Systemd/src/resolve/resolved-dns-transaction.c

1475 lines
50 KiB
C
Raw Normal View History

/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/
/***
This file is part of systemd.
Copyright 2014 Lennart Poettering
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see <http://www.gnu.org/licenses/>.
***/
#include "af-list.h"
#include "alloc-util.h"
#include "dns-domain.h"
#include "fd-util.h"
#include "random-util.h"
#include "resolved-dns-cache.h"
#include "resolved-dns-transaction.h"
#include "resolved-llmnr.h"
#include "string-table.h"
DnsTransaction* dns_transaction_free(DnsTransaction *t) {
DnsQueryCandidate *c;
DnsZoneItem *i;
resolved: chase DNSKEY/DS RRs when doing look-ups with DNSSEC enabled This adds initial support for validating RRSIG/DNSKEY/DS chains when doing lookups. Proof-of-non-existance, or proof-of-unsigned-zones is not implemented yet. With this change DnsTransaction objects will generate additional DnsTransaction objects when looking for DNSKEY or DS RRs to validate an RRSIG on a response. DnsTransaction objects are thus created for three reasons now: 1) Because a user asked for something to be resolved, i.e. requested by a DnsQuery/DnsQueryCandidate object. 2) As result of LLMNR RR probing, requested by a DnsZoneItem. 3) Because another DnsTransaction requires the requested RRs for validation of its own response. DnsTransactions are shared between all these users, and are GC automatically as soon as all of these users don't need a specific transaction anymore. To unify the handling of these three reasons for existance for a DnsTransaction, a new common naming is introduced: each DnsTransaction now tracks its "owners" via a Set* object named "notify_xyz", containing all owners to notify on completion. A new DnsTransaction state is introduced called "VALIDATING" that is entered after a response has been receieved which needs to be validated, as long as we are still waiting for the DNSKEY/DS RRs from other DnsTransactions. This patch will request the DNSKEY/DS RRs bottom-up, and then validate them top-down. Caching of RRs is now only done after verification, so that the cache is not poisoned with known invalid data. The "DnsAnswer" object gained a substantial number of new calls, since we need to add/remove RRs to it dynamically now.
2015-12-09 18:13:16 +01:00
DnsTransaction *z;
if (!t)
return NULL;
sd_event_source_unref(t->timeout_event_source);
dns_packet_unref(t->sent);
dns_packet_unref(t->received);
dns_answer_unref(t->answer);
sd_event_source_unref(t->dns_udp_event_source);
safe_close(t->dns_udp_fd);
dns_server_unref(t->server);
dns_stream_free(t->stream);
if (t->scope) {
hashmap_remove_value(t->scope->transactions_by_key, t->key, t);
LIST_REMOVE(transactions_by_scope, t->scope->transactions, t);
if (t->id != 0)
hashmap_remove(t->scope->manager->dns_transactions, UINT_TO_PTR(t->id));
}
dns_resource_key_unref(t->key);
resolved: chase DNSKEY/DS RRs when doing look-ups with DNSSEC enabled This adds initial support for validating RRSIG/DNSKEY/DS chains when doing lookups. Proof-of-non-existance, or proof-of-unsigned-zones is not implemented yet. With this change DnsTransaction objects will generate additional DnsTransaction objects when looking for DNSKEY or DS RRs to validate an RRSIG on a response. DnsTransaction objects are thus created for three reasons now: 1) Because a user asked for something to be resolved, i.e. requested by a DnsQuery/DnsQueryCandidate object. 2) As result of LLMNR RR probing, requested by a DnsZoneItem. 3) Because another DnsTransaction requires the requested RRs for validation of its own response. DnsTransactions are shared between all these users, and are GC automatically as soon as all of these users don't need a specific transaction anymore. To unify the handling of these three reasons for existance for a DnsTransaction, a new common naming is introduced: each DnsTransaction now tracks its "owners" via a Set* object named "notify_xyz", containing all owners to notify on completion. A new DnsTransaction state is introduced called "VALIDATING" that is entered after a response has been receieved which needs to be validated, as long as we are still waiting for the DNSKEY/DS RRs from other DnsTransactions. This patch will request the DNSKEY/DS RRs bottom-up, and then validate them top-down. Caching of RRs is now only done after verification, so that the cache is not poisoned with known invalid data. The "DnsAnswer" object gained a substantial number of new calls, since we need to add/remove RRs to it dynamically now.
2015-12-09 18:13:16 +01:00
while ((c = set_steal_first(t->notify_query_candidates)))
set_remove(c->transactions, t);
resolved: chase DNSKEY/DS RRs when doing look-ups with DNSSEC enabled This adds initial support for validating RRSIG/DNSKEY/DS chains when doing lookups. Proof-of-non-existance, or proof-of-unsigned-zones is not implemented yet. With this change DnsTransaction objects will generate additional DnsTransaction objects when looking for DNSKEY or DS RRs to validate an RRSIG on a response. DnsTransaction objects are thus created for three reasons now: 1) Because a user asked for something to be resolved, i.e. requested by a DnsQuery/DnsQueryCandidate object. 2) As result of LLMNR RR probing, requested by a DnsZoneItem. 3) Because another DnsTransaction requires the requested RRs for validation of its own response. DnsTransactions are shared between all these users, and are GC automatically as soon as all of these users don't need a specific transaction anymore. To unify the handling of these three reasons for existance for a DnsTransaction, a new common naming is introduced: each DnsTransaction now tracks its "owners" via a Set* object named "notify_xyz", containing all owners to notify on completion. A new DnsTransaction state is introduced called "VALIDATING" that is entered after a response has been receieved which needs to be validated, as long as we are still waiting for the DNSKEY/DS RRs from other DnsTransactions. This patch will request the DNSKEY/DS RRs bottom-up, and then validate them top-down. Caching of RRs is now only done after verification, so that the cache is not poisoned with known invalid data. The "DnsAnswer" object gained a substantial number of new calls, since we need to add/remove RRs to it dynamically now.
