Systemd/src/test/test-time-util.c

558 lines
22 KiB
C
Raw Permalink Normal View History

/* SPDX-License-Identifier: LGPL-2.1-or-later */
#include "random-util.h"
#include "serialize.h"
#include "string-util.h"
#include "strv.h"
#include "tests.h"
#include "time-util.h"
static void test_parse_sec(void) {
usec_t u;
log_info("/* %s */", __func__);
assert_se(parse_sec("5s", &u) >= 0);
assert_se(u == 5 * USEC_PER_SEC);
assert_se(parse_sec("5s500ms", &u) >= 0);
assert_se(u == 5 * USEC_PER_SEC + 500 * USEC_PER_MSEC);
assert_se(parse_sec(" 5s 500ms ", &u) >= 0);
assert_se(u == 5 * USEC_PER_SEC + 500 * USEC_PER_MSEC);
assert_se(parse_sec(" 5.5s ", &u) >= 0);
assert_se(u == 5 * USEC_PER_SEC + 500 * USEC_PER_MSEC);
assert_se(parse_sec(" 5.5s 0.5ms ", &u) >= 0);
assert_se(u == 5 * USEC_PER_SEC + 500 * USEC_PER_MSEC + 500);
assert_se(parse_sec(" .22s ", &u) >= 0);
assert_se(u == 220 * USEC_PER_MSEC);
assert_se(parse_sec(" .50y ", &u) >= 0);
assert_se(u == USEC_PER_YEAR / 2);
assert_se(parse_sec("2.5", &u) >= 0);
assert_se(u == 2500 * USEC_PER_MSEC);
assert_se(parse_sec(".7", &u) >= 0);
assert_se(u == 700 * USEC_PER_MSEC);
assert_se(parse_sec("23us", &u) >= 0);
assert_se(u == 23);
assert_se(parse_sec("23µs", &u) >= 0);
assert_se(u == 23);
assert_se(parse_sec("infinity", &u) >= 0);
assert_se(u == USEC_INFINITY);
assert_se(parse_sec(" infinity ", &u) >= 0);
assert_se(u == USEC_INFINITY);
assert_se(parse_sec("+3.1s", &u) >= 0);
assert_se(u == 3100 * USEC_PER_MSEC);
assert_se(parse_sec("3.1s.2", &u) >= 0);
assert_se(u == 3300 * USEC_PER_MSEC);
assert_se(parse_sec("3.1 .2", &u) >= 0);
assert_se(u == 3300 * USEC_PER_MSEC);
assert_se(parse_sec("3.1 sec .2 sec", &u) >= 0);
assert_se(u == 3300 * USEC_PER_MSEC);
assert_se(parse_sec("3.1 sec 1.2 sec", &u) >= 0);
assert_se(u == 4300 * USEC_PER_MSEC);
assert_se(parse_sec(" xyz ", &u) < 0);
assert_se(parse_sec("", &u) < 0);
assert_se(parse_sec(" . ", &u) < 0);
assert_se(parse_sec(" 5. ", &u) < 0);
assert_se(parse_sec(".s ", &u) < 0);
assert_se(parse_sec("-5s ", &u) < 0);
assert_se(parse_sec("-0.3s ", &u) < 0);
assert_se(parse_sec("-0.0s ", &u) < 0);
assert_se(parse_sec("-0.-0s ", &u) < 0);
assert_se(parse_sec("0.-0s ", &u) < 0);
assert_se(parse_sec("3.-0s ", &u) < 0);
assert_se(parse_sec(" infinity .7", &u) < 0);
assert_se(parse_sec(".3 infinity", &u) < 0);
assert_se(parse_sec("3.+1s", &u) < 0);
assert_se(parse_sec("3. 1s", &u) < 0);
assert_se(parse_sec("3.s", &u) < 0);
assert_se(parse_sec("12.34.56", &u) < 0);
assert_se(parse_sec("12..34", &u) < 0);
assert_se(parse_sec("..1234", &u) < 0);
assert_se(parse_sec("1234..", &u) < 0);
}
static void test_parse_sec_fix_0(void) {
usec_t u;
log_info("/* %s */", __func__);
assert_se(parse_sec_fix_0("5s", &u) >= 0);
assert_se(u == 5 * USEC_PER_SEC);
assert_se(parse_sec_fix_0("0s", &u) >= 0);
assert_se(u == USEC_INFINITY);
assert_se(parse_sec_fix_0("0", &u) >= 0);
assert_se(u == USEC_INFINITY);
assert_se(parse_sec_fix_0(" 0", &u) >= 0);
assert_se(u == USEC_INFINITY);
}
static void test_parse_sec_def_infinity(void) {
usec_t u;
log_info("/* %s */", __func__);
assert_se(parse_sec_def_infinity("5s", &u) >= 0);
