, "while evaluating the file '%1%':", resolvedPath);
throw;
}
fileEvalCache[resolvedPath] = v;
if (path != resolvedPath) fileEvalCache[path] = v;
}
void EvalState::eval(Expr * e, Value & v)
{
e->eval(*this, baseEnv, v);
}
inline bool EvalState::evalBool(Env & env, Expr * e, const PosIdx pos, std::string_view errorCtx)
{
try {
Value v;
e->eval(*this, env, v);
if (v.type() != nBool)
error("value is %1% while a Boolean was expected", showType(v)).withFrame(env, *e).debugThrow<TypeError>();
return v.boolean;
} catch (Error & e) {
e.addTrace(positions[pos], errorCtx);
throw;
}
}
inline void EvalState::evalAttrs(Env & env, Expr * e, Value & v, const PosIdx pos, std::string_view errorCtx)
{
try {
e->eval(*this, env, v);
if (v.type() != nAttrs)
error("value is %1% while a set was expected", showType(v)).withFrame(env, *e).debugThrow<TypeError>();
} catch (Error & e) {
e.addTrace(positions[pos], errorCtx);
throw;
}
}
void Expr::eval(EvalState & state, Env & env, Value & v)
{
abort();
}
void ExprInt::eval(EvalState & state, Env & env, Value & v)
{
v = this->v;
}
void ExprFloat::eval(EvalState & state, Env & env, Value & v)
{
v = this->v;
}
void ExprString::eval(EvalState & state, Env & env, Value & v)
{
v = this->v;
}
void ExprPath::eval(EvalState & state, Env & env, Value & v)
{
v = this->v;
}
void ExprAttrs::eval(EvalState & state, Env & env, Value & v)
{
v.mkAttrs(state.buildBindings(attrs.size() + dynamicAttrs.size()).finish());
auto dynamicEnv = &env;
if (recursive) {
/* Create a new environment that contains the attributes in
this `rec'. */
Env & env2(state.allocEnv(attrs.size()));
env2.up = &env;
dynamicEnv = &env2;
AttrDefs::iterator overrides = attrs.find(state.sOverrides);
bool hasOverrides = overrides != attrs.end();
/* The recursive attributes are evaluated in the new
environment, while the inherited attributes are evaluated
in the original environment. */
Displacement displ = 0;
for (auto & i : attrs) {
Value * vAttr;
if (hasOverrides && !i.second.inherited) {
vAttr = state.allocValue();
mkThunk(*vAttr, env2, i.second.e);
} else
vAttr = i.second.e->maybeThunk(state, i.second.inherited ? env : env2);
env2.values[displ++] = vAttr;
v.attrs->push_back(Attr(i.first, vAttr, i.second.pos));
}
/* If the rec contains an attribute called `__overrides', then
evaluate it, and add the attributes in that set to the rec.
This allows overriding of recursive attributes, which is
otherwise not possible. (You can use the // operator to
replace an attribute, but other attributes in the rec will
still reference the original value, because that value has
been substituted into the bodies of the other attributes.
Hence we need __overrides.) */
if (hasOverrides) {
Value * vOverrides = (*v.attrs)[overrides->second.displ].value;
state.forceAttrs(*vOverrides, [&]() { return vOverrides->determinePos(noPos); }, "while evaluating the `__overrides` attribute");
Bindings * newBnds = state.allocBindings(v.attrs->capacity() + vOverrides->attrs->size());
for (auto & i : *v.attrs)
newBnds->push_back(i);
for (auto & i : *vOverrides->attrs) {
AttrDefs::iterator j = attrs.find(i.name);
if (j != attrs.end()) {
(*newBnds)[j->second.displ] = i;
env2.values[j->second.displ] = i.value;
} else
newBnds->push_back(i);
}
newBnds->sort();
v.attrs = newBnds;
}
}
else
for (auto & i : attrs)
v.attrs->push_back(Attr(i.first, i.second.e->maybeThunk(state, env), i.second.pos));
/* Dynamic attrs apply *after* rec and __overrides. */
for (auto & i : dynamicAttrs) {
Value nameVal;
i.nameExpr->eval(state, *dynamicEnv, nameVal);
state.forceValue(nameVal, i.pos);
if (nameVal.type() == nNull)
continue;
state.forceStringNoCtx(nameVal, i.pos, "while evaluating the name of a dynamic attribute");
auto nameSym = state.symbols.create(nameVal.string.s);
Bindings::iterator j = v.attrs->find(nameSym);
if (j != v.attrs->end())
state.error("dynamic attribute '%1%' already defined at %2%", state.symbols[nameSym], state.positions[j->pos]).atPos(i.pos).withFrame(env, *this).debugThrow<EvalError>();
i.valueExpr->setName(nameSym);
/* Keep sorted order so find can catch duplicates */
v.attrs->push_back(Attr(nameSym, i.valueExpr->maybeThunk(state, *dynamicEnv), i.pos));
v.attrs->sort(); // FIXME: inefficient
}
v.attrs->pos = pos;
}
void ExprLet::eval(EvalState & state, Env & env, Value & v)
{
/* Create a new environment that contains the attributes in this
`let'. */
Env & env2(state.allocEnv(attrs->attrs.size()));
env2.up = &env;
/* The recursive attributes are evaluated in the new environment,