2015-12-09 18:13:16 +01:00
set_free(t->notify_query_candidates);
resolved: chase DNSKEY/DS RRs when doing look-ups with DNSSEC enabled This adds initial support for validating RRSIG/DNSKEY/DS chains when doing lookups. Proof-of-non-existance, or proof-of-unsigned-zones is not implemented yet. With this change DnsTransaction objects will generate additional DnsTransaction objects when looking for DNSKEY or DS RRs to validate an RRSIG on a response. DnsTransaction objects are thus created for three reasons now: 1) Because a user asked for something to be resolved, i.e. requested by a DnsQuery/DnsQueryCandidate object. 2) As result of LLMNR RR probing, requested by a DnsZoneItem. 3) Because another DnsTransaction requires the requested RRs for validation of its own response. DnsTransactions are shared between all these users, and are GC automatically as soon as all of these users don't need a specific transaction anymore. To unify the handling of these three reasons for existance for a DnsTransaction, a new common naming is introduced: each DnsTransaction now tracks its "owners" via a Set* object named "notify_xyz", containing all owners to notify on completion. A new DnsTransaction state is introduced called "VALIDATING" that is entered after a response has been receieved which needs to be validated, as long as we are still waiting for the DNSKEY/DS RRs from other DnsTransactions. This patch will request the DNSKEY/DS RRs bottom-up, and then validate them top-down. Caching of RRs is now only done after verification, so that the cache is not poisoned with known invalid data. The "DnsAnswer" object gained a substantial number of new calls, since we need to add/remove RRs to it dynamically now.
2015-12-09 18:13:16 +01:00
while ((i = set_steal_first(t->notify_zone_items)))
i->probe_transaction = NULL;
resolved: chase DNSKEY/DS RRs when doing look-ups with DNSSEC enabled This adds initial support for validating RRSIG/DNSKEY/DS chains when doing lookups. Proof-of-non-existance, or proof-of-unsigned-zones is not implemented yet. With this change DnsTransaction objects will generate additional DnsTransaction objects when looking for DNSKEY or DS RRs to validate an RRSIG on a response. DnsTransaction objects are thus created for three reasons now: 1) Because a user asked for something to be resolved, i.e. requested by a DnsQuery/DnsQueryCandidate object. 2) As result of LLMNR RR probing, requested by a DnsZoneItem. 3) Because another DnsTransaction requires the requested RRs for validation of its own response. DnsTransactions are shared between all these users, and are GC automatically as soon as all of these users don't need a specific transaction anymore. To unify the handling of these three reasons for existance for a DnsTransaction, a new common naming is introduced: each DnsTransaction now tracks its "owners" via a Set* object named "notify_xyz", containing all owners to notify on completion. A new DnsTransaction state is introduced called "VALIDATING" that is entered after a response has been receieved which needs to be validated, as long as we are still waiting for the DNSKEY/DS RRs from other DnsTransactions. This patch will request the DNSKEY/DS RRs bottom-up, and then validate them top-down. Caching of RRs is now only done after verification, so that the cache is not poisoned with known invalid data. The "DnsAnswer" object gained a substantial number of new calls, since we need to add/remove RRs to it dynamically now.
2015-12-09 18:13:16 +01:00
set_free(t->notify_zone_items);
while ((z = set_steal_first(t->notify_transactions)))
set_remove(z->dnssec_transactions, t);
set_free(t->notify_transactions);
while ((z = set_steal_first(t->dnssec_transactions))) {
set_remove(z->notify_transactions, t);
dns_transaction_gc(z);
}
set_free(t->dnssec_transactions);
dns_answer_unref(t->validated_keys);
free(t);
return NULL;
}
DEFINE_TRIVIAL_CLEANUP_FUNC(DnsTransaction*, dns_transaction_free);
void dns_transaction_gc(DnsTransaction *t) {
assert(t);
if (t->block_gc > 0)
return;
resolved: chase DNSKEY/DS RRs when doing look-ups with DNSSEC enabled This adds initial support for validating RRSIG/DNSKEY/DS chains when doing lookups. Proof-of-non-existance, or proof-of-unsigned-zones is not implemented yet. With this change DnsTransaction objects will generate additional DnsTransaction objects when looking for DNSKEY or DS RRs to validate an RRSIG on a response. DnsTransaction objects are thus created for three reasons now: 1) Because a user asked for something to be resolved, i.e. requested by a DnsQuery/DnsQueryCandidate object. 2) As result of LLMNR RR probing, requested by a DnsZoneItem. 3) Because another DnsTransaction requires the requested RRs for validation of its own response. DnsTransactions are shared between all these users, and are GC automatically as soon as all of these users don't need a specific transaction anymore. To unify the handling of these three reasons for existance for a DnsTransaction, a new common naming is introduced: each DnsTransaction now tracks its "owners" via a Set* object named "notify_xyz", containing all owners to notify on completion. A new DnsTransaction state is introduced called "VALIDATING" that is entered after a response has been receieved which needs to be validated, as long as we are still waiting for the DNSKEY/DS RRs from other DnsTransactions. This patch will request the DNSKEY/DS RRs bottom-up, and then validate them top-down. Caching of RRs is now only done after verification, so that the cache is not poisoned with known invalid data. The "DnsAnswer" object gained a substantial number of new calls, since we need to add/remove RRs to it dynamically now.