assert_se(u == 5 * USEC_PER_SEC);
assert_se(parse_sec_def_infinity("", &u) >= 0);
assert_se(u == USEC_INFINITY);
assert_se(parse_sec_def_infinity(" ", &u) >= 0);
assert_se(u == USEC_INFINITY);
assert_se(parse_sec_def_infinity("0s", &u) >= 0);
assert_se(u == 0);
assert_se(parse_sec_def_infinity("0", &u) >= 0);
assert_se(u == 0);
assert_se(parse_sec_def_infinity(" 0", &u) >= 0);
assert_se(u == 0);
assert_se(parse_sec_def_infinity("-5s", &u) < 0);
}
static void test_parse_time(void) {
usec_t u;
log_info("/* %s */", __func__);
assert_se(parse_time("5", &u, 1) >= 0);
assert_se(u == 5);
assert_se(parse_time("5", &u, USEC_PER_MSEC) >= 0);
assert_se(u == 5 * USEC_PER_MSEC);
assert_se(parse_time("5", &u, USEC_PER_SEC) >= 0);
assert_se(u == 5 * USEC_PER_SEC);
assert_se(parse_time("5s", &u, 1) >= 0);
assert_se(u == 5 * USEC_PER_SEC);
assert_se(parse_time("5s", &u, USEC_PER_SEC) >= 0);
assert_se(u == 5 * USEC_PER_SEC);
assert_se(parse_time("5s", &u, USEC_PER_MSEC) >= 0);
assert_se(u == 5 * USEC_PER_SEC);
assert_se(parse_time("11111111111111y", &u, 1) == -ERANGE);
assert_se(parse_time("1.1111111111111y", &u, 1) >= 0);
}
static void test_parse_nsec(void) {
nsec_t u;
log_info("/* %s */", __func__);
assert_se(parse_nsec("5s", &u) >= 0);
assert_se(u == 5 * NSEC_PER_SEC);
assert_se(parse_nsec("5s500ms", &u) >= 0);
assert_se(u == 5 * NSEC_PER_SEC + 500 * NSEC_PER_MSEC);
assert_se(parse_nsec(" 5s 500ms ", &u) >= 0);
assert_se(u == 5 * NSEC_PER_SEC + 500 * NSEC_PER_MSEC);
assert_se(parse_nsec(" 5.5s ", &u) >= 0);
assert_se(u == 5 * NSEC_PER_SEC + 500 * NSEC_PER_MSEC);
assert_se(parse_nsec(" 5.5s 0.5ms ", &u) >= 0);
assert_se(u == 5 * NSEC_PER_SEC + 500 * NSEC_PER_MSEC + 500 * NSEC_PER_USEC);
assert_se(parse_nsec(" .22s ", &u) >= 0);
assert_se(u == 220 * NSEC_PER_MSEC);
assert_se(parse_nsec(" .50y ", &u) >= 0);
assert_se(u == NSEC_PER_YEAR / 2);
assert_se(parse_nsec("2.5", &u) >= 0);
assert_se(u == 2);
assert_se(parse_nsec(".7", &u) >= 0);
assert_se(u == 0);
assert_se(parse_nsec("infinity", &u) >= 0);
assert_se(u == NSEC_INFINITY);
assert_se(parse_nsec(" infinity ", &u) >= 0);
assert_se(u == NSEC_INFINITY);
assert_se(parse_nsec("+3.1s", &u) >= 0);
assert_se(u == 3100 * NSEC_PER_MSEC);
assert_se(parse_nsec("3.1s.2", &u) >= 0);
assert_se(u == 3100 * NSEC_PER_MSEC);
assert_se(parse_nsec("3.1 .2s", &u) >= 0);
assert_se(u == 200 * NSEC_PER_MSEC + 3);
assert_se(parse_nsec("3.1 sec .2 sec", &u) >= 0);
assert_se(u == 3300 * NSEC_PER_MSEC);
assert_se(parse_nsec("3.1 sec 1.2 sec", &u) >= 0);
assert_se(u == 4300 * NSEC_PER_MSEC);
assert_se(parse_nsec(" xyz ", &u) < 0);
assert_se(parse_nsec("", &u) < 0);
assert_se(parse_nsec(" . ", &u) < 0);
assert_se(parse_nsec(" 5. ", &u) < 0);
assert_se(parse_nsec(".s ", &u) < 0);
assert_se(parse_nsec(" infinity .7", &u) < 0);
assert_se(parse_nsec(".3 infinity", &u) < 0);
assert_se(parse_nsec("-5s ", &u) < 0);
assert_se(parse_nsec("-0.3s ", &u) < 0);
assert_se(parse_nsec("-0.0s ", &u) < 0);
assert_se(parse_nsec("-0.-0s ", &u) < 0);
assert_se(parse_nsec("0.-0s ", &u) < 0);
assert_se(parse_nsec("3.-0s ", &u) < 0);
assert_se(parse_nsec(" infinity .7", &u) < 0);
assert_se(parse_nsec(".3 infinity", &u) < 0);
