Systemd/src/resolve/resolved-dns-server.c

799 lines
27 KiB
C
Raw Normal View History

/***
This file is part of systemd.
Copyright 2014 Lennart Poettering
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see <http://www.gnu.org/licenses/>.
***/
#include <sd-messages.h>
#include "alloc-util.h"
#include "resolved-dns-server.h"
resolved: respond to local resolver requests on 127.0.0.53:53 In order to improve compatibility with local clients that speak DNS directly (and do not use NSS or our bus API) listen locally on 127.0.0.53:53 and process any queries made that way. Note that resolved does not implement a full DNS server on this port, but simply enough to allow normal, local clients to resolve RRs through resolved. Specifically it does not implement queries without the RD bit set (these are requests where recursive lookups are explicitly disabled), and neither queries with DNSSEC DO set in combination with DNSSEC CD (i.e. DNSSEC lookups with validation turned off). It also refuses zone transfers and obsolete RR types. All lookups done this way will be rejected with a clean error code, so that the client side can repeat the query with a reduced feature set. The code will set the DNSSEC AD flag however, depending on whether the data resolved has been validated (or comes from a local, trusted source). Lookups made via this mechanisms are propagated to LLMNR and mDNS as necessary, but this is only partially useful as DNS packets cannot carry IP scope data (i.e. the ifindex), and hence link-local addresses returned cannot be used properly (and given that LLMNR/mDNS are mostly about link-local communication this is quite a limitation). Also, given that DNS tends to use IDNA for non-ASCII names, while LLMNR/mDNS uses UTF-8 lookups cannot be mapped 1:1. In general this should improve compatibility with clients bypassing NSS but it is highly recommended for clients to instead use NSS or our native bus API. This patch also beefs up the DnsStream logic, as it reuses the code for local TCP listening. DnsStream now provides proper reference counting for its objects. In order to avoid feedback loops resolved will no silently ignore 127.0.0.53 specified as DNS server when reading configuration. resolved listens on 127.0.0.53:53 instead of 127.0.0.1:53 in order to leave the latter free for local, external DNS servers or forwarders. This also changes the "etc.conf" tmpfiles snippet to create a symlink from /etc/resolv.conf to /usr/lib/systemd/resolv.conf by default, thus making this stub the default mode of operation if /etc is not populated.
2016-06-21 00:58:47 +02:00
#include "resolved-dns-stub.h"
#include "resolved-resolv-conf.h"
#include "siphash24.h"
#include "string-table.h"
#include "string-util.h"
/* After how much time to repeat classic DNS requests */
#define DNS_TIMEOUT_MIN_USEC (500 * USEC_PER_MSEC)
#define DNS_TIMEOUT_MAX_USEC (5 * USEC_PER_SEC)
/* The amount of time to wait before retrying with a full feature set */
#define DNS_SERVER_FEATURE_GRACE_PERIOD_MAX_USEC (6 * USEC_PER_HOUR)
#define DNS_SERVER_FEATURE_GRACE_PERIOD_MIN_USEC (5 * USEC_PER_MINUTE)
/* The number of times we will attempt a certain feature set before degrading */
#define DNS_SERVER_FEATURE_RETRY_ATTEMPTS 3
int dns_server_new(
Manager *m,
DnsServer **ret,
DnsServerType type,
Link *l,
int family,
const union in_addr_union *in_addr,
int ifindex) {
DnsServer *s;
assert(m);
assert((type == DNS_SERVER_LINK) == !!l);
assert(in_addr);
if (!IN_SET(family, AF_INET, AF_INET6))
return -EAFNOSUPPORT;
if (l) {
if (l->n_dns_servers >= LINK_DNS_SERVERS_MAX)
return -E2BIG;
} else {
if (m->n_dns_servers >= MANAGER_DNS_SERVERS_MAX)
return -E2BIG;
}
s = new0(DnsServer, 1);
if (!s)
return -ENOMEM;
s->n_ref = 1;
s->manager = m;
s->verified_feature_level = _DNS_SERVER_FEATURE_LEVEL_INVALID;
s->possible_feature_level = DNS_SERVER_FEATURE_LEVEL_BEST;
s->features_grace_period_usec = DNS_SERVER_FEATURE_GRACE_PERIOD_MIN_USEC;
s->received_udp_packet_max = DNS_PACKET_UNICAST_SIZE_MAX;
s->type = type;