while the inherited attributes are evaluated in the original
environment. */
Displacement displ = 0;
for (auto & i : attrs->attrs)
env2.values[displ++] = i.second.e->maybeThunk(state, i.second.inherited ? env : env2);
body->eval(state, env2, v);
}
void ExprList::eval(EvalState & state, Env & env, Value & v)
{
state.mkList(v, elems.size());
for (auto [n, v2] : enumerate(v.listItems()))
const_cast<Value * &>(v2) = elems[n]->maybeThunk(state, env);
}
void ExprVar::eval(EvalState & state, Env & env, Value & v)
{
Value * v2 = state.lookupVar(&env, *this, false);
state.forceValue(*v2, pos);
v = *v2;
}
static std::string showAttrPath(EvalState & state, Env & env, const AttrPath & attrPath)
{
std::ostringstream out;
bool first = true;
for (auto & i : attrPath) {
if (!first) out << '.'; else first = false;
try {
out << state.symbols[getName(i, state, env)];
} catch (Error & e) {
assert(!i.symbol);
out << "\"${";
i.expr->show(state.symbols, out);
out << "}\"";
}
}
return out.str();
}
void ExprSelect::eval(EvalState & state, Env & env, Value & v)
{
Value vTmp;
PosIdx pos2;
Value * vAttrs = &vTmp;
e->eval(state, env, vTmp);
try {
auto dts = state.debugRepl
? makeDebugTraceStacker(
state,
*this,
env,
state.positions[pos2],
"while evaluating the attribute '%1%'",
showAttrPath(state, env, attrPath))
: nullptr;
for (auto & i : attrPath) {
state.nrLookups++;
Bindings::iterator j;
auto name = getName(i, state, env);
if (def) {
state.forceValue(*vAttrs, pos);
if (vAttrs->type() != nAttrs ||
(j = vAttrs->attrs->find(name)) == vAttrs->attrs->end())
{
def->eval(state, env, v);
return;
}
} else {
state.forceAttrs(*vAttrs, pos, "while selecting an attribute");
if ((j = vAttrs->attrs->find(name)) == vAttrs->attrs->end()) {
std::set<std::string> allAttrNames;
for (auto & attr : *vAttrs->attrs)
allAttrNames.insert(state.symbols[attr.name]);
auto suggestions = Suggestions::bestMatches(allAttrNames, state.symbols[name]);
state.error("attribute '%1%' missing", state.symbols[name])
.atPos(pos).withSuggestions(suggestions).withFrame(env, *this).debugThrow<EvalError>();
}
}
vAttrs = j->value;
pos2 = j->pos;
if (state.countCalls) state.attrSelects[pos2]++;
}
state.forceValue(*vAttrs, (pos2 ? pos2 : this->pos ) );
} catch (Error & e) {
if (pos2) {
auto pos2r = state.positions[pos2];
auto origin = std::get_if<Path>(&pos2r.origin);
if (!(origin && *origin == state.derivationNixPath))
state.addErrorTrace(e, pos2, "while evaluating the attribute '%1%'",
showAttrPath(state, env, attrPath));
}
throw;
}
v = *vAttrs;
}
void ExprOpHasAttr::eval(EvalState & state, Env & env, Value & v)
{
Value vTmp;
Value * vAttrs = &vTmp;
e->eval(state, env, vTmp);
for (auto & i : attrPath) {
state.forceValue(*vAttrs, noPos);
Bindings::iterator j;
auto name = getName(i, state, env);
if (vAttrs->type() != nAttrs ||
(j = vAttrs->attrs->find(name)) == vAttrs->attrs->end())
{
v.mkBool(false);
return;
} else {
vAttrs = j->value;
}
}
v.mkBool(true);
}
void ExprLambda::eval(EvalState & state, Env & env, Value & v)
{
v.mkLambda(&env, this);
}
void EvalState::callFunction(Value & fun, size_t nrArgs, Value * * args, Value & vRes, const PosIdx pos)
{
auto trace = evalSettings.traceFunctionCalls
? std::make_unique<FunctionCallTrace>(positions[pos])
: nullptr;
forceValue(fun, pos);
Value vCur(fun);
auto makeAppChain = [&]()
{
vRes = vCur;
for (size_t i = 0; i < nrArgs; ++i) {
auto fun2 = allocValue();
*fun2 = vRes;
vRes.mkPrimOpApp(fun2, args[i]);
}
};
Attr * functor;
while (nrArgs > 0) {
if (vCur.isLambda()) {
ExprLambda & lambda(*vCur.lambda.fun);
auto size =
(!lambda.arg ? 0 : 1) +
(lambda.hasFormals() ? lambda.formals->formals.size() : 0);
Env & env2(allocEnv(size));
env2.up = vCur.lambda.env;
Displacement displ = 0;
if (!lambda.hasFormals())
env2.values[displ++] = args[0];
else {
try {
forceAttrs(*args[0], lambda.pos, "while evaluating the value passed for the lambda argument");
} catch (Error & e) {
if (pos) e.addTrace(positions[pos], "from call site");
throw;
}
if (lambda.arg)
env2.values[displ++] = args[0];
/* For each formal argument, get the actual argument. If
there is no matching actual argument but the formal
argument has a default, use the default. */
size_t attrsUsed = 0;
for (auto & i : lambda.formals->formals) {
auto j = args[0]->attrs->get(i.name);
if (!j) {
if (!i.def) {
error("function '%1%' called without required argument '%2%'",
(lambda.name ? std::string(symbols[lambda.name]) : "anonymous lambda"),
symbols[i.name])
.atPos(lambda.pos)
.withTrace(pos, "from call site")
