Systemd/src/shared/mount-util.c

571 lines
22 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: LGPL-2.1+ */
#include <errno.h>
#include <stdio_ext.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/statvfs.h>
#include <unistd.h>
/* Include later */
#include <libmount.h>
#include "alloc-util.h"
#include "escape.h"
#include "extract-word.h"
#include "fd-util.h"
#include "fileio.h"
#include "fs-util.h"
#include "hashmap.h"
#include "mount-util.h"
Split out part of mount-util.c into mountpoint-util.c The idea is that anything which is related to actually manipulating mounts is in mount-util.c, but functions for mountpoint introspection are moved to the new file. Anything which requires libmount must be in mount-util.c. This was supposed to be a preparation for further changes, with no functional difference, but it results in a significant change in linkage: $ ldd build/libnss_*.so.2 (before) build/libnss_myhostname.so.2: linux-vdso.so.1 (0x00007fff77bf5000) librt.so.1 => /lib64/librt.so.1 (0x00007f4bbb7b2000) libmount.so.1 => /lib64/libmount.so.1 (0x00007f4bbb755000) libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f4bbb734000) libc.so.6 => /lib64/libc.so.6 (0x00007f4bbb56e000) /lib64/ld-linux-x86-64.so.2 (0x00007f4bbb8c1000) libblkid.so.1 => /lib64/libblkid.so.1 (0x00007f4bbb51b000) libuuid.so.1 => /lib64/libuuid.so.1 (0x00007f4bbb512000) libselinux.so.1 => /lib64/libselinux.so.1 (0x00007f4bbb4e3000) libpcre2-8.so.0 => /lib64/libpcre2-8.so.0 (0x00007f4bbb45e000) libdl.so.2 => /lib64/libdl.so.2 (0x00007f4bbb458000) build/libnss_mymachines.so.2: linux-vdso.so.1 (0x00007ffc19cc0000) librt.so.1 => /lib64/librt.so.1 (0x00007fdecb74b000) libcap.so.2 => /lib64/libcap.so.2 (0x00007fdecb744000) libmount.so.1 => /lib64/libmount.so.1 (0x00007fdecb6e7000) libpthread.so.0 => /lib64/libpthread.so.0 (0x00007fdecb6c6000) libc.so.6 => /lib64/libc.so.6 (0x00007fdecb500000) /lib64/ld-linux-x86-64.so.2 (0x00007fdecb8a9000) libblkid.so.1 => /lib64/libblkid.so.1 (0x00007fdecb4ad000) libuuid.so.1 => /lib64/libuuid.so.1 (0x00007fdecb4a2000) libselinux.so.1 => /lib64/libselinux.so.1 (0x00007fdecb475000) libpcre2-8.so.0 => /lib64/libpcre2-8.so.0 (0x00007fdecb3f0000) libdl.so.2 => /lib64/libdl.so.2 (0x00007fdecb3ea000) build/libnss_resolve.so.2: linux-vdso.so.1 (0x00007ffe8ef8e000) librt.so.1 => /lib64/librt.so.1 (0x00007fcf314bd000) libcap.so.2 => /lib64/libcap.so.2 (0x00007fcf314b6000) libmount.so.1 => /lib64/libmount.so.1 (0x00007fcf31459000) libpthread.so.0 => /lib64/libpthread.so.0 (0x00007fcf31438000) libc.so.6 => /lib64/libc.so.6 (0x00007fcf31272000) /lib64/ld-linux-x86-64.so.2 (0x00007fcf31615000) libblkid.so.1 => /lib64/libblkid.so.1 (0x00007fcf3121f000) libuuid.so.1 => /lib64/libuuid.so.1 (0x00007fcf31214000) libselinux.so.1 => /lib64/libselinux.so.1 (0x00007fcf311e7000) libpcre2-8.so.0 => /lib64/libpcre2-8.so.0 (0x00007fcf31162000) libdl.so.2 => /lib64/libdl.so.2 (0x00007fcf3115c000) build/libnss_systemd.so.2: linux-vdso.so.1 (0x00007ffda6d17000) librt.so.1 => /lib64/librt.so.1 (0x00007f610b83c000) libcap.so.2 => /lib64/libcap.so.2 (0x00007f610b835000) libmount.so.1 => /lib64/libmount.so.1 (0x00007f610b7d8000) libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f610b7b7000) libc.so.6 => /lib64/libc.so.6 (0x00007f610b5f1000) /lib64/ld-linux-x86-64.so.2 (0x00007f610b995000) libblkid.so.1 => /lib64/libblkid.so.1 (0x00007f610b59e000) libuuid.so.1 => /lib64/libuuid.so.1 (0x00007f610b593000) libselinux.so.1 => /lib64/libselinux.so.1 (0x00007f610b566000) libpcre2-8.so.0 => /lib64/libpcre2-8.so.0 (0x00007f610b4e1000) libdl.so.2 => /lib64/libdl.so.2 (0x00007f610b4db000) (after) build/libnss_myhostname.so.2: linux-vdso.so.1 (0x00007fff0b5e2000) librt.so.1 => /lib64/librt.so.1 (0x00007fde0c328000) libpthread.so.0 => /lib64/libpthread.so.0 (0x00007fde0c307000) libc.so.6 => /lib64/libc.so.6 (0x00007fde0c141000) /lib64/ld-linux-x86-64.so.2 (0x00007fde0c435000) build/libnss_mymachines.so.2: linux-vdso.so.1 (0x00007ffdc30a7000) librt.so.1 => /lib64/librt.so.1 (0x00007f06ecabb000) libcap.so.2 => /lib64/libcap.so.2 (0x00007f06ecab4000) libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f06eca93000) libc.so.6 => /lib64/libc.so.6 (0x00007f06ec8cd000) /lib64/ld-linux-x86-64.so.2 (0x00007f06ecc15000) build/libnss_resolve.so.2: linux-vdso.so.1 (0x00007ffe95747000) librt.so.1 => /lib64/librt.so.1 (0x00007fa56a80f000) libcap.so.2 => /lib64/libcap.so.2 (0x00007fa56a808000) libpthread.so.0 => /lib64/libpthread.so.0 (0x00007fa56a7e7000) libc.so.6 => /lib64/libc.so.6 (0x00007fa56a621000) /lib64/ld-linux-x86-64.so.2 (0x00007fa56a964000) build/libnss_systemd.so.2: linux-vdso.so.1 (0x00007ffe67b51000) librt.so.1 => /lib64/librt.so.1 (0x00007ffb32113000) libcap.so.2 => /lib64/libcap.so.2 (0x00007ffb3210c000) libpthread.so.0 => /lib64/libpthread.so.0 (0x00007ffb320eb000) libc.so.6 => /lib64/libc.so.6 (0x00007ffb31f25000) /lib64/ld-linux-x86-64.so.2 (0x00007ffb3226a000) I don't quite understand what is going on here, but let's not be too picky.