s->family = family;
s->address = *in_addr;
s->ifindex = ifindex;
s->resend_timeout = DNS_TIMEOUT_MIN_USEC;
switch (type) {
case DNS_SERVER_LINK:
s->link = l;
LIST_APPEND(servers, l->dns_servers, s);
l->n_dns_servers++;
break;
case DNS_SERVER_SYSTEM:
LIST_APPEND(servers, m->dns_servers, s);
m->n_dns_servers++;
break;
case DNS_SERVER_FALLBACK:
LIST_APPEND(servers, m->fallback_dns_servers, s);
m->n_dns_servers++;
break;
default:
assert_not_reached("Unknown server type");
}
s->linked = true;
/* A new DNS server that isn't fallback is added and the one
* we used so far was a fallback one? Then let's try to pick
* the new one */
if (type != DNS_SERVER_FALLBACK &&
m->current_dns_server &&
m->current_dns_server->type == DNS_SERVER_FALLBACK)
manager_set_dns_server(m, NULL);
if (ret)
*ret = s;
return 0;
}
DnsServer* dns_server_ref(DnsServer *s) {
if (!s)
return NULL;
assert(s->n_ref > 0);
s->n_ref++;
return s;
}
DnsServer* dns_server_unref(DnsServer *s) {
if (!s)
return NULL;
assert(s->n_ref > 0);
s->n_ref--;
if (s->n_ref > 0)
return NULL;
free(s->server_string);
free(s);
return NULL;
}
void dns_server_unlink(DnsServer *s) {
assert(s);
assert(s->manager);
/* This removes the specified server from the linked list of
* servers, but any server might still stay around if it has
* refs, for example from an ongoing transaction. */
if (!s->linked)
return;
switch (s->type) {
case DNS_SERVER_LINK:
assert(s->link);
assert(s->link->n_dns_servers > 0);
LIST_REMOVE(servers, s->link->dns_servers, s);
s->link->n_dns_servers--;
break;
case DNS_SERVER_SYSTEM:
assert(s->manager->n_dns_servers > 0);
LIST_REMOVE(servers, s->manager->dns_servers, s);
s->manager->n_dns_servers--;
break;
case DNS_SERVER_FALLBACK:
assert(s->manager->n_dns_servers > 0);
LIST_REMOVE(servers, s->manager->fallback_dns_servers, s);
s->manager->n_dns_servers--;
break;
}
s->linked = false;
if (s->link && s->link->current_dns_server == s)
link_set_dns_server(s->link, NULL);
if (s->manager->current_dns_server == s)
manager_set_dns_server(s->manager, NULL);
dns_server_unref(s);
}
void dns_server_move_back_and_unmark(DnsServer *s) {
DnsServer *tail;
assert(s);
if (!s->marked)
return;
s->marked = false;
if (!s->linked || !s->servers_next)
return;
/* Move us to the end of the list, so that the order is
* strictly kept, if we are not at the end anyway. */
switch (s->type) {
case DNS_SERVER_LINK:
assert(s->link);
LIST_FIND_TAIL(servers, s, tail);
LIST_REMOVE(servers, s->link->dns_servers, s);
LIST_INSERT_AFTER(servers, s->link->dns_servers, tail, s);
break;
case DNS_SERVER_SYSTEM:
LIST_FIND_TAIL(servers, s, tail);
LIST_REMOVE(servers, s->manager->dns_servers, s);
LIST_INSERT_AFTER(servers, s->manager->dns_servers, tail, s);
break;
case DNS_SERVER_FALLBACK:
LIST_FIND_TAIL(servers, s, tail);
LIST_REMOVE(servers, s->manager->fallback_dns_servers, s);
LIST_INSERT_AFTER(servers, s->manager->fallback_dns_servers, tail, s);
break;
default:
assert_not_reached("Unknown server type");
}
}
static void dns_server_verified(DnsServer *s, DnsServerFeatureLevel level) {
assert(s);
if (s->verified_feature_level > level)
return;
if (s->verified_feature_level != level) {
log_debug("Verified we get a response at feature level %s from DNS server %s.",
dns_server_feature_level_to_string(level),
dns_server_string(s));
s->verified_feature_level = level;
}
assert_se(sd_event_now(s->manager->event, clock_boottime_or_monotonic(), &s->verified_usec) >= 0);
}
static void dns_server_reset_counters(DnsServer *s) {
assert(s);
s->n_failed_udp = 0;
s->n_failed_tcp = 0;
s->packet_truncated = false;
s->verified_usec = 0;
/* Note that we do not reset s->packet_bad_opt and s->packet_rrsig_missing here. We reset them only when the
* grace period ends, but not when lowering the possible feature level, as a lower level feature level should
* not make RRSIGs appear or OPT appear, but rather make them disappear. If the reappear anyway, then that's
* indication for a differently broken OPT/RRSIG implementation, and we really don't want to support that
* either.