.withFrame(*fun.lambda.env, lambda)
.debugThrow<TypeError>();
}
env2.values[displ++] = i.def->maybeThunk(*this, env2);
} else {
attrsUsed++;
env2.values[displ++] = j->value;
}
}
/* Check that each actual argument is listed as a formal
argument (unless the attribute match specifies a `...'). */
if (!lambda.formals->ellipsis && attrsUsed != args[0]->attrs->size()) {
/* Nope, so show the first unexpected argument to the
user. */
for (auto & i : *args[0]->attrs)
if (!lambda.formals->has(i.name)) {
std::set<std::string> formalNames;
for (auto & formal : lambda.formals->formals)
formalNames.insert(symbols[formal.name]);
auto suggestions = Suggestions::bestMatches(formalNames, symbols[i.name]);
error("function '%1%' called with unexpected argument '%2%'",
(lambda.name ? std::string(symbols[lambda.name]) : "anonymous lambda"),
symbols[i.name])
.atPos(lambda.pos)
.withTrace(pos, "from call site")
.withSuggestions(suggestions)
.withFrame(*fun.lambda.env, lambda)
.debugThrow<TypeError>();
}
abort(); // can't happen
}
}
nrFunctionCalls++;
if (countCalls) incrFunctionCall(&lambda);
/* Evaluate the body. */
try {
auto dts = debugRepl
? makeDebugTraceStacker(
*this, *lambda.body, env2, positions[lambda.pos],
"while calling %s",
lambda.name
? concatStrings("'", symbols[lambda.name], "'")
: "anonymous lambda")
: nullptr;
lambda.body->eval(*this, env2, vCur);
} catch (Error & e) {
if (loggerSettings.showTrace.get()) {
addErrorTrace(
e,
lambda.pos,
"while calling %s",
lambda.name
? concatStrings("'", symbols[lambda.name], "'")
: "anonymous lambda",
true);
if (pos) addErrorTrace(e, pos, "from call site%s", "", true);
}
throw;
}
nrArgs--;
args += 1;
}
else if (vCur.isPrimOp()) {
size_t argsLeft = vCur.primOp->arity;
if (nrArgs < argsLeft) {
/* We don't have enough arguments, so create a tPrimOpApp chain. */
makeAppChain();
return;
} else {
/* We have all the arguments, so call the primop. */
auto name = vCur.primOp->name;
nrPrimOpCalls++;
if (countCalls) primOpCalls[name]++;
try {
vCur.primOp->fun(*this, noPos, args, vCur);
} catch (Error & e) {
addErrorTrace(e, pos, "while calling the '%1%' builtin", name);
throw;
}
nrArgs -= argsLeft;
args += argsLeft;
}
}
else if (vCur.isPrimOpApp()) {
/* Figure out the number of arguments still needed. */
size_t argsDone = 0;
Value * primOp = &vCur;
while (primOp->isPrimOpApp()) {
argsDone++;
primOp = primOp->primOpApp.left;
}
assert(primOp->isPrimOp());
auto arity = primOp->primOp->arity;
auto argsLeft = arity - argsDone;
if (nrArgs < argsLeft) {
/* We still don't have enough arguments, so extend the tPrimOpApp chain. */
makeAppChain();
return;
} else {
/* We have all the arguments, so call the primop with
the previous and new arguments. */
Value * vArgs[arity];
auto n = argsDone;
for (Value * arg = &vCur; arg->isPrimOpApp(); arg = arg->primOpApp.left)
vArgs[--n] = arg->primOpApp.right;
for (size_t i = 0; i < argsLeft; ++i)
vArgs[argsDone + i] = args[i];
auto name = primOp->primOp->name;
nrPrimOpCalls++;
if (countCalls) primOpCalls[name]++;
try {
// TODO:
// 1. Unify this and above code. Heavily redundant.
// 2. Create a fake env (arg1, arg2, etc.) and a fake expr (arg1: arg2: etc: builtins.name arg1 arg2 etc)
// so the debugger allows to inspect the wrong parameters passed to the builtin.
primOp->primOp->fun(*this, noPos, vArgs, vCur);
} catch (Error & e) {
addErrorTrace(e, pos, "while calling the '%1%' builtin", name);
throw;
}
nrArgs -= argsLeft;
args += argsLeft;
}
}
else if (vCur.type() == nAttrs && (functor = vCur.attrs->get(sFunctor))) {
/* 'vCur' may be allocated on the stack of the calling
function, but for functors we may keep a reference, so
heap-allocate a copy and use that instead. */
Value * args2[] = {allocValue(), args[0]};
*args2[0] = vCur;
try {
callFunction(*functor->value, 2, args2, vCur, functor->pos);
} catch (Error & e) {
e.addTrace(positions[pos], "while calling a functor (an attribute set with a '__functor' attribute)");
throw;
}
nrArgs--;
args++;
}
else
error("attempt to call something which is not a function but %1%", showType(vCur)).atPos(pos).debugThrow<TypeError>();
}
vRes = vCur;
}
void ExprCall::eval(EvalState & state, Env & env, Value & v)
{
Value vFun;
fun->eval(state, env, vFun);
Value * vArgs[args.size()];
for (size_t i = 0; i < args.size(); ++i)
vArgs[i] = args[i]->maybeThunk(state, env);
state.callFunction(vFun, args.size(), vArgs, v, pos);
}
// Lifted out of callFunction() because it creates a temporary that
// prevents tail-call optimisation.