2018-11-29 10:24:39 +01:00
#include "mountpoint-util.h"
#include "parse-util.h"
#include "path-util.h"
#include "set.h"
#include "stdio-util.h"
#include "string-util.h"
namespace: rework how ReadWritePaths= is applied Previously, if ReadWritePaths= was nested inside a ReadOnlyPaths= specification, then we'd first recursively apply the ReadOnlyPaths= paths, and make everything below read-only, only in order to then flip the read-only bit again for the subdirs listed in ReadWritePaths= below it. This is not only ugly (as for the dirs in question we first turn on the RO bit, only to turn it off again immediately after), but also problematic in containers, where a container manager might have marked a set of dirs read-only and this code will undo this is ReadWritePaths= is set for any. With this patch behaviour in this regard is altered: ReadOnlyPaths= will not be applied to the children listed in ReadWritePaths= in the first place, so that we do not need to turn off the RO bit for those after all. This means that ReadWritePaths=/ReadOnlyPaths= may only be used to turn on the RO bit, but never to turn it off again. Or to say this differently: if some dirs are marked read-only via some external tool, then ReadWritePaths= will not undo it. This is not only the safer option, but also more in-line with what the man page currently claims: "Entries (files or directories) listed in ReadWritePaths= are accessible from within the namespace with the same access rights as from outside." To implement this change bind_remount_recursive() gained a new "blacklist" string list parameter, which when passed may contain subdirs that shall be excluded from the read-only mounting. A number of functions are updated to add more debug logging to make this more digestable.
2016-09-25 10:40:51 +02:00
#include "strv.h"
int umount_recursive(const char *prefix, int flags) {
bool again;
int n = 0, r;
/* Try to umount everything recursively below a
* directory. Also, take care of stacked mounts, and keep
* unmounting them until they are gone. */
do {
_cleanup_fclose_ FILE *proc_self_mountinfo = NULL;
again = false;
r = 0;
proc_self_mountinfo = fopen("/proc/self/mountinfo", "re");
if (!proc_self_mountinfo)
return -errno;
(void) __fsetlocking(proc_self_mountinfo, FSETLOCKING_BYCALLER);
for (;;) {
_cleanup_free_ char *path = NULL, *p = NULL;
int k;
k = fscanf(proc_self_mountinfo,
"%*s " /* (1) mount id */
"%*s " /* (2) parent id */
"%*s " /* (3) major:minor */
"%*s " /* (4) root */
"%ms " /* (5) mount point */
"%*s" /* (6) mount options */
"%*[^-]" /* (7) optional fields */
"- " /* (8) separator */
"%*s " /* (9) file system type */
"%*s" /* (10) mount source */
"%*s" /* (11) mount options 2 */
"%*[^\n]", /* some rubbish at the end */
&path);
if (k != 1) {
if (k == EOF)
break;
continue;
}
r = cunescape(path, UNESCAPE_RELAX, &p);
if (r < 0)
return r;
if (!path_startswith(p, prefix))
continue;
if (umount2(p, flags) < 0) {
namespace: rework how ReadWritePaths= is applied Previously, if ReadWritePaths= was nested inside a ReadOnlyPaths= specification, then we'd first recursively apply the ReadOnlyPaths= paths, and make everything below read-only, only in order to then flip the read-only bit again for the subdirs listed in ReadWritePaths= below it. This is not only ugly (as for the dirs in question we first turn on the RO bit, only to turn it off again immediately after), but also problematic in containers, where a container manager might have marked a set of dirs read-only and this code will undo this is ReadWritePaths= is set for any. With this patch behaviour in this regard is altered: ReadOnlyPaths= will not be applied to the children listed in ReadWritePaths= in the first place, so that we do not need to turn off the RO bit for those after all. This means that ReadWritePaths=/ReadOnlyPaths= may only be used to turn on the RO bit, but never to turn it off again. Or to say this differently: if some dirs are marked read-only via some external tool, then ReadWritePaths= will not undo it. This is not only the safer option, but also more in-line with what the man page currently claims: "Entries (files or directories) listed in ReadWritePaths= are accessible from within the namespace with the same access rights as from outside." To implement this change bind_remount_recursive() gained a new "blacklist" string list parameter, which when passed may contain subdirs that shall be excluded from the read-only mounting. A number of functions are updated to add more debug logging to make this more digestable.
2016-09-25 10:40:51 +02:00
r = log_debug_errno(errno, "Failed to umount %s: %m", p);
continue;
}
namespace: rework how ReadWritePaths= is applied Previously, if ReadWritePaths= was nested inside a ReadOnlyPaths= specification, then we'd first recursively apply the ReadOnlyPaths= paths, and make everything below read-only, only in order to then flip the read-only bit again for the subdirs listed in ReadWritePaths= below it. This is not only ugly (as for the dirs in question we first turn on the RO bit, only to turn it off again immediately after), but also problematic in containers, where a container manager might have marked a set of dirs read-only and this code will undo this is ReadWritePaths= is set for any. With this patch behaviour in this regard is altered: ReadOnlyPaths= will not be applied to the children listed in ReadWritePaths= in the first place, so that we do not need to turn off the RO bit for those after all. This means that ReadWritePaths=/ReadOnlyPaths= may only be used to turn on the RO bit, but never to turn it off again. Or to say this differently: if some dirs are marked read-only via some external tool, then ReadWritePaths= will not undo it. This is not only the safer option, but also more in-line with what the man page currently claims: "Entries (files or directories) listed in ReadWritePaths= are accessible from within the namespace with the same access rights as from outside." To implement this change bind_remount_recursive() gained a new "blacklist" string list parameter, which when passed may contain subdirs that shall be excluded from the read-only mounting. A number of functions are updated to add more debug logging to make this more digestable.
2016-09-25 10:40:51 +02:00
log_debug("Successfully unmounted %s", p);
again = true;
n++;
break;
}
} while (again);
return r ? r : n;
}
static int get_mount_flags(const char *path, unsigned long *flags) {
struct statvfs buf;
if (statvfs(path, &buf) < 0)
return -errno;
*flags = buf.f_flag;
return 0;
}
/* Use this function only if do you have direct access to /proc/self/mountinfo
* and need the caller to open it for you. This is the case when /proc is
* masked or not mounted. Otherwise, use bind_remount_recursive. */
int bind_remount_recursive_with_mountinfo(const char *prefix, bool ro, char **blacklist, FILE *proc_self_mountinfo) {
_cleanup_set_free_free_ Set *done = NULL;
_cleanup_free_ char *cleaned = NULL;
int r;
assert(proc_self_mountinfo);
namespace: rework how ReadWritePaths= is applied Previously, if ReadWritePaths= was nested inside a ReadOnlyPaths= specification, then we'd first recursively apply the ReadOnlyPaths= paths, and make everything below read-only, only in order to then flip the read-only bit again for the subdirs listed in ReadWritePaths= below it. This is not only ugly (as for the dirs in question we first turn on the RO bit, only to turn it off again immediately after), but also problematic in containers, where a container manager might have marked a set of dirs read-only and this code will undo this is ReadWritePaths= is set for any. With this patch behaviour in this regard is altered: ReadOnlyPaths= will not be applied to the children listed in ReadWritePaths= in the first place, so that we do not need to turn off the RO bit for those after all. This means that ReadWritePaths=/ReadOnlyPaths= may only be used to turn on the RO bit, but never to turn it off again. Or to say this differently: if some dirs are marked read-only via some external tool, then ReadWritePaths= will not undo it. This is not only the safer option, but also more in-line with what the man page currently claims: "Entries (files or directories) listed in ReadWritePaths= are accessible from within the namespace with the same access rights as from outside." To implement this change bind_remount_recursive() gained a new "blacklist" string list parameter, which when passed may contain subdirs that shall be excluded from the read-only mounting. A number of functions are updated to add more debug logging to make this more digestable.
