Systemd/src/resolve/resolved-dns-packet.h

303 lines
12 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: LGPL-2.1+ */
#pragma once
#include <netinet/ip.h>
#include <netinet/udp.h>
#include "hashmap.h"
2014-07-23 00:57:25 +02:00
#include "in-addr-util.h"
#include "macro.h"
#include "sparse-endian.h"
2014-07-23 00:57:25 +02:00
typedef struct DnsPacketHeader DnsPacketHeader;
typedef struct DnsPacket DnsPacket;
#include "resolved-def.h"
#include "resolved-dns-answer.h"
#include "resolved-dns-question.h"
#include "resolved-dns-rr.h"
typedef enum DnsProtocol {
DNS_PROTOCOL_DNS,
DNS_PROTOCOL_MDNS,
DNS_PROTOCOL_LLMNR,
_DNS_PROTOCOL_MAX,
_DNS_PROTOCOL_INVALID = -1
} DnsProtocol;
struct DnsPacketHeader {
uint16_t id;
be16_t flags;
be16_t qdcount;
be16_t ancount;
be16_t nscount;
be16_t arcount;
};
#define DNS_PACKET_HEADER_SIZE sizeof(DnsPacketHeader)
#define UDP_PACKET_HEADER_SIZE (sizeof(struct iphdr) + sizeof(struct udphdr))
/* The various DNS protocols deviate in how large a packet can grow,
* but the TCP transport has a 16bit size field, hence that appears to
* be the absolute maximum. */
#define DNS_PACKET_SIZE_MAX 0xFFFFu
2014-07-17 01:13:22 +02:00
/* The default size to use for allocation when we don't know how large
* the packet will turn out to be. */
#define DNS_PACKET_SIZE_START 512u
2014-07-17 01:13:22 +02:00
/* RFC 1035 say 512 is the maximum, for classic unicast DNS */
#define DNS_PACKET_UNICAST_SIZE_MAX 512u
2014-07-17 01:13:22 +02:00
/* With EDNS0 we can use larger packets, default to 4096, which is what is commonly used */
#define DNS_PACKET_UNICAST_SIZE_LARGE_MAX 4096u
struct DnsPacket {
2018-08-27 06:48:04 +02:00
unsigned n_ref;
DnsProtocol protocol;
size_t size, allocated, rindex, max_size;
void *_data; /* don't access directly, use DNS_PACKET_DATA()! */
Hashmap *names; /* For name compression */
size_t opt_start, opt_size;
/* Parsed data */
DnsQuestion *question;
DnsAnswer *answer;
DnsResourceRecord *opt;
2015-09-08 12:23:18 +02:00
/* Packet reception metadata */
int ifindex;
int family, ipproto;
union in_addr_union sender, destination;
uint16_t sender_port, destination_port;
uint32_t ttl;
/* For support of truncated packets */
DnsPacket *more;
bool on_stack:1;
bool extracted:1;
bool refuse_compression:1;
bool canonical_form:1;
};
static inline uint8_t* DNS_PACKET_DATA(DnsPacket *p) {
if (_unlikely_(!p))
return NULL;
if (p->_data)
return p->_data;
return ((uint8_t*) p) + ALIGN(sizeof(DnsPacket));
}
#define DNS_PACKET_HEADER(p) ((DnsPacketHeader*) DNS_PACKET_DATA(p))
#define DNS_PACKET_ID(p) DNS_PACKET_HEADER(p)->id
#define DNS_PACKET_QR(p) ((be16toh(DNS_PACKET_HEADER(p)->flags) >> 15) & 1)
#define DNS_PACKET_OPCODE(p) ((be16toh(DNS_PACKET_HEADER(p)->flags) >> 11) & 15)
#define DNS_PACKET_AA(p) ((be16toh(DNS_PACKET_HEADER(p)->flags) >> 10) & 1)
2014-07-16 20:15:47 +02:00
#define DNS_PACKET_TC(p) ((be16toh(DNS_PACKET_HEADER(p)->flags) >> 9) & 1)
#define DNS_PACKET_RD(p) ((be16toh(DNS_PACKET_HEADER(p)->flags) >> 8) & 1)
#define DNS_PACKET_RA(p) ((be16toh(DNS_PACKET_HEADER(p)->flags) >> 7) & 1)
#define DNS_PACKET_AD(p) ((be16toh(DNS_PACKET_HEADER(p)->flags) >> 5) & 1)
#define DNS_PACKET_CD(p) ((be16toh(DNS_PACKET_HEADER(p)->flags) >> 4) & 1)
resolved: respond to local resolver requests on 127.0.0.53:53 In order to improve compatibility with local clients that speak DNS directly (and do not use NSS or our bus API) listen locally on 127.0.0.53:53 and process any queries made that way. Note that resolved does not implement a full DNS server on this port, but simply enough to allow normal, local clients to resolve RRs through resolved. Specifically it does not implement queries without the RD bit set (these are requests where recursive lookups are explicitly disabled), and neither queries with DNSSEC DO set in combination with DNSSEC CD (i.e. DNSSEC lookups with validation turned off). It also refuses zone transfers and obsolete RR types. All lookups done this way will be