*
* This is particularly important to deal with certain Belkin routers which break OPT for certain lookups (A),
* but pass traffic through for others (AAAA). If we detect the broken behaviour on one lookup we should not
* reenable it for another, because we cannot validate things anyway, given that the RRSIG/OPT data will be
* incomplete. */
}
void dns_server_packet_received(DnsServer *s, int protocol, DnsServerFeatureLevel level, usec_t rtt, size_t size) {
assert(s);
if (protocol == IPPROTO_UDP) {
if (s->possible_feature_level == level)
s->n_failed_udp = 0;
/* If the RRSIG data is missing, then we can only validate EDNS0 at max */
if (s->packet_rrsig_missing && level >= DNS_SERVER_FEATURE_LEVEL_DO)
level = DNS_SERVER_FEATURE_LEVEL_DO - 1;
/* If the OPT RR got lost, then we can only validate UDP at max */
if (s->packet_bad_opt && level >= DNS_SERVER_FEATURE_LEVEL_EDNS0)
level = DNS_SERVER_FEATURE_LEVEL_EDNS0 - 1;
/* Even if we successfully receive a reply to a request announcing support for large packets,
that does not mean we can necessarily receive large packets. */
if (level == DNS_SERVER_FEATURE_LEVEL_LARGE)
level = DNS_SERVER_FEATURE_LEVEL_LARGE - 1;
} else if (protocol == IPPROTO_TCP) {
if (s->possible_feature_level == level)
s->n_failed_tcp = 0;
/* Successful TCP connections are only useful to verify the TCP feature level. */
level = DNS_SERVER_FEATURE_LEVEL_TCP;
}
dns_server_verified(s, level);
/* Remember the size of the largest UDP packet we received from a server,
we know that we can always announce support for packets with at least
this size. */
if (protocol == IPPROTO_UDP && s->received_udp_packet_max < size)
s->received_udp_packet_max = size;
if (s->max_rtt < rtt) {
s->max_rtt = rtt;
s->resend_timeout = CLAMP(s->max_rtt * 2, DNS_TIMEOUT_MIN_USEC, DNS_TIMEOUT_MAX_USEC);
}
}
void dns_server_packet_lost(DnsServer *s, int protocol, DnsServerFeatureLevel level, usec_t usec) {
assert(s);
assert(s->manager);
if (s->possible_feature_level == level) {
if (protocol == IPPROTO_UDP)
s->n_failed_udp++;
else if (protocol == IPPROTO_TCP)
s->n_failed_tcp++;
}
if (s->resend_timeout > usec)
return;
s->resend_timeout = MIN(s->resend_timeout * 2, DNS_TIMEOUT_MAX_USEC);
}
void dns_server_packet_truncated(DnsServer *s, DnsServerFeatureLevel level) {
assert(s);
/* Invoked whenever we get a packet with TC bit set. */
if (s->possible_feature_level != level)
return;
s->packet_truncated = true;
}
void dns_server_packet_rrsig_missing(DnsServer *s, DnsServerFeatureLevel level) {
assert(s);
if (level < DNS_SERVER_FEATURE_LEVEL_DO)
return;
/* If the RRSIG RRs are missing, we have to downgrade what we previously verified */
if (s->verified_feature_level >= DNS_SERVER_FEATURE_LEVEL_DO)
s->verified_feature_level = DNS_SERVER_FEATURE_LEVEL_DO-1;
s->packet_rrsig_missing = true;
}
void dns_server_packet_bad_opt(DnsServer *s, DnsServerFeatureLevel level) {
assert(s);
if (level < DNS_SERVER_FEATURE_LEVEL_EDNS0)
return;
/* If the OPT RR got lost, we have to downgrade what we previously verified */
if (s->verified_feature_level >= DNS_SERVER_FEATURE_LEVEL_EDNS0)
s->verified_feature_level = DNS_SERVER_FEATURE_LEVEL_EDNS0-1;
s->packet_bad_opt = true;
}
void dns_server_packet_rcode_downgrade(DnsServer *s, DnsServerFeatureLevel level) {
assert(s);
/* Invoked whenever we got a FORMERR, SERVFAIL or NOTIMP rcode from a server and downgrading the feature level
* for the transaction made it go away. In this case we immediately downgrade to the feature level that made
* things work. */