2016-09-25 10:40:51 +02:00
/* Recursively remount a directory (and all its submounts) read-only or read-write. If the directory is already
* mounted, we reuse the mount and simply mark it MS_BIND|MS_RDONLY (or remove the MS_RDONLY for read-write
* operation). If it isn't we first make it one. Afterwards we apply MS_BIND|MS_RDONLY (or remove MS_RDONLY) to
* all submounts we can access, too. When mounts are stacked on the same mount point we only care for each
* individual "top-level" mount on each point, as we cannot influence/access the underlying mounts anyway. We
* do not have any effect on future submounts that might get propagated, they migt be writable. This includes
* future submounts that have been triggered via autofs.
*
* If the "blacklist" parameter is specified it may contain a list of subtrees to exclude from the
* remount operation. Note that we'll ignore the blacklist for the top-level path. */
cleaned = strdup(prefix);
if (!cleaned)
return -ENOMEM;
path_simplify(cleaned, false);
done = set_new(&path_hash_ops);
if (!done)
return -ENOMEM;
for (;;) {
_cleanup_set_free_free_ Set *todo = NULL;
bool top_autofs = false;
char *x;
unsigned long orig_flags;
todo = set_new(&path_hash_ops);
if (!todo)
return -ENOMEM;
rewind(proc_self_mountinfo);
for (;;) {
_cleanup_free_ char *path = NULL, *p = NULL, *type = NULL;
int k;
k = fscanf(proc_self_mountinfo,
"%*s " /* (1) mount id */
"%*s " /* (2) parent id */
"%*s " /* (3) major:minor */
"%*s " /* (4) root */
"%ms " /* (5) mount point */
"%*s" /* (6) mount options (superblock) */
"%*[^-]" /* (7) optional fields */
"- " /* (8) separator */
"%ms " /* (9) file system type */
"%*s" /* (10) mount source */
"%*s" /* (11) mount options (bind mount) */
"%*[^\n]", /* some rubbish at the end */
&path,
&type);
if (k != 2) {
if (k == EOF)
break;
continue;
}
r = cunescape(path, UNESCAPE_RELAX, &p);
if (r < 0)
return r;
namespace: rework how ReadWritePaths= is applied Previously, if ReadWritePaths= was nested inside a ReadOnlyPaths= specification, then we'd first recursively apply the ReadOnlyPaths= paths, and make everything below read-only, only in order to then flip the read-only bit again for the subdirs listed in ReadWritePaths= below it. This is not only ugly (as for the dirs in question we first turn on the RO bit, only to turn it off again immediately after), but also problematic in containers, where a container manager might have marked a set of dirs read-only and this code will undo this is ReadWritePaths= is set for any. With this patch behaviour in this regard is altered: ReadOnlyPaths= will not be applied to the children listed in ReadWritePaths= in the first place, so that we do not need to turn off the RO bit for those after all. This means that ReadWritePaths=/ReadOnlyPaths= may only be used to turn on the RO bit, but never to turn it off again. Or to say this differently: if some dirs are marked read-only via some external tool, then ReadWritePaths= will not undo it. This is not only the safer option, but also more in-line with what the man page currently claims: "Entries (files or directories) listed in ReadWritePaths= are accessible from within the namespace with the same access rights as from outside." To implement this change bind_remount_recursive() gained a new "blacklist" string list parameter, which when passed may contain subdirs that shall be excluded from the read-only mounting. A number of functions are updated to add more debug logging to make this more digestable.
2016-09-25 10:40:51 +02:00
if (!path_startswith(p, cleaned))
continue;
/* Ignore this mount if it is blacklisted, but only if it isn't the top-level mount we shall
* operate on. */
if (!path_equal(cleaned, p)) {
bool blacklisted = false;
char **i;
STRV_FOREACH(i, blacklist) {
if (path_equal(*i, cleaned))
continue;
if (!path_startswith(*i, cleaned))
continue;
if (path_startswith(p, *i)) {
blacklisted = true;
log_debug("Not remounting %s blacklisted by %s, called for %s", p, *i, cleaned);
namespace: rework how ReadWritePaths= is applied Previously, if ReadWritePaths= was nested inside a ReadOnlyPaths= specification, then we'd first recursively apply the ReadOnlyPaths= paths, and make everything below read-only, only in order to then flip the read-only bit again for the subdirs listed in ReadWritePaths= below it. This is not only ugly (as for the dirs in question we first turn on the RO bit, only to turn it off again immediately after), but also problematic in containers, where a container manager might have marked a set of dirs read-only and this code will undo this is ReadWritePaths= is set for any. With this patch behaviour in this regard is altered: ReadOnlyPaths= will not be applied to the children listed in ReadWritePaths= in the first place, so that we do not need to turn off the RO bit for those after all. This means that ReadWritePaths=/ReadOnlyPaths= may only be used to turn on the RO bit, but never to turn it off again. Or to say this differently: if some dirs are marked read-only via some external tool, then ReadWritePaths= will not undo it. This is not only the safer option, but also more in-line with what the man page currently claims: "Entries (files or directories) listed in ReadWritePaths= are accessible from within the namespace with the same access rights as from outside." To implement this change bind_remount_recursive() gained a new "blacklist" string list parameter, which when passed may contain subdirs that shall be excluded from the read-only mounting. A number of functions are updated to add more debug logging to make this more digestable.
2016-09-25 10:40:51 +02:00
break;
}
}
if (blacklisted)
continue;
}
/* Let's ignore autofs mounts. If they aren't
* triggered yet, we want to avoid triggering
* them, as we don't make any guarantees for
* future submounts anyway. If they are
* already triggered, then we will find
* another entry for this. */
if (streq(type, "autofs")) {
top_autofs = top_autofs || path_equal(cleaned, p);
continue;
}
namespace: rework how ReadWritePaths= is applied Previously, if ReadWritePaths= was nested inside a ReadOnlyPaths= specification, then we'd first recursively apply the ReadOnlyPaths= paths, and make everything below read-only, only in order to then flip the read-only bit again for the subdirs listed in ReadWritePaths= below it. This is not only ugly (as for the dirs in question we first turn on the RO bit, only to turn it off again immediately after), but also problematic in containers, where a container manager might have marked a set of dirs read-only and this code will undo this is ReadWritePaths= is set for any. With this patch behaviour in this regard is altered: ReadOnlyPaths= will not be applied to the children listed in ReadWritePaths= in the first place, so that we do not need to turn off the RO bit for those after all. This means that ReadWritePaths=/ReadOnlyPaths= may only be used to turn on the RO bit, but never to turn it off again. Or to say this differently: if some dirs are marked read-only via some external tool, then ReadWritePaths= will not undo it. This is not only the safer option, but also more in-line with what the man page currently claims: "Entries (files or directories) listed in ReadWritePaths= are accessible from within the namespace with the same access rights as from outside." To implement this change bind_remount_recursive() gained a new "blacklist" string list parameter, which when passed may contain subdirs that shall be excluded from the read-only mounting. A number of functions are updated to add more debug logging to make this more digestable.
