Systemd/src/boot/bootctl.c

1852 lines
66 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: LGPL-2.1-or-later */
2015-02-08 17:18:30 +01:00
#include <ctype.h>
#include <errno.h>
2015-02-08 17:18:30 +01:00
#include <ftw.h>
#include <getopt.h>
#include <limits.h>
#include <linux/magic.h>
2015-02-08 17:18:30 +01:00
#include <stdbool.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <unistd.h>
#include "sd-id128.h"
#include "alloc-util.h"
#include "blkid-util.h"
2017-10-17 18:23:16 +02:00
#include "bootspec.h"
#include "copy.h"
#include "dirent-util.h"
#include "efi-loader.h"
2015-02-08 17:18:30 +01:00
#include "efivars.h"
#include "env-util.h"
#include "escape.h"
#include "fd-util.h"
#include "fileio.h"
#include "fs-util.h"
#include "locale-util.h"
#include "main-func.h"
#include "mkdir.h"
2018-06-22 20:03:49 +02:00
#include "pager.h"
#include "parse-util.h"
#include "pretty-print.h"
#include "random-util.h"
#include "rm-rf.h"
#include "stat-util.h"
#include "stdio-util.h"
#include "string-util.h"
#include "strv.h"
2017-10-17 18:23:16 +02:00
#include "terminal-util.h"
#include "tmpfile-util.h"
#include "umask-util.h"
#include "utf8.h"
#include "util.h"
#include "verbs.h"
#include "virt.h"
static char *arg_esp_path = NULL;
static char *arg_xbootldr_path = NULL;
static bool arg_print_esp_path = false;
static bool arg_print_dollar_boot_path = false;
static bool arg_touch_variables = true;
static PagerFlags arg_pager_flags = 0;
static bool arg_graceful = false;
STATIC_DESTRUCTOR_REGISTER(arg_esp_path, freep);
STATIC_DESTRUCTOR_REGISTER(arg_xbootldr_path, freep);
static const char *arg_dollar_boot_path(void) {
/* $BOOT shall be the XBOOTLDR partition if it exists, and otherwise the ESP */
return arg_xbootldr_path ?: arg_esp_path;
}
efi: rework find_esp() error propagation/logging a bit This renames find_esp() to find_esp_and_warn() and tries to normalize its behaviour: 1. Change the error that is returned when we can't find the ESP to ENOKEY (from ENOENT). This way the error code can only mean one thing: that our search loop didn't find a good candidate. 2. Really log about all errors, except for ENOKEY and EACCES, and document the letter cases. 3. Normalize parameters to the call: separate out the path parameter in two: an input path and an output path. That way the memory management is clear: we will access the input parameter only for reading, and only write out the output parameter, using malloc() memory. Before the calling convention were quire surprising for internal API code, as the path parameter had to be malloc() memory and might and might not have changed. 4. Rename bootctl's find_esp_warn() to acquire_esp(), and make it a simple wrapper around find_esp_warn(), that basically just adds the friendly logging for the ENOKEY case. This rework removes double logging in a number of error cases, as we no longer log here in anything but ENOKEY, and leave that entirely to find_esp_warn(). 5. find_esp_and_warn() now takes a bool flag parameter "unprivileged_mode", which disables logging in the EACCES case, and skips privileged validation of the path. This makes the function less magic, and doesn't hide this internal silencing automatism from the caller anymore. With all that in place "bootctl list" and "bootctl status" work properly (or as good as they can) when I invoke the tools whithout privileges on my system where /boot is not world-readable
2017-12-11 22:04:46 +01:00
static int acquire_esp(
bool unprivileged_mode,
uint32_t *ret_part,
uint64_t *ret_pstart,
uint64_t *ret_psize,
sd_id128_t *ret_uuid) {
char *np;
int r;
/* Find the ESP, and log about errors. Note that find_esp_and_warn() will log in all error cases on
* its own, except for ENOKEY (which is good, we want to show our own message in that case,
* suggesting use of --esp-path=) and EACCESS (only when we request unprivileged mode; in this case
* we simply eat up the error here, so that --list and --status work too, without noise about
* this). */
efi: rework find_esp() error propagation/logging a bit This renames find_esp() to find_esp_and_warn() and tries to normalize its behaviour: 1. Change the error that is returned when we can't find the ESP to ENOKEY (from ENOENT). This way the error code can only mean one thing: that our search loop didn't find a good candidate. 2. Really log about all errors, except for ENOKEY and EACCES, and document the letter cases. 3. Normalize parameters to the call: separate out the path parameter in two: an input path and an output path. That way the memory management is clear: we will access the input parameter only for reading, and only write out the output parameter, using malloc() memory. Before the calling convention were quire surprising for internal API code, as the path parameter had to be malloc() memory and might and might not have changed. 4. Rename bootctl's find_esp_warn() to acquire_esp(), and make it a simple wrapper around find_esp_warn(), that basically just adds the friendly logging for the ENOKEY case. This rework removes double logging in a number of error cases, as we no longer log here in anything but ENOKEY, and leave that entirely to find_esp_warn(). 5. find_esp_and_warn() now takes a bool flag parameter "unprivileged_mode", which disables logging in the EACCES case, and skips privileged validation of the path. This makes the function less magic, and doesn't hide this internal silencing automatism from the caller anymore. With all that in place "bootctl list" and "bootctl status" work properly (or as good as they can) when I invoke the tools whithout privileges on my system where /boot is not world-readable
2017-12-11 22:04:46 +01:00
r = find_esp_and_warn(arg_esp_path, unprivileged_mode, &np, ret_part, ret_pstart, ret_psize, ret_uuid);
efi: rework find_esp() error propagation/logging a bit This renames find_esp() to find_esp_and_warn() and tries to normalize its behaviour: 1. Change the error that is returned when we can't find the ESP to ENOKEY (from ENOENT). This way the error code can only mean one thing: that our search loop didn't find a good candidate. 2. Really log about all errors, except for ENOKEY and EACCES, and document the letter cases. 3. Normalize parameters to the call: separate out the path parameter in two: an input path and an output path. That way the memory management is clear: we will access the input parameter only for reading, and only write out the output parameter, using malloc() memory. Before the calling convention were quire surprising for internal API code, as the path parameter had to be malloc() memory and might and might not have changed. 4. Rename bootctl's find_esp_warn() to acquire_esp(), and make it a simple wrapper around find_esp_warn(), that basically just adds the friendly logging for the ENOKEY case. This rework removes double logging in a number of error cases, as we no longer log here in anything but ENOKEY, and leave that entirely to find_esp_warn(). 5. find_esp_and_warn() now takes a bool flag parameter "unprivileged_mode", which disables logging in the EACCES case, and skips privileged validation of the path. This makes the function less magic, and doesn't hide this internal silencing automatism from the caller anymore. With all that in place "bootctl list" and "bootctl status" work properly (or as good as they can) when I invoke the tools whithout privileges on my system where /boot is not world-readable
2017-12-11 22:04:46 +01:00
if (r == -ENOKEY)
return log_error_errno(r,
efi: rework find_esp() error propagation/logging a bit This renames find_esp() to find_esp_and_warn() and tries to normalize its behaviour: 1. Change the error that is returned when we can't find the ESP to ENOKEY (from ENOENT). This way the error code can only mean one thing: that our search loop didn't find a good candidate. 2. Really log about all errors, except for ENOKEY and EACCES, and document the letter cases. 3. Normalize parameters to the call: separate out the path parameter in two: an input path and an output path. That way the memory management is clear: we will access the input parameter only for reading, and only write out the output parameter, using malloc() memory. Before the calling convention were quire surprising for internal API code, as the path parameter had to be malloc() memory and might and might not have changed. 4. Rename bootctl's find_esp_warn() to acquire_esp(), and make it a simple wrapper around find_esp_warn(), that basically just adds the friendly logging for the ENOKEY case. This rework removes double logging in a number of error cases, as we no longer log here in anything but ENOKEY, and leave that entirely to find_esp_warn(). 5. find_esp_and_warn() now takes a bool flag parameter "unprivileged_mode", which disables logging in the EACCES case, and skips privileged validation of the path. This makes the function less magic, and doesn't hide this internal silencing automatism from the caller anymore. With all that in place "bootctl list" and "bootctl status" work properly (or as good as they can) when I invoke the tools whithout privileges on my system where /boot is not world-readable
2017-12-11 22:04:46 +01:00
"Couldn't find EFI system partition. It is recommended to mount it to /boot or /efi.\n"
"Alternatively, use --esp-path= to specify path to mount point.");