2015-12-09 18:13:16 +01:00
if (set_isempty(t->notify_query_candidates) &&
set_isempty(t->notify_zone_items) &&
set_isempty(t->notify_transactions))
dns_transaction_free(t);
}
int dns_transaction_new(DnsTransaction **ret, DnsScope *s, DnsResourceKey *key) {
_cleanup_(dns_transaction_freep) DnsTransaction *t = NULL;
int r;
assert(ret);
assert(s);
assert(key);
/* Don't allow looking up invalid or pseudo RRs */
if (IN_SET(key->type, DNS_TYPE_OPT, 0, DNS_TYPE_TSIG, DNS_TYPE_TKEY))
return -EINVAL;
/* We only support the IN class */
if (key->class != DNS_CLASS_IN)
return -EOPNOTSUPP;
r = hashmap_ensure_allocated(&s->manager->dns_transactions, NULL);
if (r < 0)
return r;
r = hashmap_ensure_allocated(&s->transactions_by_key, &dns_resource_key_hash_ops);
if (r < 0)
return r;
t = new0(DnsTransaction, 1);
if (!t)
return -ENOMEM;
t->dns_udp_fd = -1;
t->answer_source = _DNS_TRANSACTION_SOURCE_INVALID;
resolved: chase DNSKEY/DS RRs when doing look-ups with DNSSEC enabled This adds initial support for validating RRSIG/DNSKEY/DS chains when doing lookups. Proof-of-non-existance, or proof-of-unsigned-zones is not implemented yet. With this change DnsTransaction objects will generate additional DnsTransaction objects when looking for DNSKEY or DS RRs to validate an RRSIG on a response. DnsTransaction objects are thus created for three reasons now: 1) Because a user asked for something to be resolved, i.e. requested by a DnsQuery/DnsQueryCandidate object. 2) As result of LLMNR RR probing, requested by a DnsZoneItem. 3) Because another DnsTransaction requires the requested RRs for validation of its own response. DnsTransactions are shared between all these users, and are GC automatically as soon as all of these users don't need a specific transaction anymore. To unify the handling of these three reasons for existance for a DnsTransaction, a new common naming is introduced: each DnsTransaction now tracks its "owners" via a Set* object named "notify_xyz", containing all owners to notify on completion. A new DnsTransaction state is introduced called "VALIDATING" that is entered after a response has been receieved which needs to be validated, as long as we are still waiting for the DNSKEY/DS RRs from other DnsTransactions. This patch will request the DNSKEY/DS RRs bottom-up, and then validate them top-down. Caching of RRs is now only done after verification, so that the cache is not poisoned with known invalid data. The "DnsAnswer" object gained a substantial number of new calls, since we need to add/remove RRs to it dynamically now.
2015-12-09 18:13:16 +01:00
t->dnssec_result = _DNSSEC_RESULT_INVALID;
t->key = dns_resource_key_ref(key);
/* Find a fresh, unused transaction id */
do
random_bytes(&t->id, sizeof(t->id));
while (t->id == 0 ||
hashmap_get(s->manager->dns_transactions, UINT_TO_PTR(t->id)));
r = hashmap_put(s->manager->dns_transactions, UINT_TO_PTR(t->id), t);
if (r < 0) {
t->id = 0;
return r;
}
r = hashmap_replace(s->transactions_by_key, t->key, t);
if (r < 0) {
hashmap_remove(s->manager->dns_transactions, UINT_TO_PTR(t->id));
return r;
}
LIST_PREPEND(transactions_by_scope, s->transactions, t);
t->scope = s;
if (ret)
*ret = t;
t = NULL;
return 0;
}
static void dns_transaction_stop(DnsTransaction *t) {
assert(t);
t->timeout_event_source = sd_event_source_unref(t->timeout_event_source);
t->stream = dns_stream_free(t->stream);
/* Note that we do not drop the UDP socket here, as we want to
* reuse it to repeat the interaction. */
}
static void dns_transaction_tentative(DnsTransaction *t, DnsPacket *p) {
_cleanup_free_ char *pretty = NULL;
DnsZoneItem *z;
assert(t);
assert(p);
if (manager_our_packet(t->scope->manager, p) != 0)
return;
in_addr_to_string(p->family, &p->sender, &pretty);
log_debug("Transaction on scope %s on %s/%s got tentative packet from %s",
dns_protocol_to_string(t->scope->protocol),
t->scope->link ? t->scope->link->name : "*",
t->scope->family == AF_UNSPEC ? "*" : af_to_name(t->scope->family),
pretty);
/* RFC 4795, Section 4.1 says that the peer with the
* lexicographically smaller IP address loses */
if (memcmp(&p->sender, &p->destination, FAMILY_ADDRESS_SIZE(p->family)) >= 0) {
log_debug("Peer has lexicographically larger IP address and thus lost in the conflict.");
return;
}
log_debug("We have the lexicographically larger IP address and thus lost in the conflict.");
t->block_gc++;
resolved: chase DNSKEY/DS RRs when doing look-ups with DNSSEC enabled This adds initial support for validating RRSIG/DNSKEY/DS chains when doing lookups. Proof-of-non-existance, or proof-of-unsigned-zones is not implemented yet. With this change DnsTransaction objects will generate additional DnsTransaction objects when looking for DNSKEY or DS RRs to validate an RRSIG on a response. DnsTransaction objects are thus created for three reasons now: 1) Because a user asked for something to be resolved, i.e. requested by a DnsQuery/DnsQueryCandidate object. 2) As result of LLMNR RR probing, requested by a DnsZoneItem. 3) Because another DnsTransaction requires the requested RRs for validation of its own response. DnsTransactions are shared between all these users, and are GC automatically as soon as all of these users don't need a specific transaction anymore. To unify the handling of these three reasons for existance for a DnsTransaction, a new common naming is introduced: each DnsTransaction now tracks its "owners" via a Set* object named "notify_xyz", containing all owners to notify on completion. A new DnsTransaction state is introduced called "VALIDATING" that is entered after a response has been receieved which needs to be validated, as long as we are still waiting for the DNSKEY/DS RRs from other DnsTransactions. This patch will request the DNSKEY/DS RRs bottom-up, and then validate them top-down. Caching of RRs is now only done after verification, so that the cache is not poisoned with known invalid data. The "DnsAnswer" object gained a substantial number of new calls, since we need to add/remove RRs to it dynamically now.