void EvalState::incrFunctionCall(ExprLambda * fun)
{
functionCalls[fun]++;
}
void EvalState::autoCallFunction(Bindings & args, Value & fun, Value & res)
{
auto pos = fun.determinePos(noPos);
forceValue(fun, pos);
if (fun.type() == nAttrs) {
auto found = fun.attrs->find(sFunctor);
if (found != fun.attrs->end()) {
Value * v = allocValue();
callFunction(*found->value, fun, *v, pos);
forceValue(*v, pos);
return autoCallFunction(args, *v, res);
}
}
if (!fun.isLambda() || !fun.lambda.fun->hasFormals()) {
res = fun;
return;
}
auto attrs = buildBindings(std::max(static_cast<uint32_t>(fun.lambda.fun->formals->formals.size()), args.size()));
if (fun.lambda.fun->formals->ellipsis) {
// If the formals have an ellipsis (eg the function accepts extra args) pass
// all available automatic arguments (which includes arguments specified on
// the command line via --arg/--argstr)
for (auto & v : args)
attrs.insert(v);
} else {
// Otherwise, only pass the arguments that the function accepts
for (auto & i : fun.lambda.fun->formals->formals) {
Bindings::iterator j = args.find(i.name);
if (j != args.end()) {
attrs.insert(*j);
} else if (!i.def) {
error(R"(cannot evaluate a function that has an argument without a value ('%1%')
Nix attempted to evaluate a function as a top level expression; in
this case it must have its arguments supplied either by default
values, or passed explicitly with '--arg' or '--argstr'. See
https://nixos.org/manual/nix/stable/language/constructs.html#functions.)", symbols[i.name])
.atPos(i.pos).withFrame(*fun.lambda.env, *fun.lambda.fun).debugThrow<MissingArgumentError>();
}
}
}
callFunction(fun, allocValue()->mkAttrs(attrs), res, noPos);
}
void ExprWith::eval(EvalState & state, Env & env, Value & v)
{
Env & env2(state.allocEnv(1));
env2.up = &env;
env2.prevWith = prevWith;
env2.type = Env::HasWithExpr;
env2.values[0] = (Value *) attrs;
body->eval(state, env2, v);
}
void ExprIf::eval(EvalState & state, Env & env, Value & v)
{
// We cheat in the parser, and pass the position of the condition as the position of the if itself.
(state.evalBool(env, cond, pos, "while evaluating a branch condition") ? then : else_)->eval(state, env, v);
}
void ExprAssert::eval(EvalState & state, Env & env, Value & v)
{
if (!state.evalBool(env, cond, pos, "in the condition of the assert statement")) {
std::ostringstream out;
cond->show(state.symbols, out);
state.error("assertion '%1%' failed", out.str()).atPos(pos).withFrame(env, *this).debugThrow<AssertionError>();
}
body->eval(state, env, v);
}
void ExprOpNot::eval(EvalState & state, Env & env, Value & v)
{
v.mkBool(!state.evalBool(env, e, noPos, "in the argument of the not operator")); // XXX: FIXME: !
}
void ExprOpEq::eval(EvalState & state, Env & env, Value & v)
{
Value v1; e1->eval(state, env, v1);
Value v2; e2->eval(state, env, v2);
v.mkBool(state.eqValues(v1, v2, pos, "while testing two values for equality"));
}
void ExprOpNEq::eval(EvalState & state, Env & env, Value & v)
{
Value v1; e1->eval(state, env, v1);
Value v2; e2->eval(state, env, v2);
v.mkBool(!state.eqValues(v1, v2, pos, "while testing two values for inequality"));
}
void ExprOpAnd::eval(EvalState & state, Env & env, Value & v)
{
v.mkBool(state.evalBool(env, e1, pos, "in the left operand of the AND (&&) operator") && state.evalBool(env, e2, pos, "in the right operand of the AND (&&) operator"));
}
void ExprOpOr::eval(EvalState & state, Env & env, Value & v)
{
v.mkBool(state.evalBool(env, e1, pos, "in the left operand of the OR (||) operator") || state.evalBool(env, e2, pos, "in the right operand of the OR (||) operator"));
}
void ExprOpImpl::eval(EvalState & state, Env & env, Value & v)
{
v.mkBool(!state.evalBool(env, e1, pos, "in the left operand of the IMPL (->) operator") || state.evalBool(env, e2, pos, "in the right operand of the IMPL (->) operator"));
}
void ExprOpUpdate::eval(EvalState & state, Env & env, Value & v)
{
Value v1, v2;
state.evalAttrs(env, e1, v1, pos, "in the left operand of the update (//) operator");
state.evalAttrs(env, e2, v2, pos, "in the right operand of the update (//) operator");
state.nrOpUpdates++;
if (v1.attrs->size() == 0) { v = v2; return; }
if (v2.attrs->size() == 0) { v = v1; return; }
auto attrs = state.buildBindings(v1.attrs->size() + v2.attrs->size());
/* Merge the sets, preferring values from the second set. Make