assert_se(parse_nsec("3.+1s", &u) < 0);
assert_se(parse_nsec("3. 1s", &u) < 0);
assert_se(parse_nsec("3.s", &u) < 0);
assert_se(parse_nsec("12.34.56", &u) < 0);
assert_se(parse_nsec("12..34", &u) < 0);
assert_se(parse_nsec("..1234", &u) < 0);
assert_se(parse_nsec("1234..", &u) < 0);
assert_se(parse_nsec("1111111111111y", &u) == -ERANGE);
assert_se(parse_nsec("1.111111111111y", &u) >= 0);
}
static void test_format_timespan_one(usec_t x, usec_t accuracy) {
char l[FORMAT_TIMESPAN_MAX];
const char *t;
usec_t y;
log_info(USEC_FMT" (at accuracy "USEC_FMT")", x, accuracy);
assert_se(t = format_timespan(l, sizeof l, x, accuracy));
log_info(" = <%s>", t);
assert_se(parse_sec(t, &y) >= 0);
log_info(" = "USEC_FMT, y);
if (accuracy <= 0)
accuracy = 1;
assert_se(x / accuracy == y / accuracy);
}
static void test_format_timespan(usec_t accuracy) {
log_info("/* %s accuracy="USEC_FMT" */", __func__, accuracy);
test_format_timespan_one(0, accuracy);
test_format_timespan_one(1, accuracy);
test_format_timespan_one(1*USEC_PER_SEC, accuracy);
test_format_timespan_one(999*USEC_PER_MSEC, accuracy);
test_format_timespan_one(1234567, accuracy);
test_format_timespan_one(12, accuracy);
test_format_timespan_one(123, accuracy);
test_format_timespan_one(1234, accuracy);
test_format_timespan_one(12345, accuracy);
test_format_timespan_one(123456, accuracy);
test_format_timespan_one(1234567, accuracy);
test_format_timespan_one(12345678, accuracy);
test_format_timespan_one(1200000, accuracy);
test_format_timespan_one(1230000, accuracy);
test_format_timespan_one(1234000, accuracy);
test_format_timespan_one(1234500, accuracy);
test_format_timespan_one(1234560, accuracy);
test_format_timespan_one(1234567, accuracy);
test_format_timespan_one(986087, accuracy);
test_format_timespan_one(500 * USEC_PER_MSEC, accuracy);
test_format_timespan_one(9*USEC_PER_YEAR/5 - 23, accuracy);
test_format_timespan_one(USEC_INFINITY, accuracy);
}
static void test_timezone_is_valid(void) {
log_info("/* %s */", __func__);
assert_se(timezone_is_valid("Europe/Berlin", LOG_ERR));
assert_se(timezone_is_valid("Australia/Sydney", LOG_ERR));
assert_se(!timezone_is_valid("Europe/Do not exist", LOG_ERR));
}
static void test_get_timezones(void) {
_cleanup_strv_free_ char **zones = NULL;
int r;
char **zone;
log_info("/* %s */", __func__);
r = get_timezones(&zones);
assert_se(r == 0);
STRV_FOREACH(zone, zones) {
log_info("zone: %s", *zone);
assert_se(timezone_is_valid(*zone, LOG_ERR));
}
}
static void test_usec_add(void) {
log_info("/* %s */", __func__);
assert_se(usec_add(0, 0) == 0);
assert_se(usec_add(1, 4) == 5);
assert_se(usec_add(USEC_INFINITY, 5) == USEC_INFINITY);
assert_se(usec_add(5, USEC_INFINITY) == USEC_INFINITY);
assert_se(usec_add(USEC_INFINITY-5, 2) == USEC_INFINITY-3);
assert_se(usec_add(USEC_INFINITY-2, 2) == USEC_INFINITY);
assert_se(usec_add(USEC_INFINITY-1, 2) == USEC_INFINITY);
assert_se(usec_add(USEC_INFINITY, 2) == USEC_INFINITY);
}
static void test_usec_sub_unsigned(void) {
log_info("/* %s */", __func__);
assert_se(usec_sub_unsigned(0, 0) == 0);
assert_se(usec_sub_unsigned(0, 2) == 0);
assert_se(usec_sub_unsigned(0, USEC_INFINITY) == 0);
