Nix/src/libstore/build/worker.hh

323 lines
8.6 KiB
C++

#pragma once
///@file
#include "types.hh"
#include "lock.hh"
#include "store-api.hh"
#include "goal.hh"
#include "realisation.hh"
#include <future>
#include <thread>
namespace nix {
/* Forward definition. */
struct DerivationGoal;
struct PathSubstitutionGoal;
class DrvOutputSubstitutionGoal;
/**
* Workaround for not being able to declare a something like
*
* ```c++
* class PathSubstitutionGoal : public Goal;
* ```
* even when Goal is a complete type.
*
* This is still a static cast. The purpose of exporting it is to define it in
* a place where `PathSubstitutionGoal` is concrete, and use it in a place where it
* is opaque.
*/
GoalPtr upcast_goal(std::shared_ptr<PathSubstitutionGoal> subGoal);
GoalPtr upcast_goal(std::shared_ptr<DrvOutputSubstitutionGoal> subGoal);
typedef std::chrono::time_point<std::chrono::steady_clock> steady_time_point;
/**
* A mapping used to remember for each child process to what goal it
* belongs, and file descriptors for receiving log data and output
* path creation commands.
*/
struct Child
{
WeakGoalPtr goal;
Goal * goal2; // ugly hackery
std::set<int> fds;
bool respectTimeouts;
bool inBuildSlot;
/**
* Time we last got output on stdout/stderr
*/
steady_time_point lastOutput;
steady_time_point timeStarted;
};
/* Forward definition. */
struct HookInstance;
/**
* The worker class.
*/
class Worker
{
private:
/* Note: the worker should only have strong pointers to the
top-level goals. */
/**
* The top-level goals of the worker.
*/
Goals topGoals;
/**
* Goals that are ready to do some work.
*/
WeakGoals awake;
/**
* Goals waiting for a build slot.
*/
WeakGoals wantingToBuild;
/**
* Child processes currently running.
*/
std::list<Child> children;
/**
* Number of build slots occupied. This includes local builds but does not
* include substitutions or remote builds via the build hook.
*/
unsigned int nrLocalBuilds;
/**
* Number of substitution slots occupied.
*/
unsigned int nrSubstitutions;
/**
* Maps used to prevent multiple instantiations of a goal for the
* same derivation / path.
*/
std::map<StorePath, std::weak_ptr<DerivationGoal>> derivationGoals;
std::map<StorePath, std::weak_ptr<PathSubstitutionGoal>> substitutionGoals;
std::map<DrvOutput, std::weak_ptr<DrvOutputSubstitutionGoal>> drvOutputSubstitutionGoals;
/**
* Goals waiting for busy paths to be unlocked.
*/
WeakGoals waitingForAnyGoal;
/**
* Goals sleeping for a few seconds (polling a lock).
*/
WeakGoals waitingForAWhile;
/**
* Last time the goals in `waitingForAWhile` were woken up.
*/
steady_time_point lastWokenUp;
/**
* Cache for pathContentsGood().
*/
std::map<StorePath, bool> pathContentsGoodCache;
public:
const Activity act;
const Activity actDerivations;
const Activity actSubstitutions;
/**
* Set if at least one derivation had a BuildError (i.e. permanent
* failure).
*/
bool permanentFailure;
/**
* Set if at least one derivation had a timeout.
*/
bool timedOut;
/**
* Set if at least one derivation fails with a hash mismatch.
*/
bool hashMismatch;
/**
* Set if at least one derivation is not deterministic in check mode.
*/
bool checkMismatch;
Store & store;
Store & evalStore;
std::unique_ptr<HookInstance> hook;
uint64_t expectedBuilds = 0;
uint64_t doneBuilds = 0;
uint64_t failedBuilds = 0;
uint64_t runningBuilds = 0;
uint64_t expectedSubstitutions = 0;
uint64_t doneSubstitutions = 0;
uint64_t failedSubstitutions = 0;
uint64_t runningSubstitutions = 0;
uint64_t expectedDownloadSize = 0;
uint64_t doneDownloadSize = 0;
uint64_t expectedNarSize = 0;
uint64_t doneNarSize = 0;
/**
* Whether to ask the build hook if it can build a derivation. If
* it answers with "decline-permanently", we don't try again.
*/
bool tryBuildHook = true;
Worker(Store & store, Store & evalStore);
~Worker();
/**
* Make a goal (with caching).