rejected with a clean error code, so that the client side can repeat the query with a reduced feature set. The code will set the DNSSEC AD flag however, depending on whether the data resolved has been validated (or comes from a local, trusted source). Lookups made via this mechanisms are propagated to LLMNR and mDNS as necessary, but this is only partially useful as DNS packets cannot carry IP scope data (i.e. the ifindex), and hence link-local addresses returned cannot be used properly (and given that LLMNR/mDNS are mostly about link-local communication this is quite a limitation). Also, given that DNS tends to use IDNA for non-ASCII names, while LLMNR/mDNS uses UTF-8 lookups cannot be mapped 1:1. In general this should improve compatibility with clients bypassing NSS but it is highly recommended for clients to instead use NSS or our native bus API. This patch also beefs up the DnsStream logic, as it reuses the code for local TCP listening. DnsStream now provides proper reference counting for its objects. In order to avoid feedback loops resolved will no silently ignore 127.0.0.53 specified as DNS server when reading configuration. resolved listens on 127.0.0.53:53 instead of 127.0.0.1:53 in order to leave the latter free for local, external DNS servers or forwarders. This also changes the "etc.conf" tmpfiles snippet to create a symlink from /etc/resolv.conf to /usr/lib/systemd/resolv.conf by default, thus making this stub the default mode of operation if /etc is not populated.
2016-06-21 00:58:47 +02:00
#define DNS_PACKET_FLAG_TC (UINT16_C(1) << 9)
static inline uint16_t DNS_PACKET_RCODE(DnsPacket *p) {
uint16_t rcode;
if (p->opt)
rcode = (uint16_t) (p->opt->ttl >> 24);
else
rcode = 0;
resolved: respond to local resolver requests on 127.0.0.53:53 In order to improve compatibility with local clients that speak DNS directly (and do not use NSS or our bus API) listen locally on 127.0.0.53:53 and process any queries made that way. Note that resolved does not implement a full DNS server on this port, but simply enough to allow normal, local clients to resolve RRs through resolved. Specifically it does not implement queries without the RD bit set (these are requests where recursive lookups are explicitly disabled), and neither queries with DNSSEC DO set in combination with DNSSEC CD (i.e. DNSSEC lookups with validation turned off). It also refuses zone transfers and obsolete RR types. All lookups done this way will be rejected with a clean error code, so that the client side can repeat the query with a reduced feature set. The code will set the DNSSEC AD flag however, depending on whether the data resolved has been validated (or comes from a local, trusted source). Lookups made via this mechanisms are propagated to LLMNR and mDNS as necessary, but this is only partially useful as DNS packets cannot carry IP scope data (i.e. the ifindex), and hence link-local addresses returned cannot be used properly (and given that LLMNR/mDNS are mostly about link-local communication this is quite a limitation). Also, given that DNS tends to use IDNA for non-ASCII names, while LLMNR/mDNS uses UTF-8 lookups cannot be mapped 1:1. In general this should improve compatibility with clients bypassing NSS but it is highly recommended for clients to instead use NSS or our native bus API. This patch also beefs up the DnsStream logic, as it reuses the code for local TCP listening. DnsStream now provides proper reference counting for its objects. In order to avoid feedback loops resolved will no silently ignore 127.0.0.53 specified as DNS server when reading configuration. resolved listens on 127.0.0.53:53 instead of 127.0.0.1:53 in order to leave the latter free for local, external DNS servers or forwarders. This also changes the "etc.conf" tmpfiles snippet to create a symlink from /etc/resolv.conf to /usr/lib/systemd/resolv.conf by default, thus making this stub the default mode of operation if /etc is not populated.