2016-09-25 10:40:51 +02:00
if (!set_contains(done, p)) {
r = set_consume(todo, p);
p = NULL;
if (r == -EEXIST)
continue;
if (r < 0)
return r;
}
}
/* If we have no submounts to process anymore and if
* the root is either already done, or an autofs, we
* are done */
if (set_isempty(todo) &&
(top_autofs || set_contains(done, cleaned)))
return 0;
if (!set_contains(done, cleaned) &&
!set_contains(todo, cleaned)) {
namespace: rework how ReadWritePaths= is applied Previously, if ReadWritePaths= was nested inside a ReadOnlyPaths= specification, then we'd first recursively apply the ReadOnlyPaths= paths, and make everything below read-only, only in order to then flip the read-only bit again for the subdirs listed in ReadWritePaths= below it. This is not only ugly (as for the dirs in question we first turn on the RO bit, only to turn it off again immediately after), but also problematic in containers, where a container manager might have marked a set of dirs read-only and this code will undo this is ReadWritePaths= is set for any. With this patch behaviour in this regard is altered: ReadOnlyPaths= will not be applied to the children listed in ReadWritePaths= in the first place, so that we do not need to turn off the RO bit for those after all. This means that ReadWritePaths=/ReadOnlyPaths= may only be used to turn on the RO bit, but never to turn it off again. Or to say this differently: if some dirs are marked read-only via some external tool, then ReadWritePaths= will not undo it. This is not only the safer option, but also more in-line with what the man page currently claims: "Entries (files or directories) listed in ReadWritePaths= are accessible from within the namespace with the same access rights as from outside." To implement this change bind_remount_recursive() gained a new "blacklist" string list parameter, which when passed may contain subdirs that shall be excluded from the read-only mounting. A number of functions are updated to add more debug logging to make this more digestable.
2016-09-25 10:40:51 +02:00
/* The prefix directory itself is not yet a mount, make it one. */
if (mount(cleaned, cleaned, NULL, MS_BIND|MS_REC, NULL) < 0)
return -errno;
orig_flags = 0;
(void) get_mount_flags(cleaned, &orig_flags);
orig_flags &= ~MS_RDONLY;
if (mount(NULL, cleaned, NULL, orig_flags|MS_BIND|MS_REMOUNT|(ro ? MS_RDONLY : 0), NULL) < 0)
return -errno;
namespace: rework how ReadWritePaths= is applied Previously, if ReadWritePaths= was nested inside a ReadOnlyPaths= specification, then we'd first recursively apply the ReadOnlyPaths= paths, and make everything below read-only, only in order to then flip the read-only bit again for the subdirs listed in ReadWritePaths= below it. This is not only ugly (as for the dirs in question we first turn on the RO bit, only to turn it off again immediately after), but also problematic in containers, where a container manager might have marked a set of dirs read-only and this code will undo this is ReadWritePaths= is set for any. With this patch behaviour in this regard is altered: ReadOnlyPaths= will not be applied to the children listed in ReadWritePaths= in the first place, so that we do not need to turn off the RO bit for those after all. This means that ReadWritePaths=/ReadOnlyPaths= may only be used to turn on the RO bit, but never to turn it off again. Or to say this differently: if some dirs are marked read-only via some external tool, then ReadWritePaths= will not undo it. This is not only the safer option, but also more in-line with what the man page currently claims: "Entries (files or directories) listed in ReadWritePaths= are accessible from within the namespace with the same access rights as from outside." To implement this change bind_remount_recursive() gained a new "blacklist" string list parameter, which when passed may contain subdirs that shall be excluded from the read-only mounting. A number of functions are updated to add more debug logging to make this more digestable.
2016-09-25 10:40:51 +02:00
log_debug("Made top-level directory %s a mount point.", prefix);
x = strdup(cleaned);
if (!x)
return -ENOMEM;
r = set_consume(done, x);
if (r < 0)
return r;
}
while ((x = set_steal_first(todo))) {
r = set_consume(done, x);
2017-10-04 16:01:32 +02:00
if (IN_SET(r, 0, -EEXIST))
continue;
if (r < 0)
return r;
namespace: rework how ReadWritePaths= is applied Previously, if ReadWritePaths= was nested inside a ReadOnlyPaths= specification, then we'd first recursively apply the ReadOnlyPaths= paths, and make everything below read-only, only in order to then flip the read-only bit again for the subdirs listed in ReadWritePaths= below it. This is not only ugly (as for the dirs in question we first turn on the RO bit, only to turn it off again immediately after), but also problematic in containers, where a container manager might have marked a set of dirs read-only and this code will undo this is ReadWritePaths= is set for any. With this patch behaviour in this regard is altered: ReadOnlyPaths= will not be applied to the children listed in ReadWritePaths= in the first place, so that we do not need to turn off the RO bit for those after all. This means that ReadWritePaths=/ReadOnlyPaths= may only be used to turn on the RO bit, but never to turn it off again. Or to say this differently: if some dirs are marked read-only via some external tool, then ReadWritePaths= will not undo it. This is not only the safer option, but also more in-line with what the man page currently claims: "Entries (files or directories) listed in ReadWritePaths= are accessible from within the namespace with the same access rights as from outside." To implement this change bind_remount_recursive() gained a new "blacklist" string list parameter, which when passed may contain subdirs that shall be excluded from the read-only mounting. A number of functions are updated to add more debug logging to make this more digestable.
2016-09-25 10:40:51 +02:00
/* Deal with mount points that are obstructed by a later mount */
r = path_is_mount_point(x, NULL, 0);
2017-10-04 16:01:32 +02:00
if (IN_SET(r, 0, -ENOENT))
continue;
if (IN_SET(r, -EACCES, -EPERM)) {
/* Even if root user invoke this, submounts under private FUSE or NFS mount points
* may not be acceessed. E.g.,
*
* $ bindfs --no-allow-other ~/mnt/mnt ~/mnt/mnt
* $ bindfs --no-allow-other ~/mnt ~/mnt
*
* Then, root user cannot access the mount point ~/mnt/mnt.