assert_se(usec_sub_unsigned(1, 0) == 1);
assert_se(usec_sub_unsigned(1, 1) == 0);
assert_se(usec_sub_unsigned(1, 2) == 0);
assert_se(usec_sub_unsigned(1, 3) == 0);
assert_se(usec_sub_unsigned(1, USEC_INFINITY) == 0);
assert_se(usec_sub_unsigned(USEC_INFINITY-1, 0) == USEC_INFINITY-1);
assert_se(usec_sub_unsigned(USEC_INFINITY-1, 1) == USEC_INFINITY-2);
assert_se(usec_sub_unsigned(USEC_INFINITY-1, 2) == USEC_INFINITY-3);
assert_se(usec_sub_unsigned(USEC_INFINITY-1, USEC_INFINITY-2) == 1);
assert_se(usec_sub_unsigned(USEC_INFINITY-1, USEC_INFINITY-1) == 0);
assert_se(usec_sub_unsigned(USEC_INFINITY-1, USEC_INFINITY) == 0);
assert_se(usec_sub_unsigned(USEC_INFINITY, 0) == USEC_INFINITY);
assert_se(usec_sub_unsigned(USEC_INFINITY, 1) == USEC_INFINITY);
assert_se(usec_sub_unsigned(USEC_INFINITY, 2) == USEC_INFINITY);
assert_se(usec_sub_unsigned(USEC_INFINITY, USEC_INFINITY) == USEC_INFINITY);
}
static void test_usec_sub_signed(void) {
log_info("/* %s */", __func__);
assert_se(usec_sub_signed(0, 0) == 0);
assert_se(usec_sub_signed(4, 1) == 3);
assert_se(usec_sub_signed(4, 4) == 0);
assert_se(usec_sub_signed(4, 5) == 0);
assert_se(usec_sub_signed(USEC_INFINITY-3, -3) == USEC_INFINITY);
assert_se(usec_sub_signed(USEC_INFINITY-3, -4) == USEC_INFINITY);
assert_se(usec_sub_signed(USEC_INFINITY-3, -5) == USEC_INFINITY);
assert_se(usec_sub_signed(USEC_INFINITY, 5) == USEC_INFINITY);
}
util-lib: make timestamp generation and parsing reversible (#3869) This patch improves parsing and generation of timestamps and calendar specifications in two ways: - The week day is now always printed in the abbreviated English form, instead of the locale's setting. This makes sure we can always parse the week day again, even if the locale is changed. Given that we don't follow locale settings for printing timestamps in any other way either (for example, we always use 24h syntax in order to make uniform parsing possible), it only makes sense to also stick to a generic, non-localized form for the timestamp, too. - When parsing a timestamp, the local timezone (in its DST or non-DST name) may be specified, in addition to "UTC". Other timezones are still not supported however (not because we wouldn't want to, but mostly because libc offers no nice API for that). In itself this brings no new features, however it ensures that any locally formatted timestamp's timezone is also parsable again. These two changes ensure that the output of format_timestamp() may always be passed to parse_timestamp() and results in the original input. The related flavours for usec/UTC also work accordingly. Calendar specifications are extended in a similar way. The man page is updated accordingly, in particular this removes the claim that timestamps systemd prints wouldn't be parsable by systemd. They are now. The man page previously showed invalid timestamps as examples. This has been removed, as the man page shouldn't be a unit test, where such negative examples would be useful. The man page also no longer mentions the names of internal functions, such as format_timestamp_us() or UNIX error codes such as EINVAL.