2016-06-21 00:58:47 +02:00
return rcode | (be16toh(DNS_PACKET_HEADER(p)->flags) & 0xF);
}
static inline uint16_t DNS_PACKET_PAYLOAD_SIZE_MAX(DnsPacket *p) {
/* Returns the advertised maximum size for replies, or the DNS default if there's nothing defined. */
resolved: respond to local resolver requests on 127.0.0.53:53 In order to improve compatibility with local clients that speak DNS directly (and do not use NSS or our bus API) listen locally on 127.0.0.53:53 and process any queries made that way. Note that resolved does not implement a full DNS server on this port, but simply enough to allow normal, local clients to resolve RRs through resolved. Specifically it does not implement queries without the RD bit set (these are requests where recursive lookups are explicitly disabled), and neither queries with DNSSEC DO set in combination with DNSSEC CD (i.e. DNSSEC lookups with validation turned off). It also refuses zone transfers and obsolete RR types. All lookups done this way will be rejected with a clean error code, so that the client side can repeat the query with a reduced feature set. The code will set the DNSSEC AD flag however, depending on whether the data resolved has been validated (or comes from a local, trusted source). Lookups made via this mechanisms are propagated to LLMNR and mDNS as necessary, but this is only partially useful as DNS packets cannot carry IP scope data (i.e. the ifindex), and hence link-local addresses returned cannot be used properly (and given that LLMNR/mDNS are mostly about link-local communication this is quite a limitation). Also, given that DNS tends to use IDNA for non-ASCII names, while LLMNR/mDNS uses UTF-8 lookups cannot be mapped 1:1. In general this should improve compatibility with clients bypassing NSS but it is highly recommended for clients to instead use NSS or our native bus API. This patch also beefs up the DnsStream logic, as it reuses the code for local TCP listening. DnsStream now provides proper reference counting for its objects. In order to avoid feedback loops resolved will no silently ignore 127.0.0.53 specified as DNS server when reading configuration. resolved listens on 127.0.0.53:53 instead of 127.0.0.1:53 in order to leave the latter free for local, external DNS servers or forwarders. This also changes the "etc.conf" tmpfiles snippet to create a symlink from /etc/resolv.conf to /usr/lib/systemd/resolv.conf by default, thus making this stub the default mode of operation if /etc is not populated.
2016-06-21 00:58:47 +02:00
if (p->ipproto == IPPROTO_TCP) /* we ignore EDNS(0) size data on TCP, like everybody else */
return DNS_PACKET_SIZE_MAX;
resolved: respond to local resolver requests on 127.0.0.53:53 In order to improve compatibility with local clients that speak DNS directly (and do not use NSS or our bus API) listen locally on 127.0.0.53:53 and process any queries made that way. Note that resolved does not implement a full DNS server on this port, but simply enough to allow normal, local clients to resolve RRs through resolved. Specifically it does not implement queries without the RD bit set (these are requests where recursive lookups are explicitly disabled), and neither queries with DNSSEC DO set in combination with DNSSEC CD (i.e. DNSSEC lookups with validation turned off). It also refuses zone transfers and obsolete RR types. All lookups done this way will be rejected with a clean error code, so that the client side can repeat the query with a reduced feature set. The code will set the DNSSEC AD flag however, depending on whether the data resolved has been validated (or comes from a local, trusted source). Lookups made via this mechanisms are propagated to LLMNR and mDNS as necessary, but this is only partially useful as DNS packets cannot carry IP scope data (i.e. the ifindex), and hence link-local addresses returned cannot be used properly (and given that LLMNR/mDNS are mostly about link-local communication this is quite a limitation). Also, given that DNS tends to use IDNA for non-ASCII names, while LLMNR/mDNS uses UTF-8 lookups cannot be mapped 1:1. In general this should improve compatibility with clients bypassing NSS but it is highly recommended for clients to instead use NSS or our native bus API. This patch also beefs up the DnsStream logic, as it reuses the code for local TCP listening. DnsStream now provides proper reference counting for its objects. In order to avoid feedback loops resolved will no silently ignore 127.0.0.53 specified as DNS server when reading configuration. resolved listens on 127.0.0.53:53 instead of 127.0.0.1:53 in order to leave the latter free for local, external DNS servers or forwarders. This also changes the "etc.conf" tmpfiles snippet to create a symlink from /etc/resolv.conf to /usr/lib/systemd/resolv.conf by default, thus making this stub the default mode of operation if /etc is not populated.