2015-12-09 18:13:16 +01:00
while ((z = set_first(t->notify_zone_items))) {
/* First, make sure the zone item drops the reference
* to us */
dns_zone_item_probe_stop(z);
/* Secondly, report this as conflict, so that we might
* look for a different hostname */
dns_zone_item_conflict(z);
}
t->block_gc--;
dns_transaction_gc(t);
}
void dns_transaction_complete(DnsTransaction *t, DnsTransactionState state) {
DnsQueryCandidate *c;
DnsZoneItem *z;
resolved: chase DNSKEY/DS RRs when doing look-ups with DNSSEC enabled This adds initial support for validating RRSIG/DNSKEY/DS chains when doing lookups. Proof-of-non-existance, or proof-of-unsigned-zones is not implemented yet. With this change DnsTransaction objects will generate additional DnsTransaction objects when looking for DNSKEY or DS RRs to validate an RRSIG on a response. DnsTransaction objects are thus created for three reasons now: 1) Because a user asked for something to be resolved, i.e. requested by a DnsQuery/DnsQueryCandidate object. 2) As result of LLMNR RR probing, requested by a DnsZoneItem. 3) Because another DnsTransaction requires the requested RRs for validation of its own response. DnsTransactions are shared between all these users, and are GC automatically as soon as all of these users don't need a specific transaction anymore. To unify the handling of these three reasons for existance for a DnsTransaction, a new common naming is introduced: each DnsTransaction now tracks its "owners" via a Set* object named "notify_xyz", containing all owners to notify on completion. A new DnsTransaction state is introduced called "VALIDATING" that is entered after a response has been receieved which needs to be validated, as long as we are still waiting for the DNSKEY/DS RRs from other DnsTransactions. This patch will request the DNSKEY/DS RRs bottom-up, and then validate them top-down. Caching of RRs is now only done after verification, so that the cache is not poisoned with known invalid data. The "DnsAnswer" object gained a substantial number of new calls, since we need to add/remove RRs to it dynamically now.
2015-12-09 18:13:16 +01:00
DnsTransaction *d;
Iterator i;
assert(t);
resolved: chase DNSKEY/DS RRs when doing look-ups with DNSSEC enabled This adds initial support for validating RRSIG/DNSKEY/DS chains when doing lookups. Proof-of-non-existance, or proof-of-unsigned-zones is not implemented yet. With this change DnsTransaction objects will generate additional DnsTransaction objects when looking for DNSKEY or DS RRs to validate an RRSIG on a response. DnsTransaction objects are thus created for three reasons now: 1) Because a user asked for something to be resolved, i.e. requested by a DnsQuery/DnsQueryCandidate object. 2) As result of LLMNR RR probing, requested by a DnsZoneItem. 3) Because another DnsTransaction requires the requested RRs for validation of its own response. DnsTransactions are shared between all these users, and are GC automatically as soon as all of these users don't need a specific transaction anymore. To unify the handling of these three reasons for existance for a DnsTransaction, a new common naming is introduced: each DnsTransaction now tracks its "owners" via a Set* object named "notify_xyz", containing all owners to notify on completion. A new DnsTransaction state is introduced called "VALIDATING" that is entered after a response has been receieved which needs to be validated, as long as we are still waiting for the DNSKEY/DS RRs from other DnsTransactions. This patch will request the DNSKEY/DS RRs bottom-up, and then validate them top-down. Caching of RRs is now only done after verification, so that the cache is not poisoned with known invalid data. The "DnsAnswer" object gained a substantial number of new calls, since we need to add/remove RRs to it dynamically now.
2015-12-09 18:13:16 +01:00
assert(!DNS_TRANSACTION_IS_LIVE(state));
/* Note that this call might invalidate the query. Callers
* should hence not attempt to access the query or transaction
* after calling this function. */
log_debug("Transaction on scope %s on %s/%s now complete with <%s> from %s",
dns_protocol_to_string(t->scope->protocol),
t->scope->link ? t->scope->link->name : "*",
t->scope->family == AF_UNSPEC ? "*" : af_to_name(t->scope->family),
dns_transaction_state_to_string(state),
t->answer_source < 0 ? "none" : dns_transaction_source_to_string(t->answer_source));
t->state = state;
dns_transaction_stop(t);
/* Notify all queries that are interested, but make sure the
* transaction isn't freed while we are still looking at it */
t->block_gc++;
resolved: chase DNSKEY/DS RRs when doing look-ups with DNSSEC enabled This adds initial support for validating RRSIG/DNSKEY/DS chains when doing lookups. Proof-of-non-existance, or proof-of-unsigned-zones is not implemented yet. With this change DnsTransaction objects will generate additional DnsTransaction objects when looking for DNSKEY or DS RRs to validate an RRSIG on a response. DnsTransaction objects are thus created for three reasons now: 1) Because a user asked for something to be resolved, i.e. requested by a DnsQuery/DnsQueryCandidate object. 2) As result of LLMNR RR probing, requested by a DnsZoneItem. 3) Because another DnsTransaction requires the requested RRs for validation of its own response. DnsTransactions are shared between all these users, and are GC automatically as soon as all of these users don't need a specific transaction anymore. To unify the handling of these three reasons for existance for a DnsTransaction, a new common naming is introduced: each DnsTransaction now tracks its "owners" via a Set* object named "notify_xyz", containing all owners to notify on completion. A new DnsTransaction state is introduced called "VALIDATING" that is entered after a response has been receieved which needs to be validated, as long as we are still waiting for the DNSKEY/DS RRs from other DnsTransactions. This patch will request the DNSKEY/DS RRs bottom-up, and then validate them top-down. Caching of RRs is now only done after verification, so that the cache is not poisoned with known invalid data. The "DnsAnswer" object gained a substantial number of new calls, since we need to add/remove RRs to it dynamically now.