sure to keep the resulting vector in sorted order. */
Bindings::iterator i = v1.attrs->begin();
Bindings::iterator j = v2.attrs->begin();
while (i != v1.attrs->end() && j != v2.attrs->end()) {
if (i->name == j->name) {
attrs.insert(*j);
++i; ++j;
}
else if (i->name < j->name)
attrs.insert(*i++);
else
attrs.insert(*j++);
}
while (i != v1.attrs->end()) attrs.insert(*i++);
while (j != v2.attrs->end()) attrs.insert(*j++);
v.mkAttrs(attrs.alreadySorted());
state.nrOpUpdateValuesCopied += v.attrs->size();
}
void ExprOpConcatLists::eval(EvalState & state, Env & env, Value & v)
{
Value v1; e1->eval(state, env, v1);
Value v2; e2->eval(state, env, v2);
Value * lists[2] = { &v1, &v2 };
state.concatLists(v, 2, lists, pos, "while evaluating one of the elements to concatenate");
}
void EvalState::concatLists(Value & v, size_t nrLists, Value * * lists, const PosIdx pos, std::string_view errorCtx)
{
nrListConcats++;
Value * nonEmpty = 0;
size_t len = 0;
for (size_t n = 0; n < nrLists; ++n) {
forceList(*lists[n], pos, errorCtx);
auto l = lists[n]->listSize();
len += l;
if (l) nonEmpty = lists[n];
}
if (nonEmpty && len == nonEmpty->listSize()) {
v = *nonEmpty;
return;
}
mkList(v, len);
auto out = v.listElems();
for (size_t n = 0, pos = 0; n < nrLists; ++n) {
auto l = lists[n]->listSize();
if (l)
memcpy(out + pos, lists[n]->listElems(), l * sizeof(Value *));
pos += l;
}
}
void ExprConcatStrings::eval(EvalState & state, Env & env, Value & v)
{
PathSet context;
std::vector<BackedStringView> s;
size_t sSize = 0;
NixInt n = 0;
NixFloat nf = 0;
bool first = !forceString;
ValueType firstType = nString;
const auto str = [&] {
std::string result;
result.reserve(sSize);
for (const auto & part : s) result += *part;
return result;
};
/* c_str() is not str().c_str() because we want to create a string
Value. allocating a GC'd string directly and moving it into a
Value lets us avoid an allocation and copy. */
const auto c_str = [&] {
char * result = allocString(sSize + 1);
char * tmp = result;
for (const auto & part : s) {
memcpy(tmp, part->data(), part->size());
tmp += part->size();
}
*tmp = 0;
return result;
};
Value values[es->size()];
Value * vTmpP = values;
for (auto & [i_pos, i] : *es) {
Value & vTmp = *vTmpP++;
i->eval(state, env, vTmp);
/* If the first element is a path, then the result will also
be a path, we don't copy anything (yet - that's done later,
since paths are copied when they are used in a derivation),
and none of the strings are allowed to have contexts. */
if (first) {
firstType = vTmp.type();
}
if (firstType == nInt) {
if (vTmp.type() == nInt) {
n += vTmp.integer;
} else if (vTmp.type() == nFloat) {
// Upgrade the type from int to float;
firstType = nFloat;
nf = n;
nf += vTmp.fpoint;
} else
state.error("cannot add %1% to an integer", showType(vTmp)).atPos(i_pos).withFrame(env, *this).debugThrow<EvalError>();
} else if (firstType == nFloat) {
if (vTmp.type() == nInt) {
nf += vTmp.integer;
} else if (vTmp.type() == nFloat) {
nf += vTmp.fpoint;
} else
state.error("cannot add %1% to a float", showType(vTmp)).atPos(i_pos).withFrame(env, *this).debugThrow<EvalError>();
} else {
if (s.empty()) s.reserve(es->size());
/* skip canonization of first path, which would only be not
canonized in the first place if it's coming from a ./${foo} type
path */
auto part = state.coerceToString(i_pos, vTmp, context,
"while evaluating a path segment",
false, firstType == nString, !first);
sSize += part->size();
s.emplace_back(std::move(part));
}
first = false;
}
if (firstType == nInt)
v.mkInt(n);
else if (firstType == nFloat)
v.mkFloat(nf);
else if (firstType == nPath) {
if (!context.empty())
state.error("a string that refers to a store path cannot be appended to a path").atPos(pos).withFrame(env, *this).debugThrow<EvalError>();
v.mkPath(canonPath(str()));
} else
v.mkStringMove(c_str(), context);
}
void ExprPos::eval(EvalState & state, Env & env, Value & v)
{
state.mkPos(v, pos);
}
void EvalState::forceValueDeep(Value & v)
{
std::set<const Value *> seen;
std::function<void(Value & v)> recurse;
recurse = [&](Value & v) {
if (!seen.insert(&v).second) return;
forceValue(v, [&]() { return v.determinePos(noPos); });
if (v.type() == nAttrs) {
for (auto & i : *v.attrs)
try {
// If the value is a thunk, we're evaling. Otherwise no trace necessary.