if (s->verified_feature_level > level)
s->verified_feature_level = level;
if (s->possible_feature_level > level) {
s->possible_feature_level = level;
dns_server_reset_counters(s);
}
log_debug("Downgrading transaction feature level fixed an RCODE error, downgrading server %s too.", dns_server_string(s));
}
static bool dns_server_grace_period_expired(DnsServer *s) {
usec_t ts;
assert(s);
assert(s->manager);
if (s->verified_usec == 0)
return false;
assert_se(sd_event_now(s->manager->event, clock_boottime_or_monotonic(), &ts) >= 0);
if (s->verified_usec + s->features_grace_period_usec > ts)
return false;
s->features_grace_period_usec = MIN(s->features_grace_period_usec * 2, DNS_SERVER_FEATURE_GRACE_PERIOD_MAX_USEC);
return true;
}
DnsServerFeatureLevel dns_server_possible_feature_level(DnsServer *s) {
assert(s);
if (s->possible_feature_level != DNS_SERVER_FEATURE_LEVEL_BEST &&
dns_server_grace_period_expired(s)) {
s->possible_feature_level = DNS_SERVER_FEATURE_LEVEL_BEST;
dns_server_reset_counters(s);
s->packet_bad_opt = false;
s->packet_rrsig_missing = false;
log_info("Grace period over, resuming full feature set (%s) for DNS server %s.",
dns_server_feature_level_to_string(s->possible_feature_level),
dns_server_string(s));
} else if (s->possible_feature_level <= s->verified_feature_level)
s->possible_feature_level = s->verified_feature_level;
else {
DnsServerFeatureLevel p = s->possible_feature_level;
if (s->n_failed_tcp >= DNS_SERVER_FEATURE_RETRY_ATTEMPTS &&
s->possible_feature_level == DNS_SERVER_FEATURE_LEVEL_TCP) {
/* We are at the TCP (lowest) level, and we tried a couple of TCP connections, and it didn't
* work. Upgrade back to UDP again. */
log_debug("Reached maximum number of failed TCP connection attempts, trying UDP again...");
s->possible_feature_level = DNS_SERVER_FEATURE_LEVEL_UDP;
} else if (s->packet_bad_opt &&
s->possible_feature_level >= DNS_SERVER_FEATURE_LEVEL_EDNS0) {
/* A reply to one of our EDNS0 queries didn't carry a valid OPT RR, then downgrade to below
* EDNS0 levels. After all, some records generate different responses with and without OPT RR
* in the request. Example:
* https://open.nlnetlabs.nl/pipermail/dnssec-trigger/2014-November/000376.html */
log_debug("Server doesn't support EDNS(0) properly, downgrading feature level...");
s->possible_feature_level = DNS_SERVER_FEATURE_LEVEL_UDP;
} else if (s->packet_rrsig_missing &&
s->possible_feature_level >= DNS_SERVER_FEATURE_LEVEL_DO) {
/* RRSIG data was missing on a EDNS0 packet with DO bit set. This means the server doesn't
* augment responses with DNSSEC RRs. If so, let's better not ask the server for it anymore,
* after all some servers generate different replies depending if an OPT RR is in the query or
* not. */
log_debug("Detected server responses lack RRSIG records, downgrading feature level...");
s->possible_feature_level = DNS_SERVER_FEATURE_LEVEL_EDNS0;
} else if (s->n_failed_udp >= DNS_SERVER_FEATURE_RETRY_ATTEMPTS &&
s->possible_feature_level >= DNS_SERVER_FEATURE_LEVEL_UDP) {
/* We lost too many UDP packets in a row, and are on a feature level of UDP or higher. If the
* packets are lost, maybe the server cannot parse them, hence downgrading sounds like a good
* idea. We might downgrade all the way down to TCP this way. */
log_debug("Lost too many UDP packets, downgrading feature level...");
s->possible_feature_level--;
} else if (s->n_failed_tcp >= DNS_SERVER_FEATURE_RETRY_ATTEMPTS &&
s->packet_truncated &&
s->possible_feature_level > DNS_SERVER_FEATURE_LEVEL_UDP) {