* In such cases, the submounts are ignored, as we have no way to manage them. */
log_debug_errno(r, "Failed to determine '%s' is mount point or not, ignoring: %m", x);
continue;
}
if (r < 0)
return r;
/* Try to reuse the original flag set */
orig_flags = 0;
(void) get_mount_flags(x, &orig_flags);
orig_flags &= ~MS_RDONLY;
if (mount(NULL, x, NULL, orig_flags|MS_BIND|MS_REMOUNT|(ro ? MS_RDONLY : 0), NULL) < 0)
return -errno;
namespace: rework how ReadWritePaths= is applied Previously, if ReadWritePaths= was nested inside a ReadOnlyPaths= specification, then we'd first recursively apply the ReadOnlyPaths= paths, and make everything below read-only, only in order to then flip the read-only bit again for the subdirs listed in ReadWritePaths= below it. This is not only ugly (as for the dirs in question we first turn on the RO bit, only to turn it off again immediately after), but also problematic in containers, where a container manager might have marked a set of dirs read-only and this code will undo this is ReadWritePaths= is set for any. With this patch behaviour in this regard is altered: ReadOnlyPaths= will not be applied to the children listed in ReadWritePaths= in the first place, so that we do not need to turn off the RO bit for those after all. This means that ReadWritePaths=/ReadOnlyPaths= may only be used to turn on the RO bit, but never to turn it off again. Or to say this differently: if some dirs are marked read-only via some external tool, then ReadWritePaths= will not undo it. This is not only the safer option, but also more in-line with what the man page currently claims: "Entries (files or directories) listed in ReadWritePaths= are accessible from within the namespace with the same access rights as from outside." To implement this change bind_remount_recursive() gained a new "blacklist" string list parameter, which when passed may contain subdirs that shall be excluded from the read-only mounting. A number of functions are updated to add more debug logging to make this more digestable.
2016-09-25 10:40:51 +02:00
log_debug("Remounted %s read-only.", x);
}
}
}
int bind_remount_recursive(const char *prefix, bool ro, char **blacklist) {
_cleanup_fclose_ FILE *proc_self_mountinfo = NULL;
proc_self_mountinfo = fopen("/proc/self/mountinfo", "re");
if (!proc_self_mountinfo)
return -errno;
(void) __fsetlocking(proc_self_mountinfo, FSETLOCKING_BYCALLER);
return bind_remount_recursive_with_mountinfo(prefix, ro, blacklist, proc_self_mountinfo);
}
int mount_move_root(const char *path) {
assert(path);
if (chdir(path) < 0)
return -errno;
if (mount(path, "/", NULL, MS_MOVE, NULL) < 0)
return -errno;
if (chroot(".") < 0)
return -errno;
if (chdir("/") < 0)
return -errno;
return 0;
}
int repeat_unmount(const char *path, int flags) {
bool done = false;
assert(path);
/* If there are multiple mounts on a mount point, this
* removes them all */
for (;;) {
if (umount2(path, flags) < 0) {
if (errno == EINVAL)
return done;
return -errno;
}
done = true;
}
}
const char* mode_to_inaccessible_node(mode_t mode) {
/* This function maps a node type to a corresponding inaccessible file node. These nodes are created during
* early boot by PID 1. In some cases we lacked the privs to create the character and block devices (maybe
* because we run in an userns environment, or miss CAP_SYS_MKNOD, or run with a devices policy that excludes
* device nodes with major and minor of 0), but that's fine, in that case we use an AF_UNIX file node instead,
* which is not the same, but close enough for most uses. And most importantly, the kernel allows bind mounts
* from socket nodes to any non-directory file nodes, and that's the most important thing that matters. */
switch(mode & S_IFMT) {
case S_IFREG:
return "/run/systemd/inaccessible/reg";
case S_IFDIR:
return "/run/systemd/inaccessible/dir";
case S_IFCHR:
if (access("/run/systemd/inaccessible/chr", F_OK) == 0)
return "/run/systemd/inaccessible/chr";
return "/run/systemd/inaccessible/sock";
case S_IFBLK:
if (access("/run/systemd/inaccessible/blk", F_OK) == 0)
return "/run/systemd/inaccessible/blk";
return "/run/systemd/inaccessible/sock";
case S_IFIFO:
return "/run/systemd/inaccessible/fifo";
case S_IFSOCK:
return "/run/systemd/inaccessible/sock";
}
return NULL;
}
nspawn,mount-util: add [u]mount_verbose and use it in nspawn This makes it easier to debug failed nspawn invocations: Mounting sysfs on /var/lib/machines/fedora-rawhide/sys (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV "")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/dev (MS_NOSUID|MS_STRICTATIME "mode=755,uid=1450901504,gid=1450901504")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/dev/shm (MS_NOSUID|MS_NODEV|MS_STRICTATIME "mode=1777,uid=1450901504,gid=1450901504")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/run (MS_NOSUID|MS_NODEV|MS_STRICTATIME "mode=755,uid=1450901504,gid=1450901504")... Bind-mounting /sys/fs/selinux on /var/lib/machines/fedora-rawhide/sys/fs/selinux (MS_BIND "")... Remounting /var/lib/machines/fedora-rawhide/sys/fs/selinux (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Mounting proc on /proc (MS_NOSUID|MS_NOEXEC|MS_NODEV "")... Bind-mounting /proc/sys on /proc/sys (MS_BIND "")... Remounting /proc/sys (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Bind-mounting /proc/sysrq-trigger on /proc/sysrq-trigger (MS_BIND "")... Remounting /proc/sysrq-trigger (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Mounting tmpfs on /tmp (MS_STRICTATIME "mode=1777,uid=0,gid=0")... Mounting tmpfs on /sys/fs/cgroup (MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_STRICTATIME "mode=755,uid=0,gid=0")... Mounting cgroup on /sys/fs/cgroup/systemd (MS_NOSUID|MS_NOEXEC|MS_NODEV "none,name=systemd,xattr")... Failed to mount cgroup on /sys/fs/cgroup/systemd (MS_NOSUID|MS_NOEXEC|MS_NODEV "none,name=systemd,xattr"): No such file or directory
2016-10-10 21:55:20 +02:00
#define FLAG(name) (flags & name ? STRINGIFY(name) "|" : "")
static char* mount_flags_to_string(long unsigned flags) {
char *x;
_cleanup_free_ char *y = NULL;
long unsigned overflow;
overflow = flags & ~(MS_RDONLY |
MS_NOSUID |
MS_NODEV |
MS_NOEXEC |
MS_SYNCHRONOUS |
MS_REMOUNT |
MS_MANDLOCK |
MS_DIRSYNC |
MS_NOATIME |
MS_NODIRATIME |
MS_BIND |