2016-08-04 01:04:53 +02:00
static void test_format_timestamp(void) {
unsigned i;
log_info("/* %s */", __func__);
util-lib: make timestamp generation and parsing reversible (#3869) This patch improves parsing and generation of timestamps and calendar specifications in two ways: - The week day is now always printed in the abbreviated English form, instead of the locale's setting. This makes sure we can always parse the week day again, even if the locale is changed. Given that we don't follow locale settings for printing timestamps in any other way either (for example, we always use 24h syntax in order to make uniform parsing possible), it only makes sense to also stick to a generic, non-localized form for the timestamp, too. - When parsing a timestamp, the local timezone (in its DST or non-DST name) may be specified, in addition to "UTC". Other timezones are still not supported however (not because we wouldn't want to, but mostly because libc offers no nice API for that). In itself this brings no new features, however it ensures that any locally formatted timestamp's timezone is also parsable again. These two changes ensure that the output of format_timestamp() may always be passed to parse_timestamp() and results in the original input. The related flavours for usec/UTC also work accordingly. Calendar specifications are extended in a similar way. The man page is updated accordingly, in particular this removes the claim that timestamps systemd prints wouldn't be parsable by systemd. They are now. The man page previously showed invalid timestamps as examples. This has been removed, as the man page shouldn't be a unit test, where such negative examples would be useful. The man page also no longer mentions the names of internal functions, such as format_timestamp_us() or UNIX error codes such as EINVAL.
2016-08-04 01:04:53 +02:00
for (i = 0; i < 100; i++) {
char buf[MAX(FORMAT_TIMESTAMP_MAX, FORMAT_TIMESPAN_MAX)];
usec_t x, y;
random_bytes(&x, sizeof(x));
x = x % (2147483600 * USEC_PER_SEC) + 1;
assert_se(format_timestamp(buf, sizeof(buf), x));
log_info("%s", buf);
assert_se(parse_timestamp(buf, &y) >= 0);
assert_se(x / USEC_PER_SEC == y / USEC_PER_SEC);
assert_se(format_timestamp_style(buf, sizeof(buf), x, TIMESTAMP_UTC));
util-lib: make timestamp generation and parsing reversible (#3869) This patch improves parsing and generation of timestamps and calendar specifications in two ways: - The week day is now always printed in the abbreviated English form, instead of the locale's setting. This makes sure we can always parse the week day again, even if the locale is changed. Given that we don't follow locale settings for printing timestamps in any other way either (for example, we always use 24h syntax in order to make uniform parsing possible), it only makes sense to also stick to a generic, non-localized form for the timestamp, too. - When parsing a timestamp, the local timezone (in its DST or non-DST name) may be specified, in addition to "UTC". Other timezones are still not supported however (not because we wouldn't want to, but mostly because libc offers no nice API for that). In itself this brings no new features, however it ensures that any locally formatted timestamp's timezone is also parsable again. These two changes ensure that the output of format_timestamp() may always be passed to parse_timestamp() and results in the original input. The related flavours for usec/UTC also work accordingly. Calendar specifications are extended in a similar way. The man page is updated accordingly, in particular this removes the claim that timestamps systemd prints wouldn't be parsable by systemd. They are now. The man page previously showed invalid timestamps as examples. This has been removed, as the man page shouldn't be a unit test, where such negative examples would be useful. The man page also no longer mentions the names of internal functions, such as format_timestamp_us() or UNIX error codes such as EINVAL.
2016-08-04 01:04:53 +02:00
log_info("%s", buf);
assert_se(parse_timestamp(buf, &y) >= 0);
assert_se(x / USEC_PER_SEC == y / USEC_PER_SEC);
assert_se(format_timestamp_style(buf, sizeof(buf), x, TIMESTAMP_US));
util-lib: make timestamp generation and parsing reversible (#3869) This patch improves parsing and generation of timestamps and calendar specifications in two ways: - The week day is now always printed in the abbreviated English form, instead of the locale's setting. This makes sure we can always parse the week day again, even if the locale is changed. Given that we don't follow locale settings for printing timestamps in any other way either (for example, we always use 24h syntax in order to make uniform parsing possible), it only makes sense to also stick to a generic, non-localized form for the timestamp, too. - When parsing a timestamp, the local timezone (in its DST or non-DST name) may be specified, in addition to "UTC". Other timezones are still not supported however (not because we wouldn't want to, but mostly because libc offers no nice API for that). In itself this brings no new features, however it ensures that any locally formatted timestamp's timezone is also parsable again. These two changes ensure that the output of format_timestamp() may always be passed to parse_timestamp() and results in the original input. The related flavours for usec/UTC also work accordingly. Calendar specifications are extended in a similar way. The man page is updated accordingly, in particular this removes the claim that timestamps systemd prints wouldn't be parsable by systemd. They are now. The man page previously showed invalid timestamps as examples. This has been removed, as the man page shouldn't be a unit test, where such negative examples would be useful. The man page also no longer mentions the names of internal functions, such as format_timestamp_us() or UNIX error codes such as EINVAL.