/* We got too many TCP connection failures in a row, we had at least one truncated packet, and
* are on a feature level above UDP. By downgrading things and getting rid of DNSSEC or EDNS0
* data we hope to make the packet smaller, so that it still works via UDP given that TCP
* appears not to be a fallback. Note that if we are already at the lowest UDP level, we don't
* go further down, since that's TCP, and TCP failed too often after all. */
log_debug("Got too many failed TCP connection failures and truncated UDP packets, downgrading feature level...");
s->possible_feature_level--;
}
if (p != s->possible_feature_level) {
/* We changed the feature level, reset the counting */
dns_server_reset_counters(s);
log_warning("Using degraded feature set (%s) for DNS server %s.",
dns_server_feature_level_to_string(s->possible_feature_level),
dns_server_string(s));
}
}
return s->possible_feature_level;
}
int dns_server_adjust_opt(DnsServer *server, DnsPacket *packet, DnsServerFeatureLevel level) {
size_t packet_size;
bool edns_do;
int r;
assert(server);
assert(packet);
assert(packet->protocol == DNS_PROTOCOL_DNS);
/* Fix the OPT field in the packet to match our current feature level. */
r = dns_packet_truncate_opt(packet);
if (r < 0)
return r;
if (level < DNS_SERVER_FEATURE_LEVEL_EDNS0)
return 0;
edns_do = level >= DNS_SERVER_FEATURE_LEVEL_DO;
if (level >= DNS_SERVER_FEATURE_LEVEL_LARGE)
packet_size = DNS_PACKET_UNICAST_SIZE_LARGE_MAX;
else
packet_size = server->received_udp_packet_max;
return dns_packet_append_opt(packet, packet_size, edns_do, 0, NULL);
}
int dns_server_ifindex(const DnsServer *s) {
assert(s);
/* The link ifindex always takes precedence */
if (s->link)
return s->link->ifindex;
if (s->ifindex > 0)
return s->ifindex;
return 0;
}
const char *dns_server_string(DnsServer *server) {
assert(server);
if (!server->server_string)
(void) in_addr_ifindex_to_string(server->family, &server->address, dns_server_ifindex(server), &server->server_string);
return strna(server->server_string);
}
bool dns_server_dnssec_supported(DnsServer *server) {
assert(server);
/* Returns whether the server supports DNSSEC according to what we know about it */
if (server->possible_feature_level < DNS_SERVER_FEATURE_LEVEL_DO)
return false;
if (server->packet_bad_opt)
return false;
if (server->packet_rrsig_missing)
return false;
/* DNSSEC servers need to support TCP properly (see RFC5966), if they don't, we assume DNSSEC is borked too */
if (server->n_failed_tcp >= DNS_SERVER_FEATURE_RETRY_ATTEMPTS)
return false;
return true;
}
void dns_server_warn_downgrade(DnsServer *server) {
assert(server);
if (server->warned_downgrade)
return;
log_struct(LOG_NOTICE,
LOG_MESSAGE_ID(SD_MESSAGE_DNSSEC_DOWNGRADE),
LOG_MESSAGE("Server %s does not support DNSSEC, downgrading to non-DNSSEC mode.", dns_server_string(server)),
"DNS_SERVER=%s", dns_server_string(server),
"DNS_SERVER_FEATURE_LEVEL=%s", dns_server_feature_level_to_string(server->possible_feature_level),
NULL);
server->warned_downgrade = true;
}
bool dns_server_limited_domains(DnsServer *server)
{
DnsSearchDomain *domain;
bool domain_restricted = false;
/* Check if the server has route-only domains without ~., i. e. whether
* it should only be used for particular domains */
if (!server->link)
return false;
LIST_FOREACH(domains, domain, server->link->search_domains)
if (domain->route_only) {
domain_restricted = true;
/* ~. means "any domain", thus it is a global server */
if (streq(DNS_SEARCH_DOMAIN_NAME(domain), "."))