MS_MOVE |
MS_REC |
MS_SILENT |
MS_POSIXACL |
MS_UNBINDABLE |
MS_PRIVATE |
MS_SLAVE |
MS_SHARED |
MS_RELATIME |
MS_KERNMOUNT |
MS_I_VERSION |
MS_STRICTATIME |
MS_LAZYTIME);
if (flags == 0 || overflow != 0)
if (asprintf(&y, "%lx", overflow) < 0)
return NULL;
x = strjoin(FLAG(MS_RDONLY),
FLAG(MS_NOSUID),
FLAG(MS_NODEV),
FLAG(MS_NOEXEC),
FLAG(MS_SYNCHRONOUS),
FLAG(MS_REMOUNT),
FLAG(MS_MANDLOCK),
FLAG(MS_DIRSYNC),
FLAG(MS_NOATIME),
FLAG(MS_NODIRATIME),
FLAG(MS_BIND),
FLAG(MS_MOVE),
FLAG(MS_REC),
FLAG(MS_SILENT),
FLAG(MS_POSIXACL),
FLAG(MS_UNBINDABLE),
FLAG(MS_PRIVATE),
FLAG(MS_SLAVE),
FLAG(MS_SHARED),
FLAG(MS_RELATIME),
FLAG(MS_KERNMOUNT),
FLAG(MS_I_VERSION),
FLAG(MS_STRICTATIME),
FLAG(MS_LAZYTIME),
y);
nspawn,mount-util: add [u]mount_verbose and use it in nspawn This makes it easier to debug failed nspawn invocations: Mounting sysfs on /var/lib/machines/fedora-rawhide/sys (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV "")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/dev (MS_NOSUID|MS_STRICTATIME "mode=755,uid=1450901504,gid=1450901504")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/dev/shm (MS_NOSUID|MS_NODEV|MS_STRICTATIME "mode=1777,uid=1450901504,gid=1450901504")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/run (MS_NOSUID|MS_NODEV|MS_STRICTATIME "mode=755,uid=1450901504,gid=1450901504")... Bind-mounting /sys/fs/selinux on /var/lib/machines/fedora-rawhide/sys/fs/selinux (MS_BIND "")... Remounting /var/lib/machines/fedora-rawhide/sys/fs/selinux (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Mounting proc on /proc (MS_NOSUID|MS_NOEXEC|MS_NODEV "")... Bind-mounting /proc/sys on /proc/sys (MS_BIND "")... Remounting /proc/sys (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Bind-mounting /proc/sysrq-trigger on /proc/sysrq-trigger (MS_BIND "")... Remounting /proc/sysrq-trigger (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Mounting tmpfs on /tmp (MS_STRICTATIME "mode=1777,uid=0,gid=0")... Mounting tmpfs on /sys/fs/cgroup (MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_STRICTATIME "mode=755,uid=0,gid=0")... Mounting cgroup on /sys/fs/cgroup/systemd (MS_NOSUID|MS_NOEXEC|MS_NODEV "none,name=systemd,xattr")... Failed to mount cgroup on /sys/fs/cgroup/systemd (MS_NOSUID|MS_NOEXEC|MS_NODEV "none,name=systemd,xattr"): No such file or directory
2016-10-10 21:55:20 +02:00
if (!x)
return NULL;
if (!y)
x[strlen(x) - 1] = '\0'; /* truncate the last | */
return x;
}
int mount_verbose(
int error_log_level,
const char *what,
const char *where,
const char *type,
unsigned long flags,
const char *options) {
_cleanup_free_ char *fl = NULL, *o = NULL;
unsigned long f;
int r;
r = mount_option_mangle(options, flags, &f, &o);
if (r < 0)
return log_full_errno(error_log_level, r,
"Failed to mangle mount options %s: %m",
strempty(options));
nspawn,mount-util: add [u]mount_verbose and use it in nspawn This makes it easier to debug failed nspawn invocations: Mounting sysfs on /var/lib/machines/fedora-rawhide/sys (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV "")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/dev (MS_NOSUID|MS_STRICTATIME "mode=755,uid=1450901504,gid=1450901504")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/dev/shm (MS_NOSUID|MS_NODEV|MS_STRICTATIME "mode=1777,uid=1450901504,gid=1450901504")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/run (MS_NOSUID|MS_NODEV|MS_STRICTATIME "mode=755,uid=1450901504,gid=1450901504")... Bind-mounting /sys/fs/selinux on /var/lib/machines/fedora-rawhide/sys/fs/selinux (MS_BIND "")... Remounting /var/lib/machines/fedora-rawhide/sys/fs/selinux (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Mounting proc on /proc (MS_NOSUID|MS_NOEXEC|MS_NODEV "")... Bind-mounting /proc/sys on /proc/sys (MS_BIND "")... Remounting /proc/sys (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Bind-mounting /proc/sysrq-trigger on /proc/sysrq-trigger (MS_BIND "")... Remounting /proc/sysrq-trigger (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Mounting tmpfs on /tmp (MS_STRICTATIME "mode=1777,uid=0,gid=0")... Mounting tmpfs on /sys/fs/cgroup (MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_STRICTATIME "mode=755,uid=0,gid=0")... Mounting cgroup on /sys/fs/cgroup/systemd (MS_NOSUID|MS_NOEXEC|MS_NODEV "none,name=systemd,xattr")... Failed to mount cgroup on /sys/fs/cgroup/systemd (MS_NOSUID|MS_NOEXEC|MS_NODEV "none,name=systemd,xattr"): No such file or directory
2016-10-10 21:55:20 +02:00
fl = mount_flags_to_string(f);
nspawn,mount-util: add [u]mount_verbose and use it in nspawn This makes it easier to debug failed nspawn invocations: Mounting sysfs on /var/lib/machines/fedora-rawhide/sys (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV "")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/dev (MS_NOSUID|MS_STRICTATIME "mode=755,uid=1450901504,gid=1450901504")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/dev/shm (MS_NOSUID|MS_NODEV|MS_STRICTATIME "mode=1777,uid=1450901504,gid=1450901504")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/run (MS_NOSUID|MS_NODEV|MS_STRICTATIME "mode=755,uid=1450901504,gid=1450901504")... Bind-mounting /sys/fs/selinux on /var/lib/machines/fedora-rawhide/sys/fs/selinux (MS_BIND "")... Remounting /var/lib/machines/fedora-rawhide/sys/fs/selinux (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Mounting proc on /proc (MS_NOSUID|MS_NOEXEC|MS_NODEV "")... Bind-mounting /proc/sys on /proc/sys (MS_BIND "")... Remounting /proc/sys (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Bind-mounting /proc/sysrq-trigger on /proc/sysrq-trigger (MS_BIND "")... Remounting /proc/sysrq-trigger (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Mounting tmpfs on /tmp (MS_STRICTATIME "mode=1777,uid=0,gid=0")... Mounting tmpfs on /sys/fs/cgroup (MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_STRICTATIME "mode=755,uid=0,gid=0")... Mounting cgroup on /sys/fs/cgroup/systemd (MS_NOSUID|MS_NOEXEC|MS_NODEV "none,name=systemd,xattr")... Failed to mount cgroup on /sys/fs/cgroup/systemd (MS_NOSUID|MS_NOEXEC|MS_NODEV "none,name=systemd,xattr"): No such file or directory
2016-10-10 21:55:20 +02:00
if ((f & MS_REMOUNT) && !what && !type)