2016-06-21 00:58:47 +02:00
if (p->opt)
return MAX(DNS_PACKET_UNICAST_SIZE_MAX, p->opt->key->class);
return DNS_PACKET_UNICAST_SIZE_MAX;
}
static inline bool DNS_PACKET_DO(DnsPacket *p) {
if (!p->opt)
return false;
return !!(p->opt->ttl & (1U << 15));
}
static inline bool DNS_PACKET_VERSION_SUPPORTED(DnsPacket *p) {
/* Returns true if this packet is in a version we support. Which means either non-EDNS or EDNS(0), but not EDNS
* of any newer versions */
if (!p->opt)
return true;
return DNS_RESOURCE_RECORD_OPT_VERSION_SUPPORTED(p->opt);
}
/* LLMNR defines some bits differently */
#define DNS_PACKET_LLMNR_C(p) DNS_PACKET_AA(p)
#define DNS_PACKET_LLMNR_T(p) DNS_PACKET_RD(p)
#define DNS_PACKET_QDCOUNT(p) be16toh(DNS_PACKET_HEADER(p)->qdcount)
#define DNS_PACKET_ANCOUNT(p) be16toh(DNS_PACKET_HEADER(p)->ancount)
#define DNS_PACKET_NSCOUNT(p) be16toh(DNS_PACKET_HEADER(p)->nscount)
#define DNS_PACKET_ARCOUNT(p) be16toh(DNS_PACKET_HEADER(p)->arcount)
#define DNS_PACKET_MAKE_FLAGS(qr, opcode, aa, tc, rd, ra, ad, cd, rcode) \
(((uint16_t) !!(qr) << 15) | \
((uint16_t) ((opcode) & 15) << 11) | \
((uint16_t) !!(aa) << 10) | /* on LLMNR: c */ \
((uint16_t) !!(tc) << 9) | \
((uint16_t) !!(rd) << 8) | /* on LLMNR: t */ \
((uint16_t) !!(ra) << 7) | \
((uint16_t) !!(ad) << 5) | \
((uint16_t) !!(cd) << 4) | \
((uint16_t) ((rcode) & 15)))
2014-07-17 19:38:37 +02:00
static inline unsigned DNS_PACKET_RRCOUNT(DnsPacket *p) {
return
(unsigned) DNS_PACKET_ANCOUNT(p) +
(unsigned) DNS_PACKET_NSCOUNT(p) +
(unsigned) DNS_PACKET_ARCOUNT(p);
}
int dns_packet_new(DnsPacket **p, DnsProtocol protocol, size_t min_alloc_dsize, size_t max_size);
int dns_packet_new_query(DnsPacket **p, DnsProtocol protocol, size_t min_alloc_dsize, bool dnssec_checking_disabled);
void dns_packet_set_flags(DnsPacket *p, bool dnssec_checking_disabled, bool truncated);
DnsPacket *dns_packet_ref(DnsPacket *p);
DnsPacket *dns_packet_unref(DnsPacket *p);
DEFINE_TRIVIAL_CLEANUP_FUNC(DnsPacket*, dns_packet_unref);
int dns_packet_validate(DnsPacket *p);
int dns_packet_validate_reply(DnsPacket *p);
int dns_packet_validate_query(DnsPacket *p);
int dns_packet_is_reply_for(DnsPacket *p, const DnsResourceKey *key);
int dns_packet_append_blob(DnsPacket *p, const void *d, size_t sz, size_t *start);
int dns_packet_append_uint8(DnsPacket *p, uint8_t v, size_t *start);
int dns_packet_append_uint16(DnsPacket *p, uint16_t v, size_t *start);
int dns_packet_append_uint32(DnsPacket *p, uint32_t v, size_t *start);
int dns_packet_append_string(DnsPacket *p, const char *s, size_t *start);
int dns_packet_append_raw_string(DnsPacket *p, const void *s, size_t size, size_t *start);
int dns_packet_append_label(DnsPacket *p, const char *s, size_t l, bool canonical_candidate, size_t *start);
int dns_packet_append_name(DnsPacket *p, const char *name, bool allow_compression, bool canonical_candidate, size_t *start);
int dns_packet_append_key(DnsPacket *p, const DnsResourceKey *key, const DnsAnswerFlags flags, size_t *start);
int dns_packet_append_rr(DnsPacket *p, const DnsResourceRecord *rr, const DnsAnswerFlags flags, size_t *start, size_t *rdata_start);
int dns_packet_append_opt(DnsPacket *p, uint16_t max_udp_size, bool edns0_do, int rcode, size_t *start);
int dns_packet_append_question(DnsPacket *p, DnsQuestion *q);
int dns_packet_append_answer(DnsPacket *p, DnsAnswer *a);
void dns_packet_truncate(DnsPacket *p, size_t sz);
int dns_packet_truncate_opt(DnsPacket *p);
int dns_packet_read(DnsPacket *p, size_t sz, const void **ret, size_t *start);