2016-08-04 01:04:53 +02:00
log_info("%s", buf);
assert_se(parse_timestamp(buf, &y) >= 0);
assert_se(x == y);
assert_se(format_timestamp_style(buf, sizeof(buf), x, TIMESTAMP_US_UTC));
util-lib: make timestamp generation and parsing reversible (#3869) This patch improves parsing and generation of timestamps and calendar specifications in two ways: - The week day is now always printed in the abbreviated English form, instead of the locale's setting. This makes sure we can always parse the week day again, even if the locale is changed. Given that we don't follow locale settings for printing timestamps in any other way either (for example, we always use 24h syntax in order to make uniform parsing possible), it only makes sense to also stick to a generic, non-localized form for the timestamp, too. - When parsing a timestamp, the local timezone (in its DST or non-DST name) may be specified, in addition to "UTC". Other timezones are still not supported however (not because we wouldn't want to, but mostly because libc offers no nice API for that). In itself this brings no new features, however it ensures that any locally formatted timestamp's timezone is also parsable again. These two changes ensure that the output of format_timestamp() may always be passed to parse_timestamp() and results in the original input. The related flavours for usec/UTC also work accordingly. Calendar specifications are extended in a similar way. The man page is updated accordingly, in particular this removes the claim that timestamps systemd prints wouldn't be parsable by systemd. They are now. The man page previously showed invalid timestamps as examples. This has been removed, as the man page shouldn't be a unit test, where such negative examples would be useful. The man page also no longer mentions the names of internal functions, such as format_timestamp_us() or UNIX error codes such as EINVAL.
2016-08-04 01:04:53 +02:00
log_info("%s", buf);
assert_se(parse_timestamp(buf, &y) >= 0);
assert_se(x == y);
assert_se(format_timestamp_relative(buf, sizeof(buf), x));
log_info("%s", buf);
assert_se(parse_timestamp(buf, &y) >= 0);
/* The two calls above will run with a slightly different local time. Make sure we are in the same
* range however, but give enough leeway that this is unlikely to explode. And of course,
* format_timestamp_relative() scales the accuracy with the distance from the current time up to one
* month, cover for that too. */
assert_se(y > x ? y - x : x - y <= USEC_PER_MONTH + USEC_PER_DAY);
}
}
static void test_format_timestamp_utc_one(usec_t val, const char *result) {
char buf[FORMAT_TIMESTAMP_MAX];
const char *t;
t = format_timestamp_style(buf, sizeof(buf), val, TIMESTAMP_UTC);
assert_se(streq_ptr(t, result));
}
static void test_format_timestamp_utc(void) {
log_info("/* %s */", __func__);
test_format_timestamp_utc_one(0, NULL);
test_format_timestamp_utc_one(1, "Thu 1970-01-01 00:00:00 UTC");
test_format_timestamp_utc_one(USEC_PER_SEC, "Thu 1970-01-01 00:00:01 UTC");
#if SIZEOF_TIME_T == 8
test_format_timestamp_utc_one(USEC_TIMESTAMP_FORMATTABLE_MAX, "Thu 9999-12-30 23:59:59 UTC");
test_format_timestamp_utc_one(USEC_TIMESTAMP_FORMATTABLE_MAX + 1, "--- XXXX-XX-XX XX:XX:XX");
#elif SIZEOF_TIME_T == 4
test_format_timestamp_utc_one(USEC_TIMESTAMP_FORMATTABLE_MAX, "Tue 2038-01-19 03:14:07 UTC");
test_format_timestamp_utc_one(USEC_TIMESTAMP_FORMATTABLE_MAX + 1, "--- XXXX-XX-XX XX:XX:XX");
#endif
test_format_timestamp_utc_one(USEC_INFINITY, NULL);
}
static void test_deserialize_dual_timestamp(void) {
int r;
dual_timestamp t;