efi: rework find_esp() error propagation/logging a bit This renames find_esp() to find_esp_and_warn() and tries to normalize its behaviour: 1. Change the error that is returned when we can't find the ESP to ENOKEY (from ENOENT). This way the error code can only mean one thing: that our search loop didn't find a good candidate. 2. Really log about all errors, except for ENOKEY and EACCES, and document the letter cases. 3. Normalize parameters to the call: separate out the path parameter in two: an input path and an output path. That way the memory management is clear: we will access the input parameter only for reading, and only write out the output parameter, using malloc() memory. Before the calling convention were quire surprising for internal API code, as the path parameter had to be malloc() memory and might and might not have changed. 4. Rename bootctl's find_esp_warn() to acquire_esp(), and make it a simple wrapper around find_esp_warn(), that basically just adds the friendly logging for the ENOKEY case. This rework removes double logging in a number of error cases, as we no longer log here in anything but ENOKEY, and leave that entirely to find_esp_warn(). 5. find_esp_and_warn() now takes a bool flag parameter "unprivileged_mode", which disables logging in the EACCES case, and skips privileged validation of the path. This makes the function less magic, and doesn't hide this internal silencing automatism from the caller anymore. With all that in place "bootctl list" and "bootctl status" work properly (or as good as they can) when I invoke the tools whithout privileges on my system where /boot is not world-readable
2017-12-11 22:04:46 +01:00
if (r < 0)
return r;
free_and_replace(arg_esp_path, np);
log_debug("Using EFI System Partition at %s.", arg_esp_path);
return 1;
}
2015-02-08 17:18:30 +01:00
static int acquire_xbootldr(bool unprivileged_mode, sd_id128_t *ret_uuid) {
char *np;
int r;
efi: rework find_esp() error propagation/logging a bit This renames find_esp() to find_esp_and_warn() and tries to normalize its behaviour: 1. Change the error that is returned when we can't find the ESP to ENOKEY (from ENOENT). This way the error code can only mean one thing: that our search loop didn't find a good candidate. 2. Really log about all errors, except for ENOKEY and EACCES, and document the letter cases. 3. Normalize parameters to the call: separate out the path parameter in two: an input path and an output path. That way the memory management is clear: we will access the input parameter only for reading, and only write out the output parameter, using malloc() memory. Before the calling convention were quire surprising for internal API code, as the path parameter had to be malloc() memory and might and might not have changed. 4. Rename bootctl's find_esp_warn() to acquire_esp(), and make it a simple wrapper around find_esp_warn(), that basically just adds the friendly logging for the ENOKEY case. This rework removes double logging in a number of error cases, as we no longer log here in anything but ENOKEY, and leave that entirely to find_esp_warn(). 5. find_esp_and_warn() now takes a bool flag parameter "unprivileged_mode", which disables logging in the EACCES case, and skips privileged validation of the path. This makes the function less magic, and doesn't hide this internal silencing automatism from the caller anymore. With all that in place "bootctl list" and "bootctl status" work properly (or as good as they can) when I invoke the tools whithout privileges on my system where /boot is not world-readable
2017-12-11 22:04:46 +01:00
r = find_xbootldr_and_warn(arg_xbootldr_path, unprivileged_mode, &np, ret_uuid);
if (r == -ENOKEY) {
log_debug_errno(r, "Didn't find an XBOOTLDR partition, using the ESP as $BOOT.");
if (ret_uuid)
*ret_uuid = SD_ID128_NULL;
arg_xbootldr_path = mfree(arg_xbootldr_path);
return 0;
}
if (r < 0)
return r;
free_and_replace(arg_xbootldr_path, np);
log_debug("Using XBOOTLDR partition at %s as $BOOT.", arg_xbootldr_path);
return 1;
}
/* search for "#### LoaderInfo: systemd-boot 218 ####" string inside the binary */
static int get_file_version(int fd, char **v) {
2015-02-08 17:18:30 +01:00
struct stat st;
char *buf;
const char *s, *e;
char *x = NULL;
int r;
assert(fd >= 0);
2015-02-08 17:18:30 +01:00
assert(v);
if (fstat(fd, &st) < 0)
return log_error_errno(errno, "Failed to stat EFI binary: %m");
r = stat_verify_regular(&st);
if (r < 0)
2019-07-19 17:52:26 +02:00
return log_error_errno(r, "EFI binary is not a regular file: %m");
if (st.st_size < 27) {
*v = NULL;
2015-02-08 17:18:30 +01:00
return 0;
}
buf = mmap(NULL, st.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
2015-02-08 17:18:30 +01:00
if (buf == MAP_FAILED)
return log_error_errno(errno, "Failed to memory map EFI binary: %m");
2015-02-08 17:18:30 +01:00
s = memmem(buf, st.st_size - 8, "#### LoaderInfo: ", 17);
if (!s)
goto finish;
s += 17;
2015-02-08 17:18:30 +01:00
e = memmem(s, st.st_size - (s - buf), " ####", 5);
if (!e || e - s < 3) {
r = log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Malformed version string.");
2015-02-08 17:18:30 +01:00
goto finish;
}
2015-02-08 17:18:30 +01:00
x = strndup(s, e - s);
if (!x) {
r = log_oom();
2015-02-08 17:18:30 +01:00
goto finish;
}
r = 1;
2015-02-08 17:18:30 +01:00
finish:
(void) munmap(buf, st.st_size);
2015-02-08 17:18:30 +01:00
*v = x;
return r;
}
2015-02-08 17:18:30 +01:00
static int enumerate_binaries(const char *esp_path, const char *path, const char *prefix) {
_cleanup_closedir_ DIR *d = NULL;
2015-02-08 17:18:30 +01:00
struct dirent *de;
const char *p;
int c = 0, r;
assert(esp_path);
assert(path);
2015-02-08 17:18:30 +01:00
p = prefix_roota(esp_path, path);
2015-02-08 17:18:30 +01:00
d = opendir(p);
if (!d) {
if (errno == ENOENT)
return 0;
return log_error_errno(errno, "Failed to read \"%s\": %m", p);
2015-02-08 17:18:30 +01:00
}
FOREACH_DIRENT(de, d, break) {
_cleanup_free_ char *v = NULL;
_cleanup_close_ int fd = -1;
2015-02-08 17:18:30 +01:00
if (!endswith_no_case(de->d_name, ".efi"))
2015-02-08 17:18:30 +01:00
continue;
if (prefix && !startswith_no_case(de->d_name, prefix))
2015-02-08 17:18:30 +01:00
continue;
fd = openat(dirfd(d), de->d_name, O_RDONLY|O_CLOEXEC);
if (fd < 0)
return log_error_errno(errno, "Failed to open \"%s/%s\" for reading: %m", p, de->d_name);
2015-02-08 17:18:30 +01:00
r = get_file_version(fd, &v);
2015-02-08 17:18:30 +01:00
if (r < 0)
return r;
2015-02-08 17:18:30 +01:00
if (r > 0)
printf(" File: %s/%s/%s (%s%s%s)\n", special_glyph(SPECIAL_GLYPH_TREE_RIGHT), path, de->d_name, ansi_highlight(), v, ansi_normal());
2015-02-08 17:18:30 +01:00
else
printf(" File: %s/%s/%s\n", special_glyph(SPECIAL_GLYPH_TREE_RIGHT), path, de->d_name);
2015-02-08 17:18:30 +01:00
c++;
}
return c;
}
2015-02-08 17:18:30 +01:00
static int status_binaries(const char *esp_path, sd_id128_t partition) {
int r;
printf("Available Boot Loaders on ESP:\n");
2015-02-08 17:18:30 +01:00
if (!esp_path) {
printf(" ESP: Cannot find or access mount point of ESP.\n\n");
return -ENOENT;
}
printf(" ESP: %s", esp_path);
if (!sd_id128_is_null(partition))
printf(" (/dev/disk/by-partuuid/" SD_ID128_UUID_FORMAT_STR ")", SD_ID128_FORMAT_VAL(partition));
printf("\n");
2015-02-08 17:18:30 +01:00
r = enumerate_binaries(esp_path, "EFI/systemd", NULL);
if (r < 0)
goto finish;
2015-02-08 17:18:30 +01:00
if (r == 0)
log_info("systemd-boot not installed in ESP.");
2015-02-08 17:18:30 +01:00
r = enumerate_binaries(esp_path, "EFI/BOOT", "boot");
if (r < 0)
goto finish;
2015-02-08 17:18:30 +01:00
if (r == 0)
log_info("No default/fallback boot loader installed in ESP.");
2015-02-08 17:18:30 +01:00
r = 0;
2015-07-25 03:26:32 +02:00
finish:
printf("\n");
return r;
2015-02-08 17:18:30 +01:00
}
static int print_efi_option(uint16_t id, bool in_order) {
_cleanup_free_ char *title = NULL;
_cleanup_free_ char *path = NULL;
2015-02-08 17:18:30 +01:00
sd_id128_t partition;
bool active;
int r;
2015-02-08 17:18:30 +01:00
r = efi_get_boot_option(id, &title, &partition, &path, &active);
if (r < 0)
return r;
2015-02-08 17:18:30 +01:00
/* print only configured entries with partition information */
if (!path || sd_id128_is_null(partition))
2015-02-08 17:18:30 +01:00
return 0;
efi_tilt_backslashes(path);
printf(" Title: %s%s%s\n", ansi_highlight(), strna(title), ansi_normal());
2015-02-08 17:18:30 +01:00
printf(" ID: 0x%04X\n", id);
printf(" Status: %sactive%s\n", active ? "" : "in", in_order ? ", boot-order" : "");
printf(" Partition: /dev/disk/by-partuuid/" SD_ID128_UUID_FORMAT_STR "\n",
SD_ID128_FORMAT_VAL(partition));
printf(" File: %s%s\n", special_glyph(SPECIAL_GLYPH_TREE_RIGHT), path);
2015-02-08 17:18:30 +01:00
printf("\n");
return 0;
2015-02-08 17:18:30 +01:00
}
static int status_variables(void) {
_cleanup_free_ uint16_t *options = NULL, *order = NULL;
2018-06-22 11:43:13 +02:00
int n_options, n_order, i;
2015-02-08 17:18:30 +01:00
n_options = efi_get_boot_options(&options);
if (n_options == -ENOENT)
2016-07-19 20:47:09 +02:00
return log_error_errno(n_options,
"Failed to access EFI variables, efivarfs"
" needs to be available at /sys/firmware/efi/efivars/.");
2016-07-19 20:47:09 +02:00
if (n_options < 0)
return log_error_errno(n_options, "Failed to read EFI boot entries: %m");
2015-02-08 17:18:30 +01:00
n_order = efi_get_boot_order(&order);
if (n_order == -ENOENT)
2015-02-08 17:18:30 +01:00
n_order = 0;
else if (n_order < 0)
return log_error_errno(n_order, "Failed to read EFI boot order: %m");
2015-02-08 17:18:30 +01:00
/* print entries in BootOrder first */
printf("Boot Loaders Listed in EFI Variables:\n");
2015-02-08 17:18:30 +01:00
for (i = 0; i < n_order; i++)
print_efi_option(order[i], true);
/* print remaining entries */
for (i = 0; i < n_options; i++) {
int j;
for (j = 0; j < n_order; j++)
if (options[i] == order[j])