return false;
}
return domain_restricted;
}
static void dns_server_hash_func(const void *p, struct siphash *state) {
const DnsServer *s = p;
assert(s);
siphash24_compress(&s->family, sizeof(s->family), state);
siphash24_compress(&s->address, FAMILY_ADDRESS_SIZE(s->family), state);
siphash24_compress(&s->ifindex, sizeof(s->ifindex), state);
}
static int dns_server_compare_func(const void *a, const void *b) {
const DnsServer *x = a, *y = b;
int r;
if (x->family < y->family)
return -1;
if (x->family > y->family)
return 1;
r = memcmp(&x->address, &y->address, FAMILY_ADDRESS_SIZE(x->family));
if (r != 0)
return r;
if (x->ifindex < y->ifindex)
return -1;
if (x->ifindex > y->ifindex)
return 1;
return 0;
}
const struct hash_ops dns_server_hash_ops = {
.hash = dns_server_hash_func,
.compare = dns_server_compare_func
};
void dns_server_unlink_all(DnsServer *first) {
DnsServer *next;
if (!first)
return;
next = first->servers_next;
dns_server_unlink(first);
dns_server_unlink_all(next);
}
void dns_server_unlink_marked(DnsServer *first) {
DnsServer *next;
if (!first)
return;
next = first->servers_next;
if (first->marked)
dns_server_unlink(first);
dns_server_unlink_marked(next);
}
void dns_server_mark_all(DnsServer *first) {
if (!first)
return;
first->marked = true;
dns_server_mark_all(first->servers_next);
}
DnsServer *dns_server_find(DnsServer *first, int family, const union in_addr_union *in_addr, int ifindex) {
DnsServer *s;
LIST_FOREACH(servers, s, first)
if (s->family == family && in_addr_equal(family, &s->address, in_addr) > 0 && s->ifindex == ifindex)
return s;
return NULL;
}
DnsServer *manager_get_first_dns_server(Manager *m, DnsServerType t) {
assert(m);
switch (t) {
case DNS_SERVER_SYSTEM:
return m->dns_servers;
case DNS_SERVER_FALLBACK:
return m->fallback_dns_servers;
default:
return NULL;
}
}
DnsServer *manager_set_dns_server(Manager *m, DnsServer *s) {
assert(m);
if (m->current_dns_server == s)
return s;
if (s)
log_info("Switching to %s DNS server %s.",
dns_server_type_to_string(s->type),
dns_server_string(s));
dns_server_unref(m->current_dns_server);
m->current_dns_server = dns_server_ref(s);
if (m->unicast_scope)
dns_cache_flush(&m->unicast_scope->cache);
return s;
}
DnsServer *manager_get_dns_server(Manager *m) {
Link *l;
assert(m);
/* Try to read updates resolv.conf */
manager_read_resolv_conf(m);
/* If no DNS server was chosen so far, pick the first one */
if (!m->current_dns_server)
manager_set_dns_server(m, m->dns_servers);
if (!m->current_dns_server) {
bool found = false;
Iterator i;
/* No DNS servers configured, let's see if there are
* any on any links. If not, we use the fallback
* servers */
HASHMAP_FOREACH(l, m->links, i)
if (l->dns_servers) {
found = true;
break;
}
if (!found)
manager_set_dns_server(m, m->fallback_dns_servers);
}
return m->current_dns_server;
}
void manager_next_dns_server(Manager *m) {
assert(m);
/* If there's currently no DNS server set, then the next
* manager_get_dns_server() will find one */
if (!m->current_dns_server)
return;
/* Change to the next one, but make sure to follow the linked
* list only if the server is still linked. */
if (m->current_dns_server->linked && m->current_dns_server->servers_next) {
manager_set_dns_server(m, m->current_dns_server->servers_next);
return;
}
/* If there was no next one, then start from the beginning of
* the list */