log_info("/* %s */", __func__);
r = deserialize_dual_timestamp("1234 5678", &t);
assert_se(r == 0);
assert_se(t.realtime == 1234);
assert_se(t.monotonic == 5678);
r = deserialize_dual_timestamp("1234x 5678", &t);
assert_se(r == -EINVAL);
r = deserialize_dual_timestamp("1234 5678y", &t);
assert_se(r == -EINVAL);
r = deserialize_dual_timestamp("-1234 5678", &t);
assert_se(r == -EINVAL);
r = deserialize_dual_timestamp("1234 -5678", &t);
assert_se(r == -EINVAL);
/* Check that output wasn't modified. */
assert_se(t.realtime == 1234);
assert_se(t.monotonic == 5678);
r = deserialize_dual_timestamp("+123 567", &t);
assert_se(r == 0);
assert_se(t.realtime == 123);
assert_se(t.monotonic == 567);
/* Check that we get "infinity" on overflow. */
r = deserialize_dual_timestamp("18446744073709551617 0", &t);
assert_se(r == 0);
assert_se(t.realtime == USEC_INFINITY);
assert_se(t.monotonic == 0);
}
static void assert_similar(usec_t a, usec_t b) {
usec_t d;
if (a > b)
d = a - b;
else
d = b - a;
assert_se(d < 10*USEC_PER_SEC);
}
static void test_usec_shift_clock(void) {
usec_t rt, mn, bt;
log_info("/* %s */", __func__);
rt = now(CLOCK_REALTIME);
mn = now(CLOCK_MONOTONIC);
bt = now(clock_boottime_or_monotonic());
assert_se(usec_shift_clock(USEC_INFINITY, CLOCK_REALTIME, CLOCK_MONOTONIC) == USEC_INFINITY);
assert_similar(usec_shift_clock(rt + USEC_PER_HOUR, CLOCK_REALTIME, CLOCK_MONOTONIC), mn + USEC_PER_HOUR);
assert_similar(usec_shift_clock(rt + 2*USEC_PER_HOUR, CLOCK_REALTIME, clock_boottime_or_monotonic()), bt + 2*USEC_PER_HOUR);
assert_se(usec_shift_clock(rt + 3*USEC_PER_HOUR, CLOCK_REALTIME, CLOCK_REALTIME_ALARM) == rt + 3*USEC_PER_HOUR);
assert_similar(usec_shift_clock(mn + 4*USEC_PER_HOUR, CLOCK_MONOTONIC, CLOCK_REALTIME_ALARM), rt + 4*USEC_PER_HOUR);
assert_similar(usec_shift_clock(mn + 5*USEC_PER_HOUR, CLOCK_MONOTONIC, clock_boottime_or_monotonic()), bt + 5*USEC_PER_HOUR);
assert_se(usec_shift_clock(mn + 6*USEC_PER_HOUR, CLOCK_MONOTONIC, CLOCK_MONOTONIC) == mn + 6*USEC_PER_HOUR);
assert_similar(usec_shift_clock(bt + 7*USEC_PER_HOUR, clock_boottime_or_monotonic(), CLOCK_MONOTONIC), mn + 7*USEC_PER_HOUR);
assert_similar(usec_shift_clock(bt + 8*USEC_PER_HOUR, clock_boottime_or_monotonic(), CLOCK_REALTIME_ALARM), rt + 8*USEC_PER_HOUR);
assert_se(usec_shift_clock(bt + 9*USEC_PER_HOUR, clock_boottime_or_monotonic(), clock_boottime_or_monotonic()) == bt + 9*USEC_PER_HOUR);
if (mn > USEC_PER_MINUTE) {
assert_similar(usec_shift_clock(rt - 30 * USEC_PER_SEC, CLOCK_REALTIME_ALARM, CLOCK_MONOTONIC), mn - 30 * USEC_PER_SEC);
assert_similar(usec_shift_clock(rt - 50 * USEC_PER_SEC, CLOCK_REALTIME, clock_boottime_or_monotonic()), bt - 50 * USEC_PER_SEC);
}
}
static void test_in_utc_timezone(void) {
log_info("/* %s */", __func__);
assert_se(setenv("TZ", ":UTC", 1) >= 0);
assert_se(in_utc_timezone());
assert_se(streq(tzname[0], "UTC"));
assert_se(streq(tzname[1], "UTC"));
assert_se(timezone == 0);
assert_se(daylight == 0);
assert_se(setenv("TZ", ":Europe/Berlin", 1) >= 0);
assert_se(!in_utc_timezone());
assert_se(streq(tzname[0], "CET"));
assert_se(streq(tzname[1], "CEST"));
assert_se(unsetenv("TZ") == 0);
}
2020-07-21 17:33:36 +02:00
static void test_map_clock_usec(void) {
usec_t nowr, x, y, z;
log_info("/* %s */", __func__);
nowr = now(CLOCK_REALTIME);
x = nowr; /* right now */
y = map_clock_usec(x, CLOCK_REALTIME, CLOCK_MONOTONIC);
z = map_clock_usec(y, CLOCK_MONOTONIC, CLOCK_REALTIME);
/* Converting forth and back will introduce inaccuracies, since we cannot query both clocks atomically, but it should be small. Even on the slowest CI smaller than 1h */