nspawn,mount-util: add [u]mount_verbose and use it in nspawn This makes it easier to debug failed nspawn invocations: Mounting sysfs on /var/lib/machines/fedora-rawhide/sys (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV "")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/dev (MS_NOSUID|MS_STRICTATIME "mode=755,uid=1450901504,gid=1450901504")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/dev/shm (MS_NOSUID|MS_NODEV|MS_STRICTATIME "mode=1777,uid=1450901504,gid=1450901504")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/run (MS_NOSUID|MS_NODEV|MS_STRICTATIME "mode=755,uid=1450901504,gid=1450901504")... Bind-mounting /sys/fs/selinux on /var/lib/machines/fedora-rawhide/sys/fs/selinux (MS_BIND "")... Remounting /var/lib/machines/fedora-rawhide/sys/fs/selinux (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Mounting proc on /proc (MS_NOSUID|MS_NOEXEC|MS_NODEV "")... Bind-mounting /proc/sys on /proc/sys (MS_BIND "")... Remounting /proc/sys (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Bind-mounting /proc/sysrq-trigger on /proc/sysrq-trigger (MS_BIND "")... Remounting /proc/sysrq-trigger (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Mounting tmpfs on /tmp (MS_STRICTATIME "mode=1777,uid=0,gid=0")... Mounting tmpfs on /sys/fs/cgroup (MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_STRICTATIME "mode=755,uid=0,gid=0")... Mounting cgroup on /sys/fs/cgroup/systemd (MS_NOSUID|MS_NOEXEC|MS_NODEV "none,name=systemd,xattr")... Failed to mount cgroup on /sys/fs/cgroup/systemd (MS_NOSUID|MS_NOEXEC|MS_NODEV "none,name=systemd,xattr"): No such file or directory
2016-10-10 21:55:20 +02:00
log_debug("Remounting %s (%s \"%s\")...",
where, strnull(fl), strempty(o));
nspawn,mount-util: add [u]mount_verbose and use it in nspawn This makes it easier to debug failed nspawn invocations: Mounting sysfs on /var/lib/machines/fedora-rawhide/sys (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV "")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/dev (MS_NOSUID|MS_STRICTATIME "mode=755,uid=1450901504,gid=1450901504")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/dev/shm (MS_NOSUID|MS_NODEV|MS_STRICTATIME "mode=1777,uid=1450901504,gid=1450901504")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/run (MS_NOSUID|MS_NODEV|MS_STRICTATIME "mode=755,uid=1450901504,gid=1450901504")... Bind-mounting /sys/fs/selinux on /var/lib/machines/fedora-rawhide/sys/fs/selinux (MS_BIND "")... Remounting /var/lib/machines/fedora-rawhide/sys/fs/selinux (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Mounting proc on /proc (MS_NOSUID|MS_NOEXEC|MS_NODEV "")... Bind-mounting /proc/sys on /proc/sys (MS_BIND "")... Remounting /proc/sys (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Bind-mounting /proc/sysrq-trigger on /proc/sysrq-trigger (MS_BIND "")... Remounting /proc/sysrq-trigger (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Mounting tmpfs on /tmp (MS_STRICTATIME "mode=1777,uid=0,gid=0")... Mounting tmpfs on /sys/fs/cgroup (MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_STRICTATIME "mode=755,uid=0,gid=0")... Mounting cgroup on /sys/fs/cgroup/systemd (MS_NOSUID|MS_NOEXEC|MS_NODEV "none,name=systemd,xattr")... Failed to mount cgroup on /sys/fs/cgroup/systemd (MS_NOSUID|MS_NOEXEC|MS_NODEV "none,name=systemd,xattr"): No such file or directory
2016-10-10 21:55:20 +02:00
else if (!what && !type)
log_debug("Mounting %s (%s \"%s\")...",
where, strnull(fl), strempty(o));
else if ((f & MS_BIND) && !type)
nspawn,mount-util: add [u]mount_verbose and use it in nspawn This makes it easier to debug failed nspawn invocations: Mounting sysfs on /var/lib/machines/fedora-rawhide/sys (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV "")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/dev (MS_NOSUID|MS_STRICTATIME "mode=755,uid=1450901504,gid=1450901504")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/dev/shm (MS_NOSUID|MS_NODEV|MS_STRICTATIME "mode=1777,uid=1450901504,gid=1450901504")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/run (MS_NOSUID|MS_NODEV|MS_STRICTATIME "mode=755,uid=1450901504,gid=1450901504")... Bind-mounting /sys/fs/selinux on /var/lib/machines/fedora-rawhide/sys/fs/selinux (MS_BIND "")... Remounting /var/lib/machines/fedora-rawhide/sys/fs/selinux (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Mounting proc on /proc (MS_NOSUID|MS_NOEXEC|MS_NODEV "")... Bind-mounting /proc/sys on /proc/sys (MS_BIND "")... Remounting /proc/sys (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Bind-mounting /proc/sysrq-trigger on /proc/sysrq-trigger (MS_BIND "")... Remounting /proc/sysrq-trigger (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Mounting tmpfs on /tmp (MS_STRICTATIME "mode=1777,uid=0,gid=0")... Mounting tmpfs on /sys/fs/cgroup (MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_STRICTATIME "mode=755,uid=0,gid=0")... Mounting cgroup on /sys/fs/cgroup/systemd (MS_NOSUID|MS_NOEXEC|MS_NODEV "none,name=systemd,xattr")... Failed to mount cgroup on /sys/fs/cgroup/systemd (MS_NOSUID|MS_NOEXEC|MS_NODEV "none,name=systemd,xattr"): No such file or directory
2016-10-10 21:55:20 +02:00
log_debug("Bind-mounting %s on %s (%s \"%s\")...",
what, where, strnull(fl), strempty(o));
else if (f & MS_MOVE)
log_debug("Moving mount %s → %s (%s \"%s\")...",
what, where, strnull(fl), strempty(o));
nspawn,mount-util: add [u]mount_verbose and use it in nspawn This makes it easier to debug failed nspawn invocations: Mounting sysfs on /var/lib/machines/fedora-rawhide/sys (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV "")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/dev (MS_NOSUID|MS_STRICTATIME "mode=755,uid=1450901504,gid=1450901504")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/dev/shm (MS_NOSUID|MS_NODEV|MS_STRICTATIME "mode=1777,uid=1450901504,gid=1450901504")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/run (MS_NOSUID|MS_NODEV|MS_STRICTATIME "mode=755,uid=1450901504,gid=1450901504")... Bind-mounting /sys/fs/selinux on /var/lib/machines/fedora-rawhide/sys/fs/selinux (MS_BIND "")... Remounting /var/lib/machines/fedora-rawhide/sys/fs/selinux (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Mounting proc on /proc (MS_NOSUID|MS_NOEXEC|MS_NODEV "")... Bind-mounting /proc/sys on /proc/sys (MS_BIND "")... Remounting /proc/sys (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Bind-mounting /proc/sysrq-trigger on /proc/sysrq-trigger (MS_BIND "")... Remounting /proc/sysrq-trigger (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Mounting tmpfs on /tmp (MS_STRICTATIME "mode=1777,uid=0,gid=0")... Mounting tmpfs on /sys/fs/cgroup (MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_STRICTATIME "mode=755,uid=0,gid=0")... Mounting cgroup on /sys/fs/cgroup/systemd (MS_NOSUID|MS_NOEXEC|MS_NODEV "none,name=systemd,xattr")... Failed to mount cgroup on /sys/fs/cgroup/systemd (MS_NOSUID|MS_NOEXEC|MS_NODEV "none,name=systemd,xattr"): No such file or directory