2015-12-09 18:13:16 +01:00
SET_FOREACH(c, t->notify_query_candidates, i)
dns_query_candidate_notify(c);
SET_FOREACH(z, t->notify_zone_items, i)
dns_zone_item_notify(z);
SET_FOREACH(d, t->notify_transactions, i)
dns_transaction_notify(d, t);
t->block_gc--;
dns_transaction_gc(t);
}
static int on_stream_complete(DnsStream *s, int error) {
_cleanup_(dns_packet_unrefp) DnsPacket *p = NULL;
DnsTransaction *t;
assert(s);
assert(s->transaction);
/* Copy the data we care about out of the stream before we
* destroy it. */
t = s->transaction;
p = dns_packet_ref(s->read_packet);
t->stream = dns_stream_free(t->stream);
if (error != 0) {
dns_transaction_complete(t, DNS_TRANSACTION_RESOURCES);
return 0;
}
if (dns_packet_validate_reply(p) <= 0) {
2015-09-03 12:04:31 +02:00
log_debug("Invalid TCP reply packet.");
dns_transaction_complete(t, DNS_TRANSACTION_INVALID_REPLY);
return 0;
}
dns_scope_check_conflicts(t->scope, p);
t->block_gc++;
dns_transaction_process_reply(t, p);
t->block_gc--;
/* If the response wasn't useful, then complete the transition now */
if (t->state == DNS_TRANSACTION_PENDING)
dns_transaction_complete(t, DNS_TRANSACTION_INVALID_REPLY);
return 0;
}
static int dns_transaction_open_tcp(DnsTransaction *t) {
DnsServer *server = NULL;
_cleanup_close_ int fd = -1;
int r;
assert(t);
if (t->stream)
return 0;
switch (t->scope->protocol) {
case DNS_PROTOCOL_DNS:
fd = dns_scope_tcp_socket(t->scope, AF_UNSPEC, NULL, 53, &server);
break;
case DNS_PROTOCOL_LLMNR:
2015-08-21 12:26:34 +02:00
/* When we already received a reply to this (but it was truncated), send to its sender address */
if (t->received)
fd = dns_scope_tcp_socket(t->scope, t->received->family, &t->received->sender, t->received->sender_port, NULL);
else {
union in_addr_union address;
int family = AF_UNSPEC;
/* Otherwise, try to talk to the owner of a
* the IP address, in case this is a reverse
* PTR lookup */
r = dns_name_address(DNS_RESOURCE_KEY_NAME(t->key), &family, &address);
if (r < 0)
return r;
if (r == 0)
return -EINVAL;
if (family != t->scope->family)
return -ESRCH;
fd = dns_scope_tcp_socket(t->scope, family, &address, LLMNR_PORT, NULL);
}
break;
default:
return -EAFNOSUPPORT;
}
if (fd < 0)
return fd;
r = dns_stream_new(t->scope->manager, &t->stream, t->scope->protocol, fd);
if (r < 0)
return r;
fd = -1;
r = dns_stream_write_packet(t->stream, t->sent);
if (r < 0) {
t->stream = dns_stream_free(t->stream);
return r;
}
dns_server_unref(t->server);
t->server = dns_server_ref(server);
t->received = dns_packet_unref(t->received);
t->answer = dns_answer_unref(t->answer);
t->answer_rcode = 0;
t->stream->complete = on_stream_complete;
t->stream->transaction = t;
/* The interface index is difficult to determine if we are
* connecting to the local host, hence fill this in right away
* instead of determining it from the socket */
if (t->scope->link)
t->stream->ifindex = t->scope->link->ifindex;
return 0;
}
static void dns_transaction_next_dns_server(DnsTransaction *t) {
assert(t);
t->server = dns_server_unref(t->server);
t->dns_udp_event_source = sd_event_source_unref(t->dns_udp_event_source);
t->dns_udp_fd = safe_close(t->dns_udp_fd);
dns_scope_next_dns_server(t->scope);
}
resolved: chase DNSKEY/DS RRs when doing look-ups with DNSSEC enabled This adds initial support for validating RRSIG/DNSKEY/DS chains when doing lookups. Proof-of-non-existance, or proof-of-unsigned-zones is not implemented yet. With this change DnsTransaction objects will generate additional DnsTransaction objects when looking for DNSKEY or DS RRs to validate an RRSIG on a response. DnsTransaction objects are thus created for three reasons now: 1) Because a user asked for something to be resolved, i.e. requested by a DnsQuery/DnsQueryCandidate object. 2) As result of LLMNR RR probing, requested by a DnsZoneItem. 3) Because another DnsTransaction requires the requested RRs for validation of its own response. DnsTransactions are shared between all these users, and are GC automatically as soon as all of these users don't need a specific transaction anymore. To unify the handling of these three reasons for existance for a DnsTransaction, a new common naming is introduced: each DnsTransaction now tracks its "owners" via a Set* object named "notify_xyz", containing all owners to notify on completion. A new DnsTransaction state is introduced called "VALIDATING" that is entered after a response has been receieved which needs to be validated, as long as we are still waiting for the DNSKEY/DS RRs from other DnsTransactions. This patch will request the DNSKEY/DS RRs bottom-up, and then validate them top-down. Caching of RRs is now only done after verification, so that the cache is not poisoned with known invalid data. The "DnsAnswer" object gained a substantial number of new calls, since we need to add/remove RRs to it dynamically now.