auto dts = debugRepl && i.value->isThunk()
? makeDebugTraceStacker(*this, *i.value->thunk.expr, *i.value->thunk.env, positions[i.pos],
"while evaluating the attribute '%1%'", symbols[i.name])
: nullptr;
recurse(*i.value);
} catch (Error & e) {
addErrorTrace(e, i.pos, "while evaluating the attribute '%1%'", symbols[i.name]);
throw;
}
}
else if (v.isList()) {
for (auto v2 : v.listItems())
recurse(*v2);
}
};
recurse(v);
}
NixInt EvalState::forceInt(Value & v, const PosIdx pos, std::string_view errorCtx)
{
try {
forceValue(v, pos);
if (v.type() != nInt)
error("value is %1% while an integer was expected", showType(v)).debugThrow<TypeError>();
return v.integer;
} catch (Error & e) {
e.addTrace(positions[pos], errorCtx);
throw;
}
}
NixFloat EvalState::forceFloat(Value & v, const PosIdx pos, std::string_view errorCtx)
{
try {
forceValue(v, pos);
if (v.type() == nInt)
return v.integer;
else if (v.type() != nFloat)
error("value is %1% while a float was expected", showType(v)).debugThrow<TypeError>();
return v.fpoint;
} catch (Error & e) {
e.addTrace(positions[pos], errorCtx);
throw;
}
}
bool EvalState::forceBool(Value & v, const PosIdx pos, std::string_view errorCtx)
{
try {
forceValue(v, pos);
if (v.type() != nBool)
error("value is %1% while a Boolean was expected", showType(v)).debugThrow<TypeError>();
return v.boolean;
} catch (Error & e) {
e.addTrace(positions[pos], errorCtx);
throw;
}
}
bool EvalState::isFunctor(Value & fun)
{
return fun.type() == nAttrs && fun.attrs->find(sFunctor) != fun.attrs->end();
}
void EvalState::forceFunction(Value & v, const PosIdx pos, std::string_view errorCtx)
{
try {
forceValue(v, pos);
if (v.type() != nFunction && !isFunctor(v))
error("value is %1% while a function was expected", showType(v)).debugThrow<TypeError>();
} catch (Error & e) {
e.addTrace(positions[pos], errorCtx);
throw;
}
}
std::string_view EvalState::forceString(Value & v, const PosIdx pos, std::string_view errorCtx)
{
try {
forceValue(v, pos);
if (v.type() != nString)
error("value is %1% while a string was expected", showType(v)).debugThrow<TypeError>();
return v.string.s;
} catch (Error & e) {
e.addTrace(positions[pos], errorCtx);
throw;
}
}
void copyContext(const Value & v, PathSet & context)
{
if (v.string.context)
for (const char * * p = v.string.context; *p; ++p)
context.insert(*p);
}
NixStringContext Value::getContext(const Store & store)
{
NixStringContext res;
assert(internalType == tString);
if (string.context)
for (const char * * p = string.context; *p; ++p)
res.push_back(NixStringContextElem::parse(store, *p));
return res;
}
std::string_view EvalState::forceString(Value & v, PathSet & context, const PosIdx pos, std::string_view errorCtx)
{
auto s = forceString(v, pos, errorCtx);
copyContext(v, context);
return s;
}
std::string_view EvalState::forceStringNoCtx(Value & v, const PosIdx pos, std::string_view errorCtx)
{
auto s = forceString(v, pos, errorCtx);
if (v.string.context) {
error("the string '%1%' is not allowed to refer to a store path (such as '%2%')", v.string.s, v.string.context[0]).withTrace(pos, errorCtx).debugThrow<EvalError>();
}
return s;
}
bool EvalState::isDerivation(Value & v)
{
if (v.type() != nAttrs) return false;
Bindings::iterator i = v.attrs->find(sType);
if (i == v.attrs->end()) return false;
forceValue(*i->value, i->pos);
if (i->value->type() != nString) return false;
return strcmp(i->value->string.s, "derivation") == 0;
}
std::optional<std::string> EvalState::tryAttrsToString(const PosIdx pos, Value & v,
PathSet & context, bool coerceMore, bool copyToStore)
{
auto i = v.attrs->find(sToString);
if (i != v.attrs->end()) {
Value v1;
callFunction(*i->value, v, v1, pos);
return coerceToString(pos, v1, context,
"while evaluating the result of the `__toString` attribute",
coerceMore, copyToStore).toOwned();
}
return {};
}
BackedStringView EvalState::coerceToString(const PosIdx pos, Value &v, PathSet &context,
std::string_view errorCtx, bool coerceMore, bool copyToStore, bool canonicalizePath)
{
forceValue(v, pos);
if (v.type() == nString) {
copyContext(v, context);
return std::string_view(v.string.s);
}
if (v.type() == nPath) {
BackedStringView path(PathView(v.path));
if (canonicalizePath)
path = canonPath(*path);
if (copyToStore)
path = store->printStorePath(copyPathToStore(context, std::move(path).toOwned()));
return path;
}
if (v.type() == nAttrs) {
auto maybeString = tryAttrsToString(pos, v, context, coerceMore, copyToStore);
if (maybeString)
return std::move(*maybeString);
auto i = v.attrs->find(sOutPath);
if (i == v.attrs->end()) {
error("cannot coerce %1% to a string", showType(v))
.withTrace(pos, errorCtx)
.debugThrow<TypeError>();
}
return coerceToString(pos, *i->value, context, errorCtx,
coerceMore, copyToStore, canonicalizePath);