*/
/**
* @ref DerivationGoal "derivation goal"
*/
private:
std::shared_ptr<DerivationGoal> makeDerivationGoalCommon(
const StorePath & drvPath, const OutputsSpec & wantedOutputs,
std::function<std::shared_ptr<DerivationGoal>()> mkDrvGoal);
public:
std::shared_ptr<DerivationGoal> makeDerivationGoal(
const StorePath & drvPath,
const OutputsSpec & wantedOutputs, BuildMode buildMode = bmNormal);
std::shared_ptr<DerivationGoal> makeBasicDerivationGoal(
const StorePath & drvPath, const BasicDerivation & drv,
const OutputsSpec & wantedOutputs, BuildMode buildMode = bmNormal);
/**
* @ref SubstitutionGoal "substitution goal"
*/
std::shared_ptr<PathSubstitutionGoal> makePathSubstitutionGoal(const StorePath & storePath, RepairFlag repair = NoRepair, std::optional<ContentAddress> ca = std::nullopt);
std::shared_ptr<DrvOutputSubstitutionGoal> makeDrvOutputSubstitutionGoal(const DrvOutput & id, RepairFlag repair = NoRepair, std::optional<ContentAddress> ca = std::nullopt);
/**
* Make a goal corresponding to the `DerivedPath`.
*
* It will be a `DerivationGoal` for a `DerivedPath::Built` or
* a `SubstitutionGoal` for a `DerivedPath::Opaque`.
*/
GoalPtr makeGoal(const DerivedPath & req, BuildMode buildMode = bmNormal);
/**
* Remove a dead goal.
*/
void removeGoal(GoalPtr goal);
/**
* Wake up a goal (i.e., there is something for it to do).
*/
void wakeUp(GoalPtr goal);
/**
* Return the number of local build processes currently running (but not
* remote builds via the build hook).
*/
unsigned int getNrLocalBuilds();
/**
* Return the number of substitution processes currently running.
*/
unsigned int getNrSubstitutions();
/**
* Registers a running child process. `inBuildSlot` means that
* the process counts towards the jobs limit.
*/
void childStarted(GoalPtr goal, const std::set<int> & fds,
bool inBuildSlot, bool respectTimeouts);
/**
* Unregisters a running child process. `wakeSleepers` should be
* false if there is no sense in waking up goals that are sleeping
* because they can't run yet (e.g., there is no free build slot,
* or the hook would still say `postpone`).
*/
void childTerminated(Goal * goal, bool wakeSleepers = true);
/**
* Put `goal` to sleep until a build slot becomes available (which
* might be right away).
*/
void waitForBuildSlot(GoalPtr goal);
/**
* Wait for any goal to finish. Pretty indiscriminate way to
* wait for some resource that some other goal is holding.
*/
void waitForAnyGoal(GoalPtr goal);
/**
* Wait for a few seconds and then retry this goal. Used when
* waiting for a lock held by another process. This kind of
* polling is inefficient, but POSIX doesn't really provide a way
* to wait for multiple locks in the main select() loop.
*/
void waitForAWhile(GoalPtr goal);
/**
* Loop until the specified top-level goals have finished.
*/
void run(const Goals & topGoals);
/**
* Wait for input to become available.
*/
void waitForInput();
/***
* The exit status in case of failure.
*
* In the case of a build failure, returned value follows this
* bitmask:
*
* ```
* 0b1100100
* ^^^^
* |||`- timeout
* ||`-- output hash mismatch
* |`--- build failure
* `---- not deterministic
* ```
*
* In other words, the failure code is at least 100 (0b1100100), but
* might also be greater.
*
* Otherwise (no build failure, but some other sort of failure by
* assumption), this returned value is 1.
*/
unsigned int failingExitStatus();
/**
* Check whether the given valid path exists and has the right
* contents.
*/
bool pathContentsGood(const StorePath & path);
void markContentsGood(const StorePath & path);
void updateProgress()
{
actDerivations.progress(doneBuilds, expectedBuilds + doneBuilds, runningBuilds, failedBuilds);
actSubstitutions.progress(doneSubstitutions, expectedSubstitutions + doneSubstitutions, runningSubstitutions, failedSubstitutions);
act.setExpected(actFileTransfer, expectedDownloadSize + doneDownloadSize);
act.setExpected(actCopyPath, expectedNarSize + doneNarSize);
}
};
}