goto next_option;
2015-02-08 17:18:30 +01:00
print_efi_option(options[i], false);
next_option:
continue;
2015-02-08 17:18:30 +01:00
}
return 0;
2015-02-08 17:18:30 +01:00
}
static int boot_entry_file_check(const char *root, const char *p) {
_cleanup_free_ char *path;
path = path_join(root, p);
if (!path)
return log_oom();
if (access(path, F_OK) < 0)
return -errno;
return 0;
}
static void boot_entry_file_list(const char *field, const char *root, const char *p, int *ret_status) {
int status = boot_entry_file_check(root, p);
printf("%13s%s ", strempty(field), field ? ":" : " ");
if (status < 0) {
errno = -status;
printf("%s%s%s (%m)\n", ansi_highlight_red(), p, ansi_normal());
} else
printf("%s\n", p);
if (*ret_status == 0 && status < 0)
*ret_status = status;
}
static int boot_entry_show(const BootEntry *e, bool show_as_default) {
int status = 0;
/* Returns 0 on success, negative on processing error, and positive if something is wrong with the
boot entry itself. */
assert(e);
printf(" title: %s%s%s" "%s%s%s\n",
ansi_highlight(), boot_entry_title(e), ansi_normal(),
ansi_highlight_green(), show_as_default ? " (default)" : "", ansi_normal());
if (e->id)
printf(" id: %s\n", e->id);
if (e->path) {
_cleanup_free_ char *link = NULL;
/* Let's urlify the link to make it easy to view in an editor, but only if it is a text
* file. Unified images are binary ELFs, and EFI variables are not pure text either. */
if (e->type == BOOT_ENTRY_CONF)
(void) terminal_urlify_path(e->path, NULL, &link);
printf(" source: %s\n", link ?: e->path);
}
if (e->version)
printf(" version: %s\n", e->version);
if (e->machine_id)
printf(" machine-id: %s\n", e->machine_id);
if (e->architecture)
printf(" architecture: %s\n", e->architecture);
if (e->kernel)
boot_entry_file_list("linux", e->root, e->kernel, &status);
char **s;
STRV_FOREACH(s, e->initrd)
boot_entry_file_list(s == e->initrd ? "initrd" : NULL,
e->root,
*s,
&status);
if (!strv_isempty(e->options)) {
_cleanup_free_ char *t = NULL, *t2 = NULL;
_cleanup_strv_free_ char **ts = NULL;
t = strv_join(e->options, " ");
if (!t)
return log_oom();
ts = strv_split_newlines(t);
if (!ts)
return log_oom();
t2 = strv_join(ts, "\n ");
if (!t2)
return log_oom();
printf(" options: %s\n", t2);
}
if (e->device_tree)
boot_entry_file_list("devicetree", e->root, e->device_tree, &status);
return -status;
}
2019-01-23 16:59:28 +01:00
static int status_entries(
const char *esp_path,
sd_id128_t esp_partition_uuid,
const char *xbootldr_path,
sd_id128_t xbootldr_partition_uuid) {
2017-10-17 18:23:16 +02:00
_cleanup_(boot_config_free) BootConfig config = {};
2019-01-23 16:59:28 +01:00
sd_id128_t dollar_boot_partition_uuid;
const char *dollar_boot_path;
int r;
2017-10-17 18:23:16 +02:00
2019-01-23 16:59:28 +01:00
assert(esp_path || xbootldr_path);
if (xbootldr_path) {
dollar_boot_path = xbootldr_path;
dollar_boot_partition_uuid = xbootldr_partition_uuid;
} else {
dollar_boot_path = esp_path;
dollar_boot_partition_uuid = esp_partition_uuid;
}
printf("Boot Loader Entries:\n"
" $BOOT: %s", dollar_boot_path);
if (!sd_id128_is_null(dollar_boot_partition_uuid))
printf(" (/dev/disk/by-partuuid/" SD_ID128_UUID_FORMAT_STR ")",
SD_ID128_FORMAT_VAL(dollar_boot_partition_uuid));
2019-01-23 16:59:28 +01:00
printf("\n\n");
r = boot_entries_load_config(esp_path, xbootldr_path, &config);
2017-10-17 18:23:16 +02:00
if (r < 0)
return r;
2017-10-17 18:23:16 +02:00
if (config.default_entry < 0)
printf("%zu entries, no entry could be determined as default.\n", config.n_entries);
2017-10-17 18:23:16 +02:00
else {
printf("Default Boot Loader Entry:\n");
r = boot_entry_show(config.entries + config.default_entry, false);
if (r > 0)
/* < 0 is already logged by the function itself, let's just emit an extra warning if
the default entry is broken */
printf("\nWARNING: default boot entry is broken\n");
2017-10-17 18:23:16 +02:00
}
return 0;
}
2015-02-08 17:18:30 +01:00
static int compare_product(const char *a, const char *b) {
size_t x, y;
assert(a);
assert(b);
x = strcspn(a, " ");
y = strcspn(b, " ");
if (x != y)
return x < y ? -1 : x > y ? 1 : 0;
return strncmp(a, b, x);
}
static int compare_version(const char *a, const char *b) {
assert(a);
assert(b);
a += strcspn(a, " ");
a += strspn(a, " ");
b += strcspn(b, " ");
b += strspn(b, " ");
return strverscmp(a, b);
}
static int version_check(int fd_from, const char *from, int fd_to, const char *to) {
_cleanup_free_ char *a = NULL, *b = NULL;
2015-02-08 17:18:30 +01:00
int r;
assert(fd_from >= 0);
2015-02-08 17:18:30 +01:00
assert(from);
assert(fd_to >= 0);
2015-02-08 17:18:30 +01:00
assert(to);
r = get_file_version(fd_from, &a);
2015-02-08 17:18:30 +01:00
if (r < 0)
return r;
if (r == 0)
return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
"Source file \"%s\" does not carry version information!",
from);
2015-02-08 17:18:30 +01:00
r = get_file_version(fd_to, &b);
2015-02-08 17:18:30 +01:00
if (r < 0)
return r;
if (r == 0 || compare_product(a, b) != 0)
return log_notice_errno(SYNTHETIC_ERRNO(EEXIST),
"Skipping \"%s\", since it's owned by another boot loader.",
to);
2015-02-08 17:18:30 +01:00
if (compare_version(a, b) < 0)
return log_warning_errno(SYNTHETIC_ERRNO(ESTALE), "Skipping \"%s\", since a newer boot loader version exists already.", to);
2015-02-08 17:18:30 +01:00
return 0;
2015-02-08 17:18:30 +01:00
}
static int copy_file_with_version_check(const char *from, const char *to, bool force) {
_cleanup_close_ int fd_from = -1, fd_to = -1;
_cleanup_free_ char *t = NULL;
2015-02-08 17:18:30 +01:00
int r;
fd_from = open(from, O_RDONLY|O_CLOEXEC|O_NOCTTY);
if (fd_from < 0)
return log_error_errno(errno, "Failed to open \"%s\" for reading: %m", from);
2015-02-08 17:18:30 +01:00
if (!force) {
fd_to = open(to, O_RDONLY|O_CLOEXEC|O_NOCTTY);
if (fd_to < 0) {
2020-05-20 18:10:58 +02:00
if (errno != ENOENT)
return log_error_errno(errno, "Failed to open \"%s\" for reading: %m", to);
} else {
r = version_check(fd_from, from, fd_to, to);
if (r < 0)
return r;
if (lseek(fd_from, 0, SEEK_SET) == (off_t) -1)
return log_error_errno(errno, "Failed to seek in \"%s\": %m", from);
fd_to = safe_close(fd_to);
2015-02-08 17:18:30 +01:00
}
}
r = tempfn_random(to, NULL, &t);
if (r < 0)
return log_oom();
2015-02-08 17:18:30 +01:00
RUN_WITH_UMASK(0000) {
fd_to = open(t, O_WRONLY|O_CREAT|O_CLOEXEC|O_EXCL|O_NOFOLLOW, 0644);
if (fd_to < 0)
return log_error_errno(errno, "Failed to open \"%s\" for writing: %m", t);
2015-02-08 17:18:30 +01:00
}
r = copy_bytes(fd_from, fd_to, (uint64_t) -1, COPY_REFLINK);
2015-02-08 17:18:30 +01:00
if (r < 0) {
(void) unlink(t);
return log_error_errno(r, "Failed to copy data from \"%s\" to \"%s\": %m", from, t);
2015-02-08 17:18:30 +01:00
}
(void) copy_times(fd_from, fd_to, 0);
2015-02-08 17:18:30 +01:00
if (fsync(fd_to) < 0) {
(void) unlink_noerrno(t);
return log_error_errno(errno, "Failed to copy data from \"%s\" to \"%s\": %m", from, t);
}
(void) fsync_directory_of_file(fd_to);
if (renameat(AT_FDCWD, t, AT_FDCWD, to) < 0) {
(void) unlink_noerrno(t);
return log_error_errno(errno, "Failed to rename \"%s\" to \"%s\": %m", t, to);
2015-02-08 17:18:30 +01:00
}
log_info("Copied \"%s\" to \"%s\".", from, to);
2015-02-08 17:18:30 +01:00
return 0;
2015-02-08 17:18:30 +01:00
}
static int mkdir_one(const char *prefix, const char *suffix) {
_cleanup_free_ char *p = NULL;
2015-02-08 17:18:30 +01:00
p = path_join(prefix, suffix);
2015-02-08 17:18:30 +01:00
if (mkdir(p, 0700) < 0) {
if (errno != EEXIST)
return log_error_errno(errno, "Failed to create \"%s\": %m", p);
2015-02-08 17:18:30 +01:00
} else
log_info("Created \"%s\".", p);
2015-02-08 17:18:30 +01:00
return 0;
}
static const char *const esp_subdirs[] = {
/* The directories to place in the ESP */
"EFI",
"EFI/systemd",
"EFI/BOOT",
"loader",
NULL
};
static const char *const dollar_boot_subdirs[] = {
/* The directories to place in the XBOOTLDR partition or the ESP, depending what exists */
"loader",
"loader/entries", /* Type #1 entries */
"EFI",
"EFI/Linux", /* Type #2 entries */
NULL
};
static int create_subdirs(const char *root, const char * const *subdirs) {
const char *const *i;
2015-02-08 17:18:30 +01:00
int r;
STRV_FOREACH(i, subdirs) {
r = mkdir_one(root, *i);
if (r < 0)
return r;
}
return 0;
}
2015-02-08 17:18:30 +01:00
static int copy_one_file(const char *esp_path, const char *name, bool force) {
const char *e;
char *p, *q;
2015-02-08 17:18:30 +01:00
int r;
p = strjoina(BOOTLIBDIR "/", name);
q = strjoina(esp_path, "/EFI/systemd/", name);
r = copy_file_with_version_check(p, q, force);
2015-02-08 17:18:30 +01:00
e = startswith(name, "systemd-boot");
if (e) {
2015-02-08 17:18:30 +01:00
int k;
char *v;
2015-02-08 17:18:30 +01:00
/* Create the EFI default boot loader name (specified for removable devices) */
v = strjoina(esp_path, "/EFI/BOOT/BOOT", e);
ascii_strupper(strrchr(v, '/') + 1);
2015-02-08 17:18:30 +01:00
k = copy_file_with_version_check(p, v, force);
2015-02-08 17:18:30 +01:00
if (k < 0 && r == 0)
r = k;
2015-02-08 17:18:30 +01:00
}
return r;
}
2015-02-08 17:18:30 +01:00
static int install_binaries(const char *esp_path, bool force) {
struct dirent *de;
_cleanup_closedir_ DIR *d = NULL;
2015-02-08 17:18:30 +01:00
int r = 0;
d = opendir(BOOTLIBDIR);
if (!d)
return log_error_errno(errno, "Failed to open \""BOOTLIBDIR"\": %m");
2015-02-08 17:18:30 +01:00
FOREACH_DIRENT(de, d, return log_error_errno(errno, "Failed to read \""BOOTLIBDIR"\": %m")) {
2015-02-08 17:18:30 +01:00
int k;
if (!endswith_no_case(de->d_name, ".efi"))
2015-02-08 17:18:30 +01:00
continue;
k = copy_one_file(esp_path, de->d_name, force);
if (k < 0 && r == 0)