int dns_packet_read_blob(DnsPacket *p, void *d, size_t sz, size_t *start);
int dns_packet_read_uint8(DnsPacket *p, uint8_t *ret, size_t *start);
int dns_packet_read_uint16(DnsPacket *p, uint16_t *ret, size_t *start);
int dns_packet_read_uint32(DnsPacket *p, uint32_t *ret, size_t *start);
int dns_packet_read_string(DnsPacket *p, char **ret, size_t *start);
int dns_packet_read_raw_string(DnsPacket *p, const void **ret, size_t *size, size_t *start);
int dns_packet_read_name(DnsPacket *p, char **ret, bool allow_compression, size_t *start);
int dns_packet_read_key(DnsPacket *p, DnsResourceKey **ret, bool *ret_cache_flush, size_t *start);
int dns_packet_read_rr(DnsPacket *p, DnsResourceRecord **ret, bool *ret_cache_flush, size_t *start);
2014-07-16 22:09:00 +02:00
void dns_packet_rewind(DnsPacket *p, size_t idx);
int dns_packet_skip_question(DnsPacket *p);
int dns_packet_extract(DnsPacket *p);
static inline bool DNS_PACKET_SHALL_CACHE(DnsPacket *p) {
/* Never cache data originating from localhost, under the
* assumption, that it's coming from a locally DNS forwarder
* or server, that is caching on its own. */
return in_addr_is_localhost(p->family, &p->sender) == 0;
}
/* https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-6 */
enum {
DNS_RCODE_SUCCESS = 0,
DNS_RCODE_FORMERR = 1,
DNS_RCODE_SERVFAIL = 2,
DNS_RCODE_NXDOMAIN = 3,
DNS_RCODE_NOTIMP = 4,
DNS_RCODE_REFUSED = 5,
DNS_RCODE_YXDOMAIN = 6,
DNS_RCODE_YXRRSET = 7,
DNS_RCODE_NXRRSET = 8,
DNS_RCODE_NOTAUTH = 9,
DNS_RCODE_NOTZONE = 10,
DNS_RCODE_BADVERS = 16,
DNS_RCODE_BADSIG = 16, /* duplicate value! */
DNS_RCODE_BADKEY = 17,
DNS_RCODE_BADTIME = 18,
DNS_RCODE_BADMODE = 19,
DNS_RCODE_BADNAME = 20,
DNS_RCODE_BADALG = 21,
DNS_RCODE_BADTRUNC = 22,
DNS_RCODE_BADCOOKIE = 23,
_DNS_RCODE_MAX_DEFINED,
_DNS_RCODE_MAX = 4095 /* 4 bit rcode in the header plus 8 bit rcode in OPT, makes 12 bit */
};
const char* dns_rcode_to_string(int i) _const_;
int dns_rcode_from_string(const char *s) _pure_;
const char* dns_protocol_to_string(DnsProtocol p) _const_;
DnsProtocol dns_protocol_from_string(const char *s) _pure_;
#define LLMNR_MULTICAST_IPV4_ADDRESS ((struct in_addr) { .s_addr = htobe32(224U << 24 | 252U) })
#define LLMNR_MULTICAST_IPV6_ADDRESS ((struct in6_addr) { .s6_addr = { 0xFF, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x03 } })
2014-08-03 22:05:41 +02:00
#define MDNS_MULTICAST_IPV4_ADDRESS ((struct in_addr) { .s_addr = htobe32(224U << 24 | 251U) })
#define MDNS_MULTICAST_IPV6_ADDRESS ((struct in6_addr) { .s6_addr = { 0xFF, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xfb } })
extern const struct hash_ops dns_packet_hash_ops;
static inline uint64_t SD_RESOLVED_FLAGS_MAKE(DnsProtocol protocol, int family, bool authenticated) {
uint64_t f;
/* Converts a protocol + family into a flags field as used in queries and responses */
f = authenticated ? SD_RESOLVED_AUTHENTICATED : 0;
switch (protocol) {
case DNS_PROTOCOL_DNS:
return f|SD_RESOLVED_DNS;
case DNS_PROTOCOL_LLMNR:
return f|(family == AF_INET6 ? SD_RESOLVED_LLMNR_IPV6 : SD_RESOLVED_LLMNR_IPV4);
case DNS_PROTOCOL_MDNS:
return f|(family == AF_INET6 ? SD_RESOLVED_MDNS_IPV6 : SD_RESOLVED_MDNS_IPV4);
default:
return f;
}
}
static inline size_t dns_packet_size_max(DnsPacket *p) {
assert(p);
/* Why not insist on a fully initialized max_size during DnsPacket construction? Well, this way it's easy to
* allocate a transient, throw-away DnsPacket on the stack by simple zero initialization, without having to
* deal with explicit field initialization. */
return p->max_size != 0 ? p->max_size : DNS_PACKET_SIZE_MAX;
}