2015-12-09 18:13:16 +01:00
static void dns_transaction_cache_answer(DnsTransaction *t) {
unsigned n_cache;
assert(t);
/* For mDNS we cache whenever we get the packet, rather than
* in each transaction. */
if (!IN_SET(t->scope->protocol, DNS_PROTOCOL_DNS, DNS_PROTOCOL_LLMNR))
return;
/* We never cache if this packet is from the local host, under
* the assumption that a locally running DNS server would
* cache this anyway, and probably knows better when to flush
* the cache then we could. */
if (!DNS_PACKET_SHALL_CACHE(t->received))
return;
/* According to RFC 4795, section 2.9. only the RRs from the
* answer section shall be cached. However, if we know the
* message is authenticated, we might as well cache
* everything. */
if (t->answer_authenticated)
n_cache = dns_answer_size(t->answer);
else
n_cache = DNS_PACKET_ANCOUNT(t->received);
dns_cache_put(&t->scope->cache,
t->key,
t->answer_rcode,
t->answer,
n_cache,
t->answer_authenticated,
0,
t->received->family,
&t->received->sender);
}
static void dns_transaction_process_dnssec(DnsTransaction *t) {
int r;
assert(t);
/* Are there ongoing DNSSEC transactions? If so, let's wait for them. */
if (!set_isempty(t->dnssec_transactions))
return;
/* All our auxiliary DNSSEC transactions are complete now. Try
* to validate our RRset now. */
r = dns_transaction_validate_dnssec(t);
if (r < 0) {
dns_transaction_complete(t, DNS_TRANSACTION_RESOURCES);
return;
}
if (!IN_SET(t->dnssec_result, _DNSSEC_RESULT_INVALID, DNSSEC_VALIDATED, DNSSEC_NO_SIGNATURE /* FOR NOW! */)) {
dns_transaction_complete(t, DNS_TRANSACTION_DNSSEC_FAILED);
return;
}
dns_transaction_cache_answer(t);
if (t->answer_rcode == DNS_RCODE_SUCCESS)
dns_transaction_complete(t, DNS_TRANSACTION_SUCCESS);
else
dns_transaction_complete(t, DNS_TRANSACTION_FAILURE);
}
void dns_transaction_process_reply(DnsTransaction *t, DnsPacket *p) {
usec_t ts;
int r;
assert(t);
assert(p);
assert(t->state == DNS_TRANSACTION_PENDING);
assert(t->scope);
assert(t->scope->manager);
/* Note that this call might invalidate the query. Callers
* should hence not attempt to access the query or transaction
* after calling this function. */
log_debug("Processing incoming packet on transaction %" PRIu16".", t->id);
switch (t->scope->protocol) {
case DNS_PROTOCOL_LLMNR:
assert(t->scope->link);
/* For LLMNR we will not accept any packets from other
* interfaces */
if (p->ifindex != t->scope->link->ifindex)
return;
if (p->family != t->scope->family)
return;
/* Tentative packets are not full responses but still
* useful for identifying uniqueness conflicts during
* probing. */
if (DNS_PACKET_LLMNR_T(p)) {
dns_transaction_tentative(t, p);
return;
}
break;
case DNS_PROTOCOL_MDNS:
assert(t->scope->link);
/* For mDNS we will not accept any packets from other interfaces */
if (p->ifindex != t->scope->link->ifindex)
return;
if (p->family != t->scope->family)
return;
break;
case DNS_PROTOCOL_DNS:
break;
default:
assert_not_reached("Invalid DNS protocol.");
}
if (t->received != p) {
dns_packet_unref(t->received);
t->received = dns_packet_ref(p);
}
t->answer_source = DNS_TRANSACTION_NETWORK;
if (p->ipproto == IPPROTO_TCP) {
if (DNS_PACKET_TC(p)) {
/* Truncated via TCP? Somebody must be fucking with us */
dns_transaction_complete(t, DNS_TRANSACTION_INVALID_REPLY);
return;
}
if (DNS_PACKET_ID(p) != t->id) {
/* Not the reply to our query? Somebody must be fucking with us */
dns_transaction_complete(t, DNS_TRANSACTION_INVALID_REPLY);
return;
}
}
assert_se(sd_event_now(t->scope->manager->event, clock_boottime_or_monotonic(), &ts) >= 0);
switch (t->scope->protocol) {
case DNS_PROTOCOL_DNS:
assert(t->server);
if (IN_SET(DNS_PACKET_RCODE(p), DNS_RCODE_FORMERR, DNS_RCODE_SERVFAIL, DNS_RCODE_NOTIMP)) {
/* Request failed, immediately try again with reduced features */
log_debug("Server returned error: %s", dns_rcode_to_string(DNS_PACKET_RCODE(p)));
dns_server_packet_failed(t->server, t->current_features);
r = dns_transaction_go(t);
if (r < 0) {
dns_transaction_complete(t, DNS_TRANSACTION_RESOURCES);
return;
}
return;
} else
dns_server_packet_received(t->server, t->current_features, ts - t->start_usec, p->size);
break;
case DNS_PROTOCOL_LLMNR:
case DNS_PROTOCOL_MDNS:
dns_scope_packet_received(t->scope, ts - t->start_usec);
break;
default:
assert_not_reached("Invalid DNS protocol.");
}
if (DNS_PACKET_TC(p)) {
/* Truncated packets for mDNS are not allowed. Give up immediately. */
if (t->scope->protocol == DNS_PROTOCOL_MDNS) {
dns_transaction_complete(t, DNS_TRANSACTION_INVALID_REPLY);
return;
}
/* Response was truncated, let's try again with good old TCP */
r = dns_transaction_open_tcp(t);
if (r == -ESRCH) {
/* No servers found? Damn! */
dns_transaction_complete(t, DNS_TRANSACTION_NO_SERVERS);
return;
}
if (r < 0) {