r = k;
}
return r;
}
static bool same_entry(uint16_t id, sd_id128_t uuid, const char *path) {
_cleanup_free_ char *opath = NULL;
2015-02-08 17:18:30 +01:00
sd_id128_t ouuid;
int r;
r = efi_get_boot_option(id, NULL, &ouuid, &opath, NULL);
if (r < 0)
2015-02-08 17:18:30 +01:00
return false;
if (!sd_id128_equal(uuid, ouuid))
return false;
2015-02-08 17:18:30 +01:00
if (!streq_ptr(path, opath))
return false;
2015-02-08 17:18:30 +01:00
return true;
2015-02-08 17:18:30 +01:00
}
static int find_slot(sd_id128_t uuid, const char *path, uint16_t *id) {
_cleanup_free_ uint16_t *options = NULL;
int n, i;
2015-02-08 17:18:30 +01:00
n = efi_get_boot_options(&options);
if (n < 0)
return n;
2015-02-08 17:18:30 +01:00
/* find already existing systemd-boot entry */
for (i = 0; i < n; i++)
2015-02-08 17:18:30 +01:00
if (same_entry(options[i], uuid, path)) {
*id = options[i];
return 1;
2015-02-08 17:18:30 +01:00
}
/* find free slot in the sorted BootXXXX variable list */
for (i = 0; i < n; i++)
2015-02-08 17:18:30 +01:00
if (i != options[i]) {
*id = i;
return 1;
2015-02-08 17:18:30 +01:00
}
/* use the next one */
if (i == 0xffff)
return -ENOSPC;
*id = i;
return 0;
2015-02-08 17:18:30 +01:00
}
static int insert_into_order(uint16_t slot, bool first) {
_cleanup_free_ uint16_t *order = NULL;
uint16_t *t;
int n, i;
2015-02-08 17:18:30 +01:00
n = efi_get_boot_order(&order);
if (n <= 0)
2015-02-08 17:18:30 +01:00
/* no entry, add us */
return efi_set_boot_order(&slot, 1);
2015-02-08 17:18:30 +01:00
/* are we the first and only one? */
if (n == 1 && order[0] == slot)
return 0;
2015-02-08 17:18:30 +01:00
/* are we already in the boot order? */
for (i = 0; i < n; i++) {
2015-02-08 17:18:30 +01:00
if (order[i] != slot)
continue;
/* we do not require to be the first one, all is fine */
if (!first)
return 0;
2015-02-08 17:18:30 +01:00
/* move us to the first slot */
memmove(order + 1, order, i * sizeof(uint16_t));
2015-02-08 17:18:30 +01:00
order[0] = slot;
return efi_set_boot_order(order, n);
2015-02-08 17:18:30 +01:00
}
/* extend array */
t = reallocarray(order, n + 1, sizeof(uint16_t));
if (!t)
return -ENOMEM;
order = t;
2015-02-08 17:18:30 +01:00
/* add us to the top or end of the list */
if (first) {
memmove(order + 1, order, n * sizeof(uint16_t));
2015-02-08 17:18:30 +01:00
order[0] = slot;
} else
order[n] = slot;
2015-02-08 17:18:30 +01:00
return efi_set_boot_order(order, n + 1);
2015-02-08 17:18:30 +01:00
}
static int remove_from_order(uint16_t slot) {
_cleanup_free_ uint16_t *order = NULL;
int n, i;
2015-02-08 17:18:30 +01:00
n = efi_get_boot_order(&order);
if (n <= 0)
return n;
2015-02-08 17:18:30 +01:00
for (i = 0; i < n; i++) {
2015-02-08 17:18:30 +01:00
if (order[i] != slot)
continue;
if (i + 1 < n)
memmove(order + i, order + i+1, (n - i) * sizeof(uint16_t));
return efi_set_boot_order(order, n - 1);
2015-02-08 17:18:30 +01:00
}
return 0;
2015-02-08 17:18:30 +01:00
}
static int install_variables(const char *esp_path,
uint32_t part, uint64_t pstart, uint64_t psize,
sd_id128_t uuid, const char *path,
bool first) {
const char *p;
2015-02-08 17:18:30 +01:00
uint16_t slot;
int r;
if (!is_efi_boot()) {
log_warning("Not booted with EFI, skipping EFI variable setup.");
2015-02-08 17:18:30 +01:00
return 0;
}
p = prefix_roota(esp_path, path);
2015-02-08 17:18:30 +01:00
if (access(p, F_OK) < 0) {
if (errno == ENOENT)
return 0;
2016-07-19 20:47:09 +02:00
return log_error_errno(errno, "Cannot access \"%s\": %m", p);
2015-02-08 17:18:30 +01:00
}
2015-02-08 17:18:30 +01:00
r = find_slot(uuid, path, &slot);
if (r < 0)
return log_error_errno(r,
r == -ENOENT ?
"Failed to access EFI variables. Is the \"efivarfs\" filesystem mounted?" :
"Failed to determine current boot order: %m");
if (first || r == 0) {
2015-02-08 17:18:30 +01:00
r = efi_add_boot_option(slot, "Linux Boot Manager",
part, pstart, psize,
uuid, path);
if (r < 0)
return log_error_errno(r, "Failed to create EFI Boot variable entry: %m");
2015-02-08 17:18:30 +01:00
log_info("Created EFI boot entry \"Linux Boot Manager\".");
}
2015-02-08 17:18:30 +01:00
return insert_into_order(slot, first);
2015-02-08 17:18:30 +01:00
}
static int remove_boot_efi(const char *esp_path) {
_cleanup_closedir_ DIR *d = NULL;
2015-02-08 17:18:30 +01:00
struct dirent *de;
const char *p;
int r, c = 0;
2015-02-08 17:18:30 +01:00
p = prefix_roota(esp_path, "/EFI/BOOT");
2015-02-08 17:18:30 +01:00
d = opendir(p);
if (!d) {
if (errno == ENOENT)
return 0;
2015-02-08 17:18:30 +01:00
return log_error_errno(errno, "Failed to open directory \"%s\": %m", p);
2015-02-08 17:18:30 +01:00
}
FOREACH_DIRENT(de, d, break) {
_cleanup_close_ int fd = -1;
_cleanup_free_ char *v = NULL;
2015-02-08 17:18:30 +01:00
if (!endswith_no_case(de->d_name, ".efi"))
2015-02-08 17:18:30 +01:00
continue;
if (!startswith_no_case(de->d_name, "boot"))
2015-02-08 17:18:30 +01:00
continue;
fd = openat(dirfd(d), de->d_name, O_RDONLY|O_CLOEXEC);
2015-05-23 13:02:56 +02:00
if (fd < 0)
return log_error_errno(errno, "Failed to open \"%s/%s\" for reading: %m", p, de->d_name);
2015-02-08 17:18:30 +01:00
r = get_file_version(fd, &v);
2015-02-08 17:18:30 +01:00
if (r < 0)
return r;
if (r > 0 && startswith(v, "systemd-boot ")) {
r = unlinkat(dirfd(d), de->d_name, 0);
if (r < 0)
return log_error_errno(errno, "Failed to remove \"%s/%s\": %m", p, de->d_name);
2015-08-06 13:59:38 +02:00
log_info("Removed \"%s/%s\".", p, de->d_name);
2015-02-08 17:18:30 +01:00
}
c++;
}
return c;
2015-02-08 17:18:30 +01:00
}
static int rmdir_one(const char *prefix, const char *suffix) {
const char *p;
p = prefix_roota(prefix, suffix);
2015-02-08 17:18:30 +01:00
if (rmdir(p) < 0) {
bool ignore = IN_SET(errno, ENOENT, ENOTEMPTY);
log_full_errno(ignore ? LOG_DEBUG : LOG_ERR, errno,
"Failed to remove directory \"%s\": %m", p);
if (!ignore)
return -errno;
} else
log_info("Removed \"%s\".", p);
2015-02-08 17:18:30 +01:00
return 0;
}
static int remove_subdirs(const char *root, const char *const *subdirs) {
int r, q;
/* We use recursion here to destroy the directories in reverse order. Which should be safe given how
* short the array is. */
if (!subdirs[0]) /* A the end of the list */
return 0;
r = remove_subdirs(root, subdirs + 1);
q = rmdir_one(root, subdirs[0]);
return r < 0 ? r : q;
}
2015-02-08 17:18:30 +01:00
static int remove_binaries(const char *esp_path) {
const char *p;
2015-02-08 17:18:30 +01:00
int r, q;
p = prefix_roota(esp_path, "/EFI/systemd");
r = rm_rf(p, REMOVE_ROOT|REMOVE_PHYSICAL);
2015-02-08 17:18:30 +01:00
q = remove_boot_efi(esp_path);
if (q < 0 && r == 0)
r = q;
return r;
}
static int remove_file(const char *root, const char *file) {
const char *p;
assert(root);
assert(file);
p = prefix_roota(root, file);
if (unlink(p) < 0) {
log_full_errno(errno == ENOENT ? LOG_DEBUG : LOG_ERR, errno,
"Failed to unlink file \"%s\": %m", p);
return errno == ENOENT ? 0 : -errno;
}
log_info("Removed \"%s\".", p);
return 1;
}
2015-02-08 17:18:30 +01:00
static int remove_variables(sd_id128_t uuid, const char *path, bool in_order) {
uint16_t slot;
int r;
if (!is_efi_boot())
return 0;
r = find_slot(uuid, path, &slot);
if (r != 1)
return 0;
r = efi_remove_boot_option(slot);
if (r < 0)
return r;
if (in_order)
return remove_from_order(slot);
2016-07-19 20:47:09 +02:00
return 0;
2015-02-08 17:18:30 +01:00
}
static int remove_loader_variables(void) {
const char *p;
int r = 0;
/* Remove all persistent loader variables we define */
FOREACH_STRING(p,
"LoaderConfigTimeout",
"LoaderConfigTimeoutOneShot",
"LoaderEntryDefault",
"LoaderEntryOneShot",
"LoaderSystemToken") {
int q;
q = efi_set_variable(EFI_VENDOR_LOADER, p, NULL, 0);
if (q == -ENOENT)
continue;
if (q < 0) {
log_warning_errno(q, "Failed to remove %s variable: %m", p);
if (r >= 0)
r = q;
} else
log_info("Removed EFI variable %s.", p);
}
return r;
}
static int install_loader_config(const char *esp_path) {
_cleanup_(unlink_and_freep) char *t = NULL;
_cleanup_fclose_ FILE *f = NULL;
_cleanup_close_ int fd = -1;
const char *p;
int r;
2015-02-08 17:18:30 +01:00
p = prefix_roota(esp_path, "/loader/loader.conf");
if (access(p, F_OK) >= 0) /* Silently skip creation if the file already exists (early check) */
return 0;
fd = open_tmpfile_linkable(p, O_WRONLY|O_CLOEXEC, &t);
if (fd < 0)
return log_error_errno(fd, "Failed to open \"%s\" for writing: %m", p);
f = take_fdopen(&fd, "w");
if (!f)
return log_oom();
2015-02-08 17:18:30 +01:00
2018-06-22 11:43:13 +02:00
fprintf(f, "#timeout 3\n"
"#console-mode keep\n");
2015-02-08 17:18:30 +01:00
r = fflush_sync_and_check(f);
if (r < 0)
return log_error_errno(r, "Failed to write \"%s\": %m", p);
2015-02-08 17:18:30 +01:00
r = link_tmpfile(fileno(f), t, p);
if (r == -EEXIST)
return 0; /* Silently skip creation if the file exists now (recheck) */
if (r < 0)
return log_error_errno(r, "Failed to move \"%s\" into place: %m", p);
t = mfree(t);
return 1;
2015-02-08 17:18:30 +01:00
}
static int help(int argc, char *argv[], void *userdata) {
_cleanup_free_ char *link = NULL;
int r;
r = terminal_urlify_man("bootctl", "1", &link);
if (r < 0)
return log_oom();
printf("%1$s [OPTIONS...] COMMAND ...\n"
"\n%5$sControl EFI firmware boot settings and manage boot loader.%6$s\n"
"\n%3$sGeneric EFI Firmware/Boot Loader Commands:%4$s\n"
" status Show status of installed boot loader and EFI variables\n"
" reboot-to-firmware [BOOL]\n"
" Query or set reboot-to-firmware EFI flag\n"
" systemd-efi-options [STRING]\n"
" Query or set system options string in EFI variable\n"
"\n%3$sBoot Loader Specification Commands:%4$s\n"
" list List boot loader entries\n"
" set-default ID Set default boot loader entry\n"