assert_se((z > x ? z - x : x - z) < USEC_PER_HOUR);
assert_se(nowr < USEC_INFINITY - USEC_PER_DAY*7); /* overflow check */
x = nowr + USEC_PER_DAY*7; /* 1 week from now */
y = map_clock_usec(x, CLOCK_REALTIME, CLOCK_MONOTONIC);
assert_se(y > 0 && y < USEC_INFINITY);
z = map_clock_usec(y, CLOCK_MONOTONIC, CLOCK_REALTIME);
assert_se(z > 0 && z < USEC_INFINITY);
assert_se((z > x ? z - x : x - z) < USEC_PER_HOUR);
assert_se(nowr > USEC_PER_DAY * 7); /* underflow check */
x = nowr - USEC_PER_DAY*7; /* 1 week ago */
y = map_clock_usec(x, CLOCK_REALTIME, CLOCK_MONOTONIC);
if (y != 0) { /* might underflow if machine is not up long enough for the monotonic clock to be beyond 1w */
assert_se(y < USEC_INFINITY);
z = map_clock_usec(y, CLOCK_MONOTONIC, CLOCK_REALTIME);
assert_se(z > 0 && z < USEC_INFINITY);
assert_se((z > x ? z - x : x - z) < USEC_PER_HOUR);
}
}
int main(int argc, char *argv[]) {
test_setup_logging(LOG_INFO);
log_info("realtime=" USEC_FMT "\n"
"monotonic=" USEC_FMT "\n"
"boottime=" USEC_FMT "\n",
now(CLOCK_REALTIME),
now(CLOCK_MONOTONIC),
now(clock_boottime_or_monotonic()));
test_parse_sec();
test_parse_sec_fix_0();
test_parse_sec_def_infinity();
test_parse_time();
test_parse_nsec();
test_format_timespan(1);
test_format_timespan(USEC_PER_MSEC);
test_format_timespan(USEC_PER_SEC);
test_timezone_is_valid();
test_get_timezones();
test_usec_add();
test_usec_sub_signed();
test_usec_sub_unsigned();
util-lib: make timestamp generation and parsing reversible (#3869) This patch improves parsing and generation of timestamps and calendar specifications in two ways: - The week day is now always printed in the abbreviated English form, instead of the locale's setting. This makes sure we can always parse the week day again, even if the locale is changed. Given that we don't follow locale settings for printing timestamps in any other way either (for example, we always use 24h syntax in order to make uniform parsing possible), it only makes sense to also stick to a generic, non-localized form for the timestamp, too. - When parsing a timestamp, the local timezone (in its DST or non-DST name) may be specified, in addition to "UTC". Other timezones are still not supported however (not because we wouldn't want to, but mostly because libc offers no nice API for that). In itself this brings no new features, however it ensures that any locally formatted timestamp's timezone is also parsable again. These two changes ensure that the output of format_timestamp() may always be passed to parse_timestamp() and results in the original input. The related flavours for usec/UTC also work accordingly. Calendar specifications are extended in a similar way. The man page is updated accordingly, in particular this removes the claim that timestamps systemd prints wouldn't be parsable by systemd. They are now. The man page previously showed invalid timestamps as examples. This has been removed, as the man page shouldn't be a unit test, where such negative examples would be useful. The man page also no longer mentions the names of internal functions, such as format_timestamp_us() or UNIX error codes such as EINVAL.
2016-08-04 01:04:53 +02:00
test_format_timestamp();
test_format_timestamp_utc();
test_deserialize_dual_timestamp();
test_usec_shift_clock();
test_in_utc_timezone();
2020-07-21 17:33:36 +02:00
test_map_clock_usec();
/* Ensure time_t is signed */
assert_cc((time_t) -1 < (time_t) 1);
/* Ensure TIME_T_MAX works correctly */
uintmax_t x = TIME_T_MAX;
x++;
assert((time_t) x < 0);
return 0;
}