if (m->current_dns_server->type == DNS_SERVER_FALLBACK)
manager_set_dns_server(m, m->fallback_dns_servers);
else
manager_set_dns_server(m, m->dns_servers);
}
resolved: respond to local resolver requests on 127.0.0.53:53 In order to improve compatibility with local clients that speak DNS directly (and do not use NSS or our bus API) listen locally on 127.0.0.53:53 and process any queries made that way. Note that resolved does not implement a full DNS server on this port, but simply enough to allow normal, local clients to resolve RRs through resolved. Specifically it does not implement queries without the RD bit set (these are requests where recursive lookups are explicitly disabled), and neither queries with DNSSEC DO set in combination with DNSSEC CD (i.e. DNSSEC lookups with validation turned off). It also refuses zone transfers and obsolete RR types. All lookups done this way will be rejected with a clean error code, so that the client side can repeat the query with a reduced feature set. The code will set the DNSSEC AD flag however, depending on whether the data resolved has been validated (or comes from a local, trusted source). Lookups made via this mechanisms are propagated to LLMNR and mDNS as necessary, but this is only partially useful as DNS packets cannot carry IP scope data (i.e. the ifindex), and hence link-local addresses returned cannot be used properly (and given that LLMNR/mDNS are mostly about link-local communication this is quite a limitation). Also, given that DNS tends to use IDNA for non-ASCII names, while LLMNR/mDNS uses UTF-8 lookups cannot be mapped 1:1. In general this should improve compatibility with clients bypassing NSS but it is highly recommended for clients to instead use NSS or our native bus API. This patch also beefs up the DnsStream logic, as it reuses the code for local TCP listening. DnsStream now provides proper reference counting for its objects. In order to avoid feedback loops resolved will no silently ignore 127.0.0.53 specified as DNS server when reading configuration. resolved listens on 127.0.0.53:53 instead of 127.0.0.1:53 in order to leave the latter free for local, external DNS servers or forwarders. This also changes the "etc.conf" tmpfiles snippet to create a symlink from /etc/resolv.conf to /usr/lib/systemd/resolv.conf by default, thus making this stub the default mode of operation if /etc is not populated.
2016-06-21 00:58:47 +02:00
bool dns_server_address_valid(int family, const union in_addr_union *sa) {
/* Refuses the 0 IP addresses as well as 127.0.0.53 (which is our own DNS stub) */
if (in_addr_is_null(family, sa))
return false;
if (family == AF_INET && sa->in.s_addr == htobe32(INADDR_DNS_STUB))
return false;
return true;
}
static const char* const dns_server_type_table[_DNS_SERVER_TYPE_MAX] = {
[DNS_SERVER_SYSTEM] = "system",
[DNS_SERVER_FALLBACK] = "fallback",
[DNS_SERVER_LINK] = "link",
};
DEFINE_STRING_TABLE_LOOKUP(dns_server_type, DnsServerType);
static const char* const dns_server_feature_level_table[_DNS_SERVER_FEATURE_LEVEL_MAX] = {
[DNS_SERVER_FEATURE_LEVEL_TCP] = "TCP",
[DNS_SERVER_FEATURE_LEVEL_UDP] = "UDP",
[DNS_SERVER_FEATURE_LEVEL_EDNS0] = "UDP+EDNS0",
[DNS_SERVER_FEATURE_LEVEL_DO] = "UDP+EDNS0+DO",
[DNS_SERVER_FEATURE_LEVEL_LARGE] = "UDP+EDNS0+DO+LARGE",
};
DEFINE_STRING_TABLE_LOOKUP(dns_server_feature_level, DnsServerFeatureLevel);