" set-oneshot ID Set default boot loader entry, for next boot only\n"
"\n%3$ssystemd-boot Commands:%4$s\n"
" install Install systemd-boot to the ESP and EFI variables\n"
" update Update systemd-boot in the ESP and EFI variables\n"
" remove Remove systemd-boot from the ESP and EFI variables\n"
" is-installed Test whether systemd-boot is installed in the ESP\n"
" random-seed Initialize random seed in ESP and EFI variables\n"
"\n%3$sOptions:%4$s\n"
" -h --help Show this help\n"
" --version Print version\n"
" --esp-path=PATH Path to the EFI System Partition (ESP)\n"
" --boot-path=PATH Path to the $BOOT partition\n"
" -p --print-esp-path Print path to the EFI System Partition\n"
" -x --print-boot-path Print path to the $BOOT partition\n"
" --no-variables Don't touch EFI variables\n"
" --no-pager Do not pipe output into a pager\n"
" --graceful Don't fail when the ESP cannot be found or EFI\n"
" variables cannot be written\n"
"\nSee the %2$s for details.\n"
, program_invocation_short_name
, link
, ansi_underline(), ansi_normal()
, ansi_highlight(), ansi_normal()
);
2015-02-08 17:18:30 +01:00
return 0;
}
static int parse_argv(int argc, char *argv[]) {
enum {
ARG_ESP_PATH = 0x100,
ARG_BOOT_PATH,
2015-02-08 17:18:30 +01:00
ARG_VERSION,
ARG_NO_VARIABLES,
2018-06-22 20:03:49 +02:00
ARG_NO_PAGER,
ARG_GRACEFUL,
};
2015-02-08 17:18:30 +01:00
static const struct option options[] = {
{ "help", no_argument, NULL, 'h' },
{ "version", no_argument, NULL, ARG_VERSION },
{ "esp-path", required_argument, NULL, ARG_ESP_PATH },
{ "path", required_argument, NULL, ARG_ESP_PATH }, /* Compatibility alias */
{ "boot-path", required_argument, NULL, ARG_BOOT_PATH },
{ "print-esp-path", no_argument, NULL, 'p' },
{ "print-path", no_argument, NULL, 'p' }, /* Compatibility alias */
{ "print-boot-path", no_argument, NULL, 'x' },
{ "no-variables", no_argument, NULL, ARG_NO_VARIABLES },
{ "no-pager", no_argument, NULL, ARG_NO_PAGER },
{ "graceful", no_argument, NULL, ARG_GRACEFUL },
2018-06-22 11:43:13 +02:00
{}
2015-02-08 17:18:30 +01:00
};
int c, r;
assert(argc >= 0);
assert(argv);
while ((c = getopt_long(argc, argv, "hpx", options, NULL)) >= 0)
2015-02-08 17:18:30 +01:00
switch (c) {
2015-02-08 17:18:30 +01:00
case 'h':
help(0, NULL, NULL);
return 0;
2015-02-08 17:18:30 +01:00
case ARG_VERSION:
return version();
case ARG_ESP_PATH:
r = free_and_strdup(&arg_esp_path, optarg);
if (r < 0)
return log_oom();
break;
case ARG_BOOT_PATH:
r = free_and_strdup(&arg_xbootldr_path, optarg);
if (r < 0)
return log_oom();
2015-02-08 17:18:30 +01:00
break;
case 'p':
if (arg_print_dollar_boot_path)
return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
"--print-boot-path/-x cannot be combined with --print-esp-path/-p");
arg_print_esp_path = true;
break;
case 'x':
if (arg_print_esp_path)
return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
"--print-boot-path/-x cannot be combined with --print-esp-path/-p");
arg_print_dollar_boot_path = true;
break;
2015-02-08 17:18:30 +01:00
case ARG_NO_VARIABLES:
arg_touch_variables = false;
break;
2018-06-22 20:03:49 +02:00
case ARG_NO_PAGER:
arg_pager_flags |= PAGER_DISABLE;
2018-06-22 20:03:49 +02:00
break;
case ARG_GRACEFUL:
arg_graceful = true;
break;
2015-02-08 17:18:30 +01:00
case '?':
return -EINVAL;
default:
assert_not_reached("Unknown option");
}
2015-02-08 17:18:30 +01:00
return 1;
}
static void read_loader_efi_var(const char *name, char **var) {
int r;
r = efi_get_variable_string(EFI_VENDOR_LOADER, name, var);
if (r < 0 && r != -ENOENT)
log_warning_errno(r, "Failed to read EFI variable %s: %m", name);
}
static void print_yes_no_line(bool first, bool good, const char *name) {
printf("%s%s%s%s %s\n",
first ? " Features: " : " ",
good ? ansi_highlight_green() : ansi_highlight_red(),
good ? special_glyph(SPECIAL_GLYPH_CHECK_MARK) : special_glyph(SPECIAL_GLYPH_CROSS_MARK),
ansi_normal(),
name);
}
static int verb_status(int argc, char *argv[], void *userdata) {
sd_id128_t esp_uuid = SD_ID128_NULL, xbootldr_uuid = SD_ID128_NULL;
int r, k;
2015-02-08 17:18:30 +01:00
r = acquire_esp(geteuid() != 0, NULL, NULL, NULL, &esp_uuid);
if (arg_print_esp_path) {
efi: rework find_esp() error propagation/logging a bit This renames find_esp() to find_esp_and_warn() and tries to normalize its behaviour: 1. Change the error that is returned when we can't find the ESP to ENOKEY (from ENOENT). This way the error code can only mean one thing: that our search loop didn't find a good candidate. 2. Really log about all errors, except for ENOKEY and EACCES, and document the letter cases. 3. Normalize parameters to the call: separate out the path parameter in two: an input path and an output path. That way the memory management is clear: we will access the input parameter only for reading, and only write out the output parameter, using malloc() memory. Before the calling convention were quire surprising for internal API code, as the path parameter had to be malloc() memory and might and might not have changed. 4. Rename bootctl's find_esp_warn() to acquire_esp(), and make it a simple wrapper around find_esp_warn(), that basically just adds the friendly logging for the ENOKEY case. This rework removes double logging in a number of error cases, as we no longer log here in anything but ENOKEY, and leave that entirely to find_esp_warn(). 5. find_esp_and_warn() now takes a bool flag parameter "unprivileged_mode", which disables logging in the EACCES case, and skips privileged validation of the path. This makes the function less magic, and doesn't hide this internal silencing automatism from the caller anymore. With all that in place "bootctl list" and "bootctl status" work properly (or as good as they can) when I invoke the tools whithout privileges on my system where /boot is not world-readable
2017-12-11 22:04:46 +01:00
if (r == -EACCES) /* If we couldn't acquire the ESP path, log about access errors (which is the only
* error the find_esp_and_warn() won't log on its own) */
return log_error_errno(r, "Failed to determine ESP location: %m");
if (r < 0)
return r;
puts(arg_esp_path);
}
r = acquire_xbootldr(geteuid() != 0, &xbootldr_uuid);
if (arg_print_dollar_boot_path) {
if (r == -EACCES)
return log_error_errno(r, "Failed to determine XBOOTLDR location: %m");
if (r < 0)
return r;
const char *path = arg_dollar_boot_path();
if (!path)
return log_error_errno(SYNTHETIC_ERRNO(EACCES), "Failed to determine XBOOTLDR location: %m");
puts(path);
}
if (arg_print_esp_path || arg_print_dollar_boot_path)
return 0;
efi: rework find_esp() error propagation/logging a bit This renames find_esp() to find_esp_and_warn() and tries to normalize its behaviour: 1. Change the error that is returned when we can't find the ESP to ENOKEY (from ENOENT). This way the error code can only mean one thing: that our search loop didn't find a good candidate. 2. Really log about all errors, except for ENOKEY and EACCES, and document the letter cases. 3. Normalize parameters to the call: separate out the path parameter in two: an input path and an output path. That way the memory management is clear: we will access the input parameter only for reading, and only write out the output parameter, using malloc() memory. Before the calling convention were quire surprising for internal API code, as the path parameter had to be malloc() memory and might and might not have changed. 4. Rename bootctl's find_esp_warn() to acquire_esp(), and make it a simple wrapper around find_esp_warn(), that basically just adds the friendly logging for the ENOKEY case. This rework removes double logging in a number of error cases, as we no longer log here in anything but ENOKEY, and leave that entirely to find_esp_warn(). 5. find_esp_and_warn() now takes a bool flag parameter "unprivileged_mode", which disables logging in the EACCES case, and skips privileged validation of the path. This makes the function less magic, and doesn't hide this internal silencing automatism from the caller anymore. With all that in place "bootctl list" and "bootctl status" work properly (or as good as they can) when I invoke the tools whithout privileges on my system where /boot is not world-readable
2017-12-11 22:04:46 +01:00
r = 0; /* If we couldn't determine the path, then don't consider that a problem from here on, just show what we
* can show */
(void) pager_open(arg_pager_flags);
2018-06-22 20:03:49 +02:00
if (is_efi_boot()) {
static const struct {
uint64_t flag;
const char *name;
} flags[] = {
{ EFI_LOADER_FEATURE_BOOT_COUNTING, "Boot counting" },
{ EFI_LOADER_FEATURE_CONFIG_TIMEOUT, "Menu timeout control" },
{ EFI_LOADER_FEATURE_CONFIG_TIMEOUT_ONE_SHOT, "One-shot menu timeout control" },
{ EFI_LOADER_FEATURE_ENTRY_DEFAULT, "Default entry control" },
{ EFI_LOADER_FEATURE_ENTRY_ONESHOT, "One-shot entry control" },
{ EFI_LOADER_FEATURE_XBOOTLDR, "Support for XBOOTLDR partition" },
{ EFI_LOADER_FEATURE_RANDOM_SEED, "Support for passing random seed to OS" },
};
_cleanup_free_ char *fw_type = NULL, *fw_info = NULL, *loader = NULL, *loader_path = NULL, *stub = NULL;
sd_id128_t loader_part_uuid = SD_ID128_NULL;
uint64_t loader_features = 0;
size_t i;
2015-02-08 17:18:30 +01:00
read_loader_efi_var("LoaderFirmwareType", &fw_type);
read_loader_efi_var("LoaderFirmwareInfo", &fw_info);
read_loader_efi_var("LoaderInfo", &loader);
read_loader_efi_var("StubInfo", &stub);
read_loader_efi_var("LoaderImageIdentifier", &loader_path);
(void) efi_loader_get_features(&loader_features);
if (loader_path)
efi_tilt_backslashes(loader_path);
k = efi_loader_get_device_part_uuid(&loader_part_uuid);