2016-10-10 21:55:20 +02:00
else
log_debug("Mounting %s on %s (%s \"%s\")...",
strna(type), where, strnull(fl), strempty(o));
if (mount(what, where, type, f, o) < 0)
nspawn,mount-util: add [u]mount_verbose and use it in nspawn This makes it easier to debug failed nspawn invocations: Mounting sysfs on /var/lib/machines/fedora-rawhide/sys (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV "")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/dev (MS_NOSUID|MS_STRICTATIME "mode=755,uid=1450901504,gid=1450901504")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/dev/shm (MS_NOSUID|MS_NODEV|MS_STRICTATIME "mode=1777,uid=1450901504,gid=1450901504")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/run (MS_NOSUID|MS_NODEV|MS_STRICTATIME "mode=755,uid=1450901504,gid=1450901504")... Bind-mounting /sys/fs/selinux on /var/lib/machines/fedora-rawhide/sys/fs/selinux (MS_BIND "")... Remounting /var/lib/machines/fedora-rawhide/sys/fs/selinux (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Mounting proc on /proc (MS_NOSUID|MS_NOEXEC|MS_NODEV "")... Bind-mounting /proc/sys on /proc/sys (MS_BIND "")... Remounting /proc/sys (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Bind-mounting /proc/sysrq-trigger on /proc/sysrq-trigger (MS_BIND "")... Remounting /proc/sysrq-trigger (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Mounting tmpfs on /tmp (MS_STRICTATIME "mode=1777,uid=0,gid=0")... Mounting tmpfs on /sys/fs/cgroup (MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_STRICTATIME "mode=755,uid=0,gid=0")... Mounting cgroup on /sys/fs/cgroup/systemd (MS_NOSUID|MS_NOEXEC|MS_NODEV "none,name=systemd,xattr")... Failed to mount cgroup on /sys/fs/cgroup/systemd (MS_NOSUID|MS_NOEXEC|MS_NODEV "none,name=systemd,xattr"): No such file or directory
2016-10-10 21:55:20 +02:00
return log_full_errno(error_log_level, errno,
"Failed to mount %s (type %s) on %s (%s \"%s\"): %m",
strna(what), strna(type), where, strnull(fl), strempty(o));
nspawn,mount-util: add [u]mount_verbose and use it in nspawn This makes it easier to debug failed nspawn invocations: Mounting sysfs on /var/lib/machines/fedora-rawhide/sys (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV "")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/dev (MS_NOSUID|MS_STRICTATIME "mode=755,uid=1450901504,gid=1450901504")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/dev/shm (MS_NOSUID|MS_NODEV|MS_STRICTATIME "mode=1777,uid=1450901504,gid=1450901504")... Mounting tmpfs on /var/lib/machines/fedora-rawhide/run (MS_NOSUID|MS_NODEV|MS_STRICTATIME "mode=755,uid=1450901504,gid=1450901504")... Bind-mounting /sys/fs/selinux on /var/lib/machines/fedora-rawhide/sys/fs/selinux (MS_BIND "")... Remounting /var/lib/machines/fedora-rawhide/sys/fs/selinux (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Mounting proc on /proc (MS_NOSUID|MS_NOEXEC|MS_NODEV "")... Bind-mounting /proc/sys on /proc/sys (MS_BIND "")... Remounting /proc/sys (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Bind-mounting /proc/sysrq-trigger on /proc/sysrq-trigger (MS_BIND "")... Remounting /proc/sysrq-trigger (MS_RDONLY|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_BIND|MS_REMOUNT "")... Mounting tmpfs on /tmp (MS_STRICTATIME "mode=1777,uid=0,gid=0")... Mounting tmpfs on /sys/fs/cgroup (MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_STRICTATIME "mode=755,uid=0,gid=0")... Mounting cgroup on /sys/fs/cgroup/systemd (MS_NOSUID|MS_NOEXEC|MS_NODEV "none,name=systemd,xattr")... Failed to mount cgroup on /sys/fs/cgroup/systemd (MS_NOSUID|MS_NOEXEC|MS_NODEV "none,name=systemd,xattr"): No such file or directory
2016-10-10 21:55:20 +02:00
return 0;
}
int umount_verbose(const char *what) {
log_debug("Umounting %s...", what);
if (umount(what) < 0)
return log_error_errno(errno, "Failed to unmount %s: %m", what);
return 0;
}
int mount_option_mangle(
const char *options,
unsigned long mount_flags,
unsigned long *ret_mount_flags,
char **ret_remaining_options) {
const struct libmnt_optmap *map;
_cleanup_free_ char *ret = NULL;
const char *p;
int r;
/* This extracts mount flags from the mount options, and store
* non-mount-flag options to '*ret_remaining_options'.
* E.g.,
* "rw,nosuid,nodev,relatime,size=1630748k,mode=700,uid=1000,gid=1000"
* is split to MS_NOSUID|MS_NODEV|MS_RELATIME and
* "size=1630748k,mode=700,uid=1000,gid=1000".
* See more examples in test-mount-utils.c.
*
* Note that if 'options' does not contain any non-mount-flag options,
* then '*ret_remaining_options' is set to NULL instread of empty string.
* Note that this does not check validity of options stored in
* '*ret_remaining_options'.
* Note that if 'options' is NULL, then this just copies 'mount_flags'
* to '*ret_mount_flags'. */
assert(ret_mount_flags);
assert(ret_remaining_options);
map = mnt_get_builtin_optmap(MNT_LINUX_MAP);
if (!map)
return -EINVAL;
p = options;
for (;;) {
_cleanup_free_ char *word = NULL;
const struct libmnt_optmap *ent;
r = extract_first_word(&p, &word, ",", EXTRACT_QUOTES);
if (r < 0)
return r;
if (r == 0)
break;
for (ent = map; ent->name; ent++) {
/* All entries in MNT_LINUX_MAP do not take any argument.
* Thus, ent->name does not contain "=" or "[=]". */
if (!streq(word, ent->name))
continue;
if (!(ent->mask & MNT_INVERT))
mount_flags |= ent->id;
else if (mount_flags & ent->id)
mount_flags ^= ent->id;
break;
}
/* If 'word' is not a mount flag, then store it in '*ret_remaining_options'. */
if (!ent->name && !strextend_with_separator(&ret, ",", word, NULL))
return -ENOMEM;
}
*ret_mount_flags = mount_flags;
*ret_remaining_options = TAKE_PTR(ret);
return 0;
}