}
if (v.type() == nExternal) {
try {
return v.external->coerceToString(positions[pos], context, coerceMore, copyToStore);
} catch (Error & e) {
e.addTrace(nullptr, errorCtx);
throw;
}
}
if (coerceMore) {
/* Note that `false' is represented as an empty string for
shell scripting convenience, just like `null'. */
if (v.type() == nBool && v.boolean) return "1";
if (v.type() == nBool && !v.boolean) return "";
if (v.type() == nInt) return std::to_string(v.integer);
if (v.type() == nFloat) return std::to_string(v.fpoint);
if (v.type() == nNull) return "";
if (v.isList()) {
std::string result;
for (auto [n, v2] : enumerate(v.listItems())) {
try {
result += *coerceToString(noPos, *v2, context,
"while evaluating one element of the list",
coerceMore, copyToStore, canonicalizePath);
} catch (Error & e) {
e.addTrace(positions[pos], errorCtx);
throw;
}
if (n < v.listSize() - 1
/* !!! not quite correct */
&& (!v2->isList() || v2->listSize() != 0))
result += " ";
}
return std::move(result);
}
}
error("cannot coerce %1% to a string", showType(v))
.withTrace(pos, errorCtx)
.debugThrow<TypeError>();
}
StorePath EvalState::copyPathToStore(PathSet & context, const Path & path)
{
if (nix::isDerivation(path))
error("file names are not allowed to end in '%1%'", drvExtension).debugThrow<EvalError>();
auto dstPath = [&]() -> StorePath
{
auto i = srcToStore.find(path);
if (i != srcToStore.end()) return i->second;
auto dstPath = settings.readOnlyMode
? store->computeStorePathForPath(std::string(baseNameOf(path)), checkSourcePath(path)).first
: store->addToStore(std::string(baseNameOf(path)), checkSourcePath(path), FileIngestionMethod::Recursive, htSHA256, defaultPathFilter, repair);
allowPath(dstPath);
srcToStore.insert_or_assign(path, dstPath);
printMsg(lvlChatty, "copied source '%1%' -> '%2%'", path, store->printStorePath(dstPath));
return dstPath;
}();
context.insert(store->printStorePath(dstPath));
return dstPath;
}
Path EvalState::coerceToPath(const PosIdx pos, Value & v, PathSet & context, std::string_view errorCtx)
{
auto path = coerceToString(pos, v, context, errorCtx, false, false, true).toOwned();
if (path == "" || path[0] != '/')
error("string '%1%' doesn't represent an absolute path", path).withTrace(pos, errorCtx).debugThrow<EvalError>();
return path;
}
StorePath EvalState::coerceToStorePath(const PosIdx pos, Value & v, PathSet & context, std::string_view errorCtx)
{
auto path = coerceToString(pos, v, context, errorCtx, false, false, true).toOwned();
if (auto storePath = store->maybeParseStorePath(path))
return *storePath;
error("path '%1%' is not in the Nix store", path).withTrace(pos, errorCtx).debugThrow<EvalError>();
}
bool EvalState::eqValues(Value & v1, Value & v2, const PosIdx pos, std::string_view errorCtx)
{
forceValue(v1, noPos);
forceValue(v2, noPos);
/* !!! Hack to support some old broken code that relies on pointer
equality tests between sets. (Specifically, builderDefs calls
uniqList on a list of sets.) Will remove this eventually. */
if (&v1 == &v2) return true;
// Special case type-compatibility between float and int
if (v1.type() == nInt && v2.type() == nFloat)
return v1.integer == v2.fpoint;
if (v1.type() == nFloat && v2.type() == nInt)
return v1.fpoint == v2.integer;
// All other types are not compatible with each other.
if (v1.type() != v2.type()) return false;
switch (v1.type()) {
case nInt:
return v1.integer == v2.integer;
case nBool:
return v1.boolean == v2.boolean;
case nString:
return strcmp(v1.string.s, v2.string.s) == 0;
case nPath:
return strcmp(v1.path, v2.path) == 0;
case nNull:
return true;
case nList:
if (v1.listSize() != v2.listSize()) return false;
for (size_t n = 0; n < v1.listSize(); ++n)
if (!eqValues(*v1.listElems()[n], *v2.listElems()[n], pos, errorCtx)) return false;
return true;
case nAttrs: {
/* If both sets denote a derivation (type = "derivation"),
then compare their outPaths. */
if (isDerivation(v1) && isDerivation(v2)) {
Bindings::iterator i = v1.attrs->find(sOutPath);
Bindings::iterator j = v2.attrs->find(sOutPath);
if (i != v1.attrs->end() && j != v2.attrs->end())
return eqValues(*i->value, *j->value, pos, errorCtx);
}
if (v1.attrs->size() != v2.attrs->size()) return false;
/* Otherwise, compare the attributes one by one. */
Bindings::iterator i, j;
for (i = v1.attrs->begin(), j = v2.attrs->begin(); i != v1.attrs->end(); ++i, ++j)
if (i->name != j->name || !eqValues(*i->value, *j->value, pos, errorCtx))
return false;
return true;
}
/* Functions are incomparable. */
case nFunction:
return false;
case nExternal:
return *v1.external == *v2.external;
case nFloat:
return v1.fpoint == v2.fpoint;
default:
error("cannot compare %1% with %2%", showType(v1), showType(v2)).withTrace(pos, errorCtx).debugThrow<EvalError>();