if (k < 0 && k != -ENOENT)
r = log_warning_errno(k, "Failed to read EFI variable LoaderDevicePartUUID: %m");
printf("System:\n");
printf(" Firmware: %s%s (%s)%s\n", ansi_highlight(), strna(fw_type), strna(fw_info), ansi_normal());
2018-06-25 06:40:36 +02:00
printf(" Secure Boot: %sd\n", enable_disable(is_efi_secure_boot()));
printf(" Setup Mode: %s\n", is_efi_secure_boot_setup_mode() ? "setup" : "user");
k = efi_get_reboot_to_firmware();
if (k > 0)
printf(" Boot into FW: %sactive%s\n", ansi_highlight_yellow(), ansi_normal());
else if (k == 0)
printf(" Boot into FW: supported\n");
else if (k == -EOPNOTSUPP)
printf(" Boot into FW: not supported\n");
else {
errno = -k;
printf(" Boot into FW: %sfailed%s (%m)\n", ansi_highlight_red(), ansi_normal());
}
printf("\n");
printf("Current Boot Loader:\n");
printf(" Product: %s%s%s\n", ansi_highlight(), strna(loader), ansi_normal());
for (i = 0; i < ELEMENTSOF(flags); i++)
print_yes_no_line(i == 0, FLAGS_SET(loader_features, flags[i].flag), flags[i].name);
sd_id128_t bootloader_esp_uuid;
bool have_bootloader_esp_uuid = efi_loader_get_device_part_uuid(&bootloader_esp_uuid) >= 0;
print_yes_no_line(false, have_bootloader_esp_uuid, "Boot loader sets ESP partition information");
if (have_bootloader_esp_uuid && !sd_id128_equal(esp_uuid, bootloader_esp_uuid))
2020-12-30 04:10:24 +01:00
printf("WARNING: The boot loader reports a different ESP UUID than detected!\n");
if (stub)
printf(" Stub: %s\n", stub);
if (!sd_id128_is_null(loader_part_uuid))
printf(" ESP: /dev/disk/by-partuuid/" SD_ID128_UUID_FORMAT_STR "\n",
SD_ID128_FORMAT_VAL(loader_part_uuid));
else
printf(" ESP: n/a\n");
printf(" File: %s%s\n", special_glyph(SPECIAL_GLYPH_TREE_RIGHT), strna(loader_path));
printf("\n");
2019-07-19 19:13:24 +02:00
printf("Random Seed:\n");
printf(" Passed to OS: %s\n", yes_no(access("/sys/firmware/efi/efivars/LoaderRandomSeed-4a67b082-0a4c-41cf-b6c7-440b29bb8c4f", F_OK) >= 0));
printf(" System Token: %s\n", access("/sys/firmware/efi/efivars/LoaderSystemToken-4a67b082-0a4c-41cf-b6c7-440b29bb8c4f", F_OK) >= 0 ? "set" : "not set");
if (arg_esp_path) {
_cleanup_free_ char *p = NULL;
p = path_join(arg_esp_path, "/loader/random-seed");
if (!p)
return log_oom();
printf(" Exists: %s\n", yes_no(access(p, F_OK) >= 0));
}
printf("\n");
} else
printf("System:\n Not booted with EFI\n\n");
if (arg_esp_path) {
k = status_binaries(arg_esp_path, esp_uuid);
if (k < 0)
r = k;
}
if (is_efi_boot()) {
k = status_variables();
if (k < 0)
r = k;
}
2015-02-08 17:18:30 +01:00
if (arg_esp_path || arg_xbootldr_path) {
2019-01-23 16:59:28 +01:00
k = status_entries(arg_esp_path, esp_uuid, arg_xbootldr_path, xbootldr_uuid);
if (k < 0)
r = k;
}
2017-10-17 18:23:16 +02:00
return r;
}
2017-10-17 18:23:16 +02:00
static int verb_list(int argc, char *argv[], void *userdata) {
efi: rework find_esp() error propagation/logging a bit This renames find_esp() to find_esp_and_warn() and tries to normalize its behaviour: 1. Change the error that is returned when we can't find the ESP to ENOKEY (from ENOENT). This way the error code can only mean one thing: that our search loop didn't find a good candidate. 2. Really log about all errors, except for ENOKEY and EACCES, and document the letter cases. 3. Normalize parameters to the call: separate out the path parameter in two: an input path and an output path. That way the memory management is clear: we will access the input parameter only for reading, and only write out the output parameter, using malloc() memory. Before the calling convention were quire surprising for internal API code, as the path parameter had to be malloc() memory and might and might not have changed. 4. Rename bootctl's find_esp_warn() to acquire_esp(), and make it a simple wrapper around find_esp_warn(), that basically just adds the friendly logging for the ENOKEY case. This rework removes double logging in a number of error cases, as we no longer log here in anything but ENOKEY, and leave that entirely to find_esp_warn(). 5. find_esp_and_warn() now takes a bool flag parameter "unprivileged_mode", which disables logging in the EACCES case, and skips privileged validation of the path. This makes the function less magic, and doesn't hide this internal silencing automatism from the caller anymore. With all that in place "bootctl list" and "bootctl status" work properly (or as good as they can) when I invoke the tools whithout privileges on my system where /boot is not world-readable
2017-12-11 22:04:46 +01:00
_cleanup_(boot_config_free) BootConfig config = {};
_cleanup_strv_free_ char **efi_entries = NULL;
efi: rework find_esp() error propagation/logging a bit This renames find_esp() to find_esp_and_warn() and tries to normalize its behaviour: 1. Change the error that is returned when we can't find the ESP to ENOKEY (from ENOENT). This way the error code can only mean one thing: that our search loop didn't find a good candidate. 2. Really log about all errors, except for ENOKEY and EACCES, and document the letter cases. 3. Normalize parameters to the call: separate out the path parameter in two: an input path and an output path. That way the memory management is clear: we will access the input parameter only for reading, and only write out the output parameter, using malloc() memory. Before the calling convention were quire surprising for internal API code, as the path parameter had to be malloc() memory and might and might not have changed. 4. Rename bootctl's find_esp_warn() to acquire_esp(), and make it a simple wrapper around find_esp_warn(), that basically just adds the friendly logging for the ENOKEY case. This rework removes double logging in a number of error cases, as we no longer log here in anything but ENOKEY, and leave that entirely to find_esp_warn(). 5. find_esp_and_warn() now takes a bool flag parameter "unprivileged_mode", which disables logging in the EACCES case, and skips privileged validation of the path. This makes the function less magic, and doesn't hide this internal silencing automatism from the caller anymore. With all that in place "bootctl list" and "bootctl status" work properly (or as good as they can) when I invoke the tools whithout privileges on my system where /boot is not world-readable
2017-12-11 22:04:46 +01:00
int r;
2017-10-17 18:23:16 +02:00
efi: rework find_esp() error propagation/logging a bit This renames find_esp() to find_esp_and_warn() and tries to normalize its behaviour: 1. Change the error that is returned when we can't find the ESP to ENOKEY (from ENOENT). This way the error code can only mean one thing: that our search loop didn't find a good candidate. 2. Really log about all errors, except for ENOKEY and EACCES, and document the letter cases. 3. Normalize parameters to the call: separate out the path parameter in two: an input path and an output path. That way the memory management is clear: we will access the input parameter only for reading, and only write out the output parameter, using malloc() memory. Before the calling convention were quire surprising for internal API code, as the path parameter had to be malloc() memory and might and might not have changed. 4. Rename bootctl's find_esp_warn() to acquire_esp(), and make it a simple wrapper around find_esp_warn(), that basically just adds the friendly logging for the ENOKEY case. This rework removes double logging in a number of error cases, as we no longer log here in anything but ENOKEY, and leave that entirely to find_esp_warn(). 5. find_esp_and_warn() now takes a bool flag parameter "unprivileged_mode", which disables logging in the EACCES case, and skips privileged validation of the path. This makes the function less magic, and doesn't hide this internal silencing automatism from the caller anymore. With all that in place "bootctl list" and "bootctl status" work properly (or as good as they can) when I invoke the tools whithout privileges on my system where /boot is not world-readable
2017-12-11 22:04:46 +01:00
/* If we lack privileges we invoke find_esp_and_warn() in "unprivileged mode" here, which does two things: turn
* off logging about access errors and turn off potentially privileged device probing. Here we're interested in
* the latter but not the former, hence request the mode, and log about EACCES. */
2017-10-17 18:23:16 +02:00
r = acquire_esp(geteuid() != 0, NULL, NULL, NULL, NULL);
efi: rework find_esp() error propagation/logging a bit This renames find_esp() to find_esp_and_warn() and tries to normalize its behaviour: 1. Change the error that is returned when we can't find the ESP to ENOKEY (from ENOENT). This way the error code can only mean one thing: that our search loop didn't find a good candidate. 2. Really log about all errors, except for ENOKEY and EACCES, and document the letter cases. 3. Normalize parameters to the call: separate out the path parameter in two: an input path and an output path. That way the memory management is clear: we will access the input parameter only for reading, and only write out the output parameter, using malloc() memory. Before the calling convention were quire surprising for internal API code, as the path parameter had to be malloc() memory and might and might not have changed. 4. Rename bootctl's find_esp_warn() to acquire_esp(), and make it a simple wrapper around find_esp_warn(), that basically just adds the friendly logging for the ENOKEY case. This rework removes double logging in a number of error cases, as we no longer log here in anything but ENOKEY, and leave that entirely to find_esp_warn(). 5. find_esp_and_warn() now takes a bool flag parameter "unprivileged_mode", which disables logging in the EACCES case, and skips privileged validation of the path. This makes the function less magic, and doesn't hide this internal silencing automatism from the caller anymore. With all that in place "bootctl list" and "bootctl status" work properly (or as good as they can) when I invoke the tools whithout privileges on my system where /boot is not world-readable