/* On LLMNR, if we cannot connect to the host,
* we immediately give up */
if (t->scope->protocol == DNS_PROTOCOL_LLMNR) {
dns_transaction_complete(t, DNS_TRANSACTION_RESOURCES);
return;
}
/* On DNS, couldn't send? Try immediately again, with a new server */
dns_transaction_next_dns_server(t);
r = dns_transaction_go(t);
if (r < 0) {
dns_transaction_complete(t, DNS_TRANSACTION_RESOURCES);
return;
}
return;
}
}
/* Parse message, if it isn't parsed yet. */
r = dns_packet_extract(p);
if (r < 0) {
dns_transaction_complete(t, DNS_TRANSACTION_INVALID_REPLY);
return;
}
if (IN_SET(t->scope->protocol, DNS_PROTOCOL_DNS, DNS_PROTOCOL_LLMNR)) {
/* Only consider responses with equivalent query section to the request */
r = dns_packet_is_reply_for(p, t->key);
if (r < 0) {
dns_transaction_complete(t, DNS_TRANSACTION_RESOURCES);
return;
}
if (r == 0) {
dns_transaction_complete(t, DNS_TRANSACTION_INVALID_REPLY);
return;
}
/* Install the answer as answer to the transaction */
dns_answer_unref(t->answer);
t->answer = dns_answer_ref(p->answer);
t->answer_rcode = DNS_PACKET_RCODE(p);
t->answer_authenticated = t->scope->dnssec_mode == DNSSEC_TRUST && DNS_PACKET_AD(p);
resolved: chase DNSKEY/DS RRs when doing look-ups with DNSSEC enabled This adds initial support for validating RRSIG/DNSKEY/DS chains when doing lookups. Proof-of-non-existance, or proof-of-unsigned-zones is not implemented yet. With this change DnsTransaction objects will generate additional DnsTransaction objects when looking for DNSKEY or DS RRs to validate an RRSIG on a response. DnsTransaction objects are thus created for three reasons now: 1) Because a user asked for something to be resolved, i.e. requested by a DnsQuery/DnsQueryCandidate object. 2) As result of LLMNR RR probing, requested by a DnsZoneItem. 3) Because another DnsTransaction requires the requested RRs for validation of its own response. DnsTransactions are shared between all these users, and are GC automatically as soon as all of these users don't need a specific transaction anymore. To unify the handling of these three reasons for existance for a DnsTransaction, a new common naming is introduced: each DnsTransaction now tracks its "owners" via a Set* object named "notify_xyz", containing all owners to notify on completion. A new DnsTransaction state is introduced called "VALIDATING" that is entered after a response has been receieved which needs to be validated, as long as we are still waiting for the DNSKEY/DS RRs from other DnsTransactions. This patch will request the DNSKEY/DS RRs bottom-up, and then validate them top-down. Caching of RRs is now only done after verification, so that the cache is not poisoned with known invalid data. The "DnsAnswer" object gained a substantial number of new calls, since we need to add/remove RRs to it dynamically now.
2015-12-09 18:13:16 +01:00
r = dns_transaction_request_dnssec_keys(t);
if (r < 0) {
dns_transaction_complete(t, DNS_TRANSACTION_RESOURCES);
return;
}
if (r > 0) {
/* There are DNSSEC transactions pending now. Update the state accordingly. */
t->state = DNS_TRANSACTION_VALIDATING;
return;
}
}
resolved: chase DNSKEY/DS RRs when doing look-ups with DNSSEC enabled This adds initial support for validating RRSIG/DNSKEY/DS chains when doing lookups. Proof-of-non-existance, or proof-of-unsigned-zones is not implemented yet. With this change DnsTransaction objects will generate additional DnsTransaction objects when looking for DNSKEY or DS RRs to validate an RRSIG on a response. DnsTransaction objects are thus created for three reasons now: 1) Because a user asked for something to be resolved, i.e. requested by a DnsQuery/DnsQueryCandidate object. 2) As result of LLMNR RR probing, requested by a DnsZoneItem. 3) Because another DnsTransaction requires the requested RRs for validation of its own response. DnsTransactions are shared between all these users, and are GC automatically as soon as all of these users don't need a specific transaction anymore. To unify the handling of these three reasons for existance for a DnsTransaction, a new common naming is introduced: each DnsTransaction now tracks its "owners" via a Set* object named "notify_xyz", containing all owners to notify on completion. A new DnsTransaction state is introduced called "VALIDATING" that is entered after a response has been receieved which needs to be validated, as long as we are still waiting for the DNSKEY/DS RRs from other DnsTransactions. This patch will request the DNSKEY/DS RRs bottom-up, and then validate them top-down. Caching of RRs is now only done after verification, so that the cache is not poisoned with known invalid data. The "DnsAnswer" object gained a substantial number of new calls, since we need to add/remove RRs to it dynamically now.