}
}
void EvalState::printStats()
{
bool showStats = getEnv("NIX_SHOW_STATS").value_or("0") != "0";
struct rusage buf;
getrusage(RUSAGE_SELF, &buf);
float cpuTime = buf.ru_utime.tv_sec + ((float) buf.ru_utime.tv_usec / 1000000);
uint64_t bEnvs = nrEnvs * sizeof(Env) + nrValuesInEnvs * sizeof(Value *);
uint64_t bLists = nrListElems * sizeof(Value *);
uint64_t bValues = nrValues * sizeof(Value);
uint64_t bAttrsets = nrAttrsets * sizeof(Bindings) + nrAttrsInAttrsets * sizeof(Attr);
#if HAVE_BOEHMGC
GC_word heapSize, totalBytes;
GC_get_heap_usage_safe(&heapSize, 0, 0, 0, &totalBytes);
#endif
if (showStats) {
auto outPath = getEnv("NIX_SHOW_STATS_PATH").value_or("-");
std::fstream fs;
if (outPath != "-")
fs.open(outPath, std::fstream::out);
json topObj = json::object();
topObj["cpuTime"] = cpuTime;
topObj["envs"] = {
{"number", nrEnvs},
{"elements", nrValuesInEnvs},
{"bytes", bEnvs},
};
topObj["list"] = {
{"elements", nrListElems},
{"bytes", bLists},
{"concats", nrListConcats},
};
topObj["values"] = {
{"number", nrValues},
{"bytes", bValues},
};
topObj["symbols"] = {
{"number", symbols.size()},
{"bytes", symbols.totalSize()},
};
topObj["sets"] = {
{"number", nrAttrsets},
{"bytes", bAttrsets},
{"elements", nrAttrsInAttrsets},
};
topObj["sizes"] = {
{"Env", sizeof(Env)},
{"Value", sizeof(Value)},
{"Bindings", sizeof(Bindings)},
{"Attr", sizeof(Attr)},
};
topObj["nrOpUpdates"] = nrOpUpdates;
topObj["nrOpUpdateValuesCopied"] = nrOpUpdateValuesCopied;
topObj["nrThunks"] = nrThunks;
topObj["nrAvoided"] = nrAvoided;
topObj["nrLookups"] = nrLookups;
topObj["nrPrimOpCalls"] = nrPrimOpCalls;
topObj["nrFunctionCalls"] = nrFunctionCalls;
#if HAVE_BOEHMGC
topObj["gc"] = {
{"heapSize", heapSize},
{"totalBytes", totalBytes},
};
#endif
if (countCalls) {
topObj["primops"] = primOpCalls;
{
auto& list = topObj["functions"];
list = json::array();
for (auto & [fun, count] : functionCalls) {
json obj = json::object();
if (fun->name)
obj["name"] = (std::string_view) symbols[fun->name];
else
obj["name"] = nullptr;
if (auto pos = positions[fun->pos]) {
if (auto path = std::get_if<Path>(&pos.origin))
obj["file"] = *path;
obj["line"] = pos.line;
obj["column"] = pos.column;
}
obj["count"] = count;
list.push_back(obj);
}
}
{
auto list = topObj["attributes"];
list = json::array();
for (auto & i : attrSelects) {
json obj = json::object();
if (auto pos = positions[i.first]) {
if (auto path = std::get_if<Path>(&pos.origin))
obj["file"] = *path;
obj["line"] = pos.line;
obj["column"] = pos.column;
}
obj["count"] = i.second;
list.push_back(obj);
}
}
}
if (getEnv("NIX_SHOW_SYMBOLS").value_or("0") != "0") {
// XXX: overrides earlier assignment
topObj["symbols"] = json::array();
auto &list = topObj["symbols"];
symbols.dump([&](const std::string & s) { list.emplace_back(s); });
}
if (outPath == "-") {
std::cerr << topObj.dump(2) << std::endl;
} else {
fs << topObj.dump(2) << std::endl;
}
}
}
std::string ExternalValueBase::coerceToString(const Pos & pos, PathSet & context, bool copyMore, bool copyToStore) const
{
throw TypeError({
.msg = hintfmt("cannot coerce %1% to a string", showType())
});
}
bool ExternalValueBase::operator==(const ExternalValueBase & b) const
{
return false;
}
std::ostream & operator << (std::ostream & str, const ExternalValueBase & v) {
return v.print(str);
}
EvalSettings::EvalSettings()
{
}
/* impure => NIX_PATH or a default path
* restrict-eval => NIX_PATH
* pure-eval => empty
*/
Strings EvalSettings::getDefaultNixPath()
{
if (pureEval)
return {};
auto var = getEnv("NIX_PATH");
if (var) {
return parseNixPath(*var);
} else if (restrictEval) {
return {};
} else {
Strings res;
auto add = [&](const Path & p, const std::optional<std::string> & s = std::nullopt) {
if (pathExists(p))
res.push_back(s ? *s + "=" + p : p);
};
add(settings.useXDGBaseDirectories ? getStateDir() + "/nix/defexpr/channels" : getHome() + "/.nix-defexpr/channels");
add(settings.nixStateDir + "/profiles/per-user/root/channels/nixpkgs", "nixpkgs");
add(settings.nixStateDir + "/profiles/per-user/root/channels");
return res;
}
}
bool EvalSettings::isPseudoUrl(std::string_view s)
{
if (s.compare(0, 8, "channel:") == 0) return true;
size_t pos = s.find("://");
if (pos == std::string::npos) return false;
std::string scheme(s, 0, pos);
return scheme == "http" || scheme == "https" || scheme == "file" || scheme == "channel" || scheme == "git" || scheme == "s3" || scheme == "ssh";
}
std::string EvalSettings::resolvePseudoUrl(std::string_view url)
{
if (hasPrefix(url, "channel:"))
return "https://nixos.org/channels/" + std::string(url.substr(8)) + "/nixexprs.tar.xz";
else
return std::string(url);
}
EvalSettings evalSettings;
static GlobalConfig::Register rEvalSettings(&evalSettings);
}