2017-12-11 22:04:46 +01:00
if (r == -EACCES) /* We really need the ESP path for this call, hence also log about access errors */
return log_error_errno(r, "Failed to determine ESP: %m");
2017-10-17 18:23:16 +02:00
if (r < 0)
return r;
r = acquire_xbootldr(geteuid() != 0, NULL);
if (r == -EACCES)
return log_error_errno(r, "Failed to determine XBOOTLDR partition: %m");
if (r < 0)
return r;
r = boot_entries_load_config(arg_esp_path, arg_xbootldr_path, &config);
2017-10-17 18:23:16 +02:00
if (r < 0)
return r;
2017-10-17 18:23:16 +02:00
r = efi_loader_get_entries(&efi_entries);
if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r))
log_debug_errno(r, "Boot loader reported no entries.");
else if (r < 0)
log_warning_errno(r, "Failed to determine entries reported by boot loader, ignoring: %m");
else
(void) boot_entries_augment_from_loader(&config, efi_entries, false);
if (config.n_entries == 0)
log_info("No boot loader entries found.");
else {
size_t n;
2017-10-17 18:23:16 +02:00
(void) pager_open(arg_pager_flags);
2018-06-22 20:03:49 +02:00
printf("Boot Loader Entries:\n");
2017-10-17 18:23:16 +02:00
for (n = 0; n < config.n_entries; n++) {
r = boot_entry_show(config.entries + n, n == (size_t) config.default_entry);
if (r < 0)
return r;
2017-10-17 18:23:16 +02:00
if (n+1 < config.n_entries)
putchar('\n');
2017-10-17 18:23:16 +02:00
}
}
2015-02-08 17:18:30 +01:00
2017-10-17 18:23:16 +02:00
return 0;
}
static int install_random_seed(const char *esp) {
_cleanup_(unlink_and_freep) char *tmp = NULL;
_cleanup_free_ void *buffer = NULL;
_cleanup_free_ char *path = NULL;
_cleanup_close_ int fd = -1;
size_t sz, token_size;
ssize_t n;
int r;
assert(esp);
path = path_join(esp, "/loader/random-seed");
if (!path)
return log_oom();
sz = random_pool_size();
buffer = malloc(sz);
if (!buffer)
return log_oom();
r = genuine_random_bytes(buffer, sz, RANDOM_BLOCK);
if (r < 0)
return log_error_errno(r, "Failed to acquire random seed: %m");
/* Normally create_subdirs() should already have created everything we need, but in case "bootctl
* random-seed" is called we want to just create the minimum we need for it, and not the full
* list. */
r = mkdir_parents(path, 0755);
if (r < 0)
return log_error_errno(r, "Failed to create parent directory for %s: %m", path);
r = tempfn_random(path, "bootctl", &tmp);
if (r < 0)
return log_oom();
fd = open(tmp, O_CREAT|O_EXCL|O_NOFOLLOW|O_NOCTTY|O_WRONLY|O_CLOEXEC, 0600);
if (fd < 0) {
tmp = mfree(tmp);
return log_error_errno(fd, "Failed to open random seed file for writing: %m");
}
n = write(fd, buffer, sz);
if (n < 0)
return log_error_errno(errno, "Failed to write random seed file: %m");
if ((size_t) n != sz)
return log_error_errno(SYNTHETIC_ERRNO(EIO), "Short write while writing random seed file.");
if (rename(tmp, path) < 0)
return log_error_errno(r, "Failed to move random seed file into place: %m");
tmp = mfree(tmp);
log_info("Random seed file %s successfully written (%zu bytes).", path, sz);
if (!arg_touch_variables)
return 0;
if (!is_efi_boot()) {
log_notice("Not booted with EFI, skipping EFI variable setup.");
return 0;
}
r = getenv_bool("SYSTEMD_WRITE_SYSTEM_TOKEN");
if (r < 0) {
if (r != -ENXIO)
log_warning_errno(r, "Failed to parse $SYSTEMD_WRITE_SYSTEM_TOKEN, ignoring.");
if (detect_vm() > 0) {
/* Let's not write a system token if we detect we are running in a VM
* environment. Why? Our default security model for the random seed uses the system
* token as a mechanism to ensure we are not vulnerable to golden master sloppiness
* issues, i.e. that people initialize the random seed file, then copy the image to
* many systems and end up with the same random seed in each that is assumed to be
* valid but in reality is the same for all machines. By storing a system token in
* the EFI variable space we can make sure that even though the random seeds on disk
* are all the same they will be different on each system under the assumption that
* the EFI variable space is maintained separate from the random seed storage. That
* is generally the case on physical systems, as the ESP is stored on persistent
* storage, and the EFI variables in NVRAM. However in virtualized environments this
* is generally not true: the EFI variable set is typically stored along with the
* disk image itself. For example, using the OVMF EFI firmware the EFI variables are
* stored in a file in the ESP itself. */
log_notice("Not installing system token, since we are running in a virtualized environment.");
return 0;
}
} else if (r == 0) {
log_notice("Not writing system token, because $SYSTEMD_WRITE_SYSTEM_TOKEN is set to false.");
return 0;
}
r = efi_get_variable(EFI_VENDOR_LOADER, "LoaderSystemToken", NULL, NULL, &token_size);
if (r == -ENODATA)
log_debug_errno(r, "LoaderSystemToken EFI variable is invalid (too short?), replacing.");
else if (r < 0) {
if (r != -ENOENT)
return log_error_errno(r, "Failed to test system token validity: %m");
} else {
if (token_size >= sz) {
/* Let's avoid writes if we can, and initialize this only once. */
log_debug("System token already written, not updating.");
return 0;
}
log_debug("Existing system token size (%zu) does not match our expectations (%zu), replacing.", token_size, sz);
}
r = genuine_random_bytes(buffer, sz, RANDOM_BLOCK);
if (r < 0)
return log_error_errno(r, "Failed to acquire random seed: %m");
/* Let's write this variable with an umask in effect, so that unprivileged users can't see the token
* and possibly get identification information or too much insight into the kernel's entropy pool
* state. */
RUN_WITH_UMASK(0077) {
r = efi_set_variable(EFI_VENDOR_LOADER, "LoaderSystemToken", buffer, sz);
if (r < 0) {
if (!arg_graceful)
return log_error_errno(r, "Failed to write 'LoaderSystemToken' EFI variable: %m");
if (r == -EINVAL)
log_warning_errno(r, "Unable to write 'LoaderSystemToken' EFI variable (firmware problem?), ignoring: %m");
else
log_warning_errno(r, "Unable to write 'LoaderSystemToken' EFI variable, ignoring: %m");
} else
log_info("Successfully initialized system token in EFI variable with %zu bytes.", sz);
}
return 0;
}
static int sync_everything(void) {
int ret = 0, k;
if (arg_esp_path) {
k = syncfs_path(AT_FDCWD, arg_esp_path);
if (k < 0)
ret = log_error_errno(k, "Failed to synchronize the ESP '%s': %m", arg_esp_path);
}
if (arg_xbootldr_path) {
k = syncfs_path(AT_FDCWD, arg_xbootldr_path);
if (k < 0)
ret = log_error_errno(k, "Failed to synchronize $BOOT '%s': %m", arg_xbootldr_path);
}
return ret;
}
static int verb_install(int argc, char *argv[], void *userdata) {
sd_id128_t uuid = SD_ID128_NULL;
uint64_t pstart = 0, psize = 0;
uint32_t part = 0;
bool install;
int r;
efi: rework find_esp() error propagation/logging a bit This renames find_esp() to find_esp_and_warn() and tries to normalize its behaviour: 1. Change the error that is returned when we can't find the ESP to ENOKEY (from ENOENT). This way the error code can only mean one thing: that our search loop didn't find a good candidate. 2. Really log about all errors, except for ENOKEY and EACCES, and document the letter cases. 3. Normalize parameters to the call: separate out the path parameter in two: an input path and an output path. That way the memory management is clear: we will access the input parameter only for reading, and only write out the output parameter, using malloc() memory. Before the calling convention were quire surprising for internal API code, as the path parameter had to be malloc() memory and might and might not have changed. 4. Rename bootctl's find_esp_warn() to acquire_esp(), and make it a simple wrapper around find_esp_warn(), that basically just adds the friendly logging for the ENOKEY case. This rework removes double logging in a number of error cases, as we no longer log here in anything but ENOKEY, and leave that entirely to find_esp_warn(). 5. find_esp_and_warn() now takes a bool flag parameter "unprivileged_mode", which disables logging in the EACCES case, and skips privileged validation of the path. This makes the function less magic, and doesn't hide this internal silencing automatism from the caller anymore. With all that in place "bootctl list" and "bootctl status" work properly (or as good as they can) when I invoke the tools whithout privileges on my system where /boot is not world-readable
2017-12-11 22:04:46 +01:00
r = acquire_esp(false, &part, &pstart, &psize, &uuid);
if (r < 0)
return r;
r = acquire_xbootldr(false, NULL);
if (r < 0)
return r;
install = streq(argv[0], "install");
RUN_WITH_UMASK(0002) {
if (install) {
/* Don't create any of these directories when we are just updating. When we update
* we'll drop-in our files (unless there are newer ones already), but we won't create
* the directories for them in the first place. */
r = create_subdirs(arg_esp_path, esp_subdirs);
if (r < 0)
return r;
r = create_subdirs(arg_dollar_boot_path(), dollar_boot_subdirs);
if (r < 0)
return r;
}
r = install_binaries(arg_esp_path, install);
2015-02-08 17:18:30 +01:00
if (r < 0)
return r;
2015-02-08 17:18:30 +01:00
if (install) {
r = install_loader_config(arg_esp_path);
if (r < 0)
return r;
r = install_random_seed(arg_esp_path);