2015-12-09 18:13:16 +01:00
dns_transaction_process_dnssec(t);
}
static int on_dns_packet(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
_cleanup_(dns_packet_unrefp) DnsPacket *p = NULL;
DnsTransaction *t = userdata;
int r;
assert(t);
assert(t->scope);
r = manager_recv(t->scope->manager, fd, DNS_PROTOCOL_DNS, &p);
if (r <= 0)
return r;
if (dns_packet_validate_reply(p) > 0 &&
DNS_PACKET_ID(p) == t->id)
dns_transaction_process_reply(t, p);
else
log_debug("Invalid DNS packet, ignoring.");
return 0;
}
static int dns_transaction_emit(DnsTransaction *t) {
int r;
assert(t);
if (t->scope->protocol == DNS_PROTOCOL_DNS && !t->server) {
DnsServer *server = NULL;
_cleanup_close_ int fd = -1;
fd = dns_scope_udp_dns_socket(t->scope, &server);
if (fd < 0)
return fd;
r = sd_event_add_io(t->scope->manager->event, &t->dns_udp_event_source, fd, EPOLLIN, on_dns_packet, t);
if (r < 0)
return r;
t->dns_udp_fd = fd;
fd = -1;
t->server = dns_server_ref(server);
}
r = dns_scope_emit(t->scope, t->dns_udp_fd, t->server, t->sent);
if (r < 0)
return r;
if (t->server)
t->current_features = t->server->possible_features;
return 0;
}
static int on_transaction_timeout(sd_event_source *s, usec_t usec, void *userdata) {
DnsTransaction *t = userdata;
int r;
assert(s);
assert(t);
if (!t->initial_jitter_scheduled || t->initial_jitter_elapsed) {
/* Timeout reached? Increase the timeout for the server used */
switch (t->scope->protocol) {
case DNS_PROTOCOL_DNS:
assert(t->server);
dns_server_packet_lost(t->server, t->current_features, usec - t->start_usec);
break;
case DNS_PROTOCOL_LLMNR:
case DNS_PROTOCOL_MDNS:
dns_scope_packet_lost(t->scope, usec - t->start_usec);
break;
default:
assert_not_reached("Invalid DNS protocol.");
}
if (t->initial_jitter_scheduled)
t->initial_jitter_elapsed = true;
}
/* ...and try again with a new server */
dns_transaction_next_dns_server(t);
r = dns_transaction_go(t);
if (r < 0)
dns_transaction_complete(t, DNS_TRANSACTION_RESOURCES);
return 0;
}
static usec_t transaction_get_resend_timeout(DnsTransaction *t) {
assert(t);
assert(t->scope);
switch (t->scope->protocol) {
case DNS_PROTOCOL_DNS:
assert(t->server);
return t->server->resend_timeout;
case DNS_PROTOCOL_MDNS:
assert(t->n_attempts > 0);
return (1 << (t->n_attempts - 1)) * USEC_PER_SEC;
case DNS_PROTOCOL_LLMNR:
return t->scope->resend_timeout;
default:
assert_not_reached("Invalid DNS protocol.");
}
}
static int dns_transaction_prepare(DnsTransaction *t, usec_t ts) {
bool had_stream;
int r;
assert(t);
had_stream = !!t->stream;
dns_transaction_stop(t);
if (t->n_attempts >= TRANSACTION_ATTEMPTS_MAX(t->scope->protocol)) {
dns_transaction_complete(t, DNS_TRANSACTION_ATTEMPTS_MAX_REACHED);
return 0;
}
if (t->scope->protocol == DNS_PROTOCOL_LLMNR && had_stream) {
/* If we already tried via a stream, then we don't
* retry on LLMNR. See RFC 4795, Section 2.7. */
dns_transaction_complete(t, DNS_TRANSACTION_ATTEMPTS_MAX_REACHED);
return 0;
}
t->n_attempts++;
t->start_usec = ts;
t->received = dns_packet_unref(t->received);
t->answer = dns_answer_unref(t->answer);
t->answer_rcode = 0;
t->answer_source = _DNS_TRANSACTION_SOURCE_INVALID;
/* Check the trust anchor. Do so only on classic DNS, since DNSSEC does not apply otherwise. */
if (t->scope->protocol == DNS_PROTOCOL_DNS) {
r = dns_trust_anchor_lookup(&t->scope->manager->trust_anchor, t->key, &t->answer);
if (r < 0)
return r;
if (r > 0) {
t->answer_rcode = DNS_RCODE_SUCCESS;
t->answer_source = DNS_TRANSACTION_TRUST_ANCHOR;
t->answer_authenticated = true;
dns_transaction_complete(t, DNS_TRANSACTION_SUCCESS);
return 0;
}
}
/* Check the zone, but only if this transaction is not used
* for probing or verifying a zone item. */
resolved: chase DNSKEY/DS RRs when doing look-ups with DNSSEC enabled This adds initial support for validating RRSIG/DNSKEY/DS chains when doing lookups. Proof-of-non-existance, or proof-of-unsigned-zones is not implemented yet. With this change DnsTransaction objects will generate additional DnsTransaction objects when looking for DNSKEY or DS RRs to validate an RRSIG on a response. DnsTransaction objects are thus created for three reasons now: 1) Because a user asked for something to be resolved, i.e. requested by a DnsQuery/DnsQueryCandidate object. 2) As result of LLMNR RR probing, requested by a DnsZoneItem. 3) Because another DnsTransaction requires the requested RRs for validation of its own response. DnsTransactions are shared between all these users, and are GC automatically as soon as all of these users don't need a specific transaction anymore. To unify the handling of these three reasons for existance for a DnsTransaction, a new common naming is introduced: each DnsTransaction now tracks its "owners" via a Set* object named "notify_xyz", containing all owners to notify on completion. A new DnsTransaction state is introduced called "VALIDATING" that is entered after a