if (r < 0)
return r;
}
}
2015-02-08 17:18:30 +01:00
(void) sync_everything();
if (arg_touch_variables)
r = install_variables(arg_esp_path,
part, pstart, psize, uuid,
"/EFI/systemd/systemd-boot" EFI_MACHINE_TYPE_NAME ".efi",
install);
return r;
}
2015-02-08 17:18:30 +01:00
static int verb_remove(int argc, char *argv[], void *userdata) {
sd_id128_t uuid = SD_ID128_NULL;
int r, q;
2015-02-08 17:18:30 +01:00
efi: rework find_esp() error propagation/logging a bit This renames find_esp() to find_esp_and_warn() and tries to normalize its behaviour: 1. Change the error that is returned when we can't find the ESP to ENOKEY (from ENOENT). This way the error code can only mean one thing: that our search loop didn't find a good candidate. 2. Really log about all errors, except for ENOKEY and EACCES, and document the letter cases. 3. Normalize parameters to the call: separate out the path parameter in two: an input path and an output path. That way the memory management is clear: we will access the input parameter only for reading, and only write out the output parameter, using malloc() memory. Before the calling convention were quire surprising for internal API code, as the path parameter had to be malloc() memory and might and might not have changed. 4. Rename bootctl's find_esp_warn() to acquire_esp(), and make it a simple wrapper around find_esp_warn(), that basically just adds the friendly logging for the ENOKEY case. This rework removes double logging in a number of error cases, as we no longer log here in anything but ENOKEY, and leave that entirely to find_esp_warn(). 5. find_esp_and_warn() now takes a bool flag parameter "unprivileged_mode", which disables logging in the EACCES case, and skips privileged validation of the path. This makes the function less magic, and doesn't hide this internal silencing automatism from the caller anymore. With all that in place "bootctl list" and "bootctl status" work properly (or as good as they can) when I invoke the tools whithout privileges on my system where /boot is not world-readable
2017-12-11 22:04:46 +01:00
r = acquire_esp(false, NULL, NULL, NULL, &uuid);
if (r < 0)
return r;
r = acquire_xbootldr(false, NULL);
if (r < 0)
return r;
r = remove_binaries(arg_esp_path);
q = remove_file(arg_esp_path, "/loader/loader.conf");
if (q < 0 && r >= 0)
r = q;
q = remove_file(arg_esp_path, "/loader/random-seed");
if (q < 0 && r >= 0)
r = q;
q = remove_subdirs(arg_esp_path, esp_subdirs);
if (q < 0 && r >= 0)
r = q;
q = remove_subdirs(arg_esp_path, dollar_boot_subdirs);
if (q < 0 && r >= 0)
r = q;
if (arg_xbootldr_path) {
/* Remove the latter two also in the XBOOTLDR partition if it exists */
q = remove_subdirs(arg_xbootldr_path, dollar_boot_subdirs);
if (q < 0 && r >= 0)
r = q;
}
(void) sync_everything();
if (!arg_touch_variables)
return r;
q = remove_variables(uuid, "/EFI/systemd/systemd-boot" EFI_MACHINE_TYPE_NAME ".efi", true);
if (q < 0 && r >= 0)
r = q;
q = remove_loader_variables();
if (q < 0 && r >= 0)
r = q;
return r;
}
static int verb_is_installed(int argc, char *argv[], void *userdata) {
_cleanup_free_ char *p = NULL;
int r;
r = acquire_esp(false, NULL, NULL, NULL, NULL);
if (r < 0)
return r;
/* Tests whether systemd-boot is installed. It's not obvious what to use as check here: we could
* check EFI variables, we could check what binary /EFI/BOOT/BOOT*.EFI points to, or whether the
* loader entries directory exists. Here we opted to check whether /EFI/systemd/ is non-empty, which
* should be a suitable and very minimal check for a number of reasons:
*
* The check is architecture independent (i.e. we check if any systemd-boot loader is installed, not a
* specific one.)
*
* It doesn't assume we are the only boot loader (i.e doesn't check if we own the main
* /EFI/BOOT/BOOT*.EFI fallback binary.
*
* It specifically checks for systemd-boot, not for other boot loaders (which a check for
* /boot/loader/entries would do). */
p = path_join(arg_esp_path, "/EFI/systemd/");
if (!p)
return log_oom();
r = dir_is_empty(p);
if (r > 0 || r == -ENOENT) {
puts("no");
return EXIT_FAILURE;
}
if (r < 0)
return log_error_errno(r, "Failed to detect whether systemd-boot is installed: %m");
puts("yes");
return EXIT_SUCCESS;
}
static int parse_loader_entry_target_arg(const char *arg1, char16_t **ret_target, size_t *ret_target_size) {
int r;
if (streq(arg1, "@current")) {
r = efi_get_variable(EFI_VENDOR_LOADER, "LoaderEntrySelected", NULL, (void *) ret_target, ret_target_size);
if (r < 0)
return log_error_errno(r, "Failed to get EFI variable 'LoaderEntrySelected': %m");
} else if (streq(arg1, "@oneshot")) {
r = efi_get_variable(EFI_VENDOR_LOADER, "LoaderEntryOneShot", NULL, (void *) ret_target, ret_target_size);
if (r < 0)
return log_error_errno(r, "Failed to get EFI variable 'LoaderEntryOneShot': %m");
} else if (streq(arg1, "@default")) {
r = efi_get_variable(EFI_VENDOR_LOADER, "LoaderEntryDefault", NULL, (void *) ret_target, ret_target_size);
if (r < 0)
return log_error_errno(r, "Failed to get EFI variable 'LoaderEntryDefault': %m");
} else {
char16_t *encoded = NULL;
encoded = utf8_to_utf16(arg1, strlen(arg1));
if (!encoded)
return log_oom();
*ret_target = encoded;
*ret_target_size = char16_strlen(encoded) * 2 + 2;
}
return 0;
}
static int verb_set_default(int argc, char *argv[], void *userdata) {
const char *name;
int r;
if (!is_efi_boot())
return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP),
"Not booted with UEFI.");
if (access("/sys/firmware/efi/efivars/LoaderInfo-4a67b082-0a4c-41cf-b6c7-440b29bb8c4f", F_OK) < 0) {
if (errno == ENOENT) {
log_error_errno(errno, "Not booted with a supported boot loader.");
return -EOPNOTSUPP;
}
return log_error_errno(errno, "Failed to detect whether boot loader supports '%s' operation: %m", argv[0]);
}
if (detect_container() > 0)
return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP),
"'%s' operation not supported in a container.",
argv[0]);
if (!arg_touch_variables)
return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
"'%s' operation cannot be combined with --touch-variables=no.",
argv[0]);
name = streq(argv[0], "set-default") ? "LoaderEntryDefault" : "LoaderEntryOneShot";
if (isempty(argv[1])) {
r = efi_set_variable(EFI_VENDOR_LOADER, name, NULL, 0);
if (r < 0 && r != -ENOENT)
return log_error_errno(r, "Failed to remove EFI variable '%s': %m", name);
} else {
_cleanup_free_ char16_t *target = NULL;
size_t target_size = 0;
r = parse_loader_entry_target_arg(argv[1], &target, &target_size);
if (r < 0)
return r;
r = efi_set_variable(EFI_VENDOR_LOADER, name, target, target_size);
if (r < 0)
return log_error_errno(r, "Failed to update EFI variable '%s': %m", name);
}
return 0;
}
static int verb_random_seed(int argc, char *argv[], void *userdata) {
int r;
r = find_esp_and_warn(arg_esp_path, false, &arg_esp_path, NULL, NULL, NULL, NULL);
if (r == -ENOKEY) {
/* find_esp_and_warn() doesn't warn about ENOKEY, so let's do that on our own */
if (!arg_graceful)
return log_error_errno(r, "Unable to find ESP.");
log_notice("No ESP found, not initializing random seed.");
return 0;
}
if (r < 0)
return r;
r = install_random_seed(arg_esp_path);
if (r < 0)
return r;
(void) sync_everything();
return 0;
}
static int verb_systemd_efi_options(int argc, char *argv[], void *userdata) {
2019-08-01 17:15:59 +02:00
int r;
if (argc == 1) {
_cleanup_free_ char *line = NULL;
r = systemd_efi_options_variable(&line);
2019-08-01 17:15:59 +02:00
if (r < 0)
return log_error_errno(r, "Failed to query SystemdOptions EFI variable: %m");
puts(line);
2019-08-01 17:15:59 +02:00
} else {
r = efi_set_variable_string(EFI_VENDOR_SYSTEMD, "SystemdOptions", argv[1]);
if (r < 0)
return log_error_errno(r, "Failed to set SystemdOptions EFI variable: %m");
}
return 0;
}
static int verb_reboot_to_firmware(int argc, char *argv[], void *userdata) {
int r;
if (argc < 2) {
r = efi_get_reboot_to_firmware();
if (r > 0) {
puts("active");
return EXIT_SUCCESS; /* success */
}
if (r == 0) {
puts("supported");
return 1; /* recognizable error #1 */
}
if (r == -EOPNOTSUPP) {
puts("not supported");
return 2; /* recognizable error #2 */
}
log_error_errno(r, "Failed to query reboot-to-firmware state: %m");
return 3; /* other kind of error */
} else {
r = parse_boolean(argv[1]);
if (r < 0)
return log_error_errno(r, "Failed to parse argument: %s", argv[1]);
r = efi_set_reboot_to_firmware(r);
if (r < 0)
return log_error_errno(r, "Failed to set reboot-to-firmware option: %m");
return 0;
}
}
static int bootctl_main(int argc, char *argv[]) {
static const Verb verbs[] = {
{ "help", VERB_ANY, VERB_ANY, 0, help },
{ "status", VERB_ANY, 1, VERB_DEFAULT, verb_status },
{ "install", VERB_ANY, 1, 0, verb_install },
{ "update", VERB_ANY, 1, 0, verb_install },
{ "remove", VERB_ANY, 1, 0, verb_remove },
{ "is-installed", VERB_ANY, 1, 0, verb_is_installed },
{ "list", VERB_ANY, 1, 0, verb_list },
{ "set-default", 2, 2, 0, verb_set_default },
{ "set-oneshot", 2, 2, 0, verb_set_default },
{ "random-seed", VERB_ANY, 1, 0, verb_random_seed },
{ "systemd-efi-options", VERB_ANY, 2, 0, verb_systemd_efi_options },
{ "reboot-to-firmware", VERB_ANY, 2, 0, verb_reboot_to_firmware },
{}
};
return dispatch_verb(argc, argv, verbs, NULL);
}
static int run(int argc, char *argv[]) {
int r;
log_parse_environment();
log_open();
/* If we run in a container, automatically turn off EFI file system access */
if (detect_container() > 0)
arg_touch_variables = false;
r = parse_argv(argc, argv);
if (r <= 0)
return r;
2018-06-22 20:03:49 +02:00
return bootctl_main(argc, argv);
}
DEFINE_MAIN_FUNCTION_WITH_POSITIVE_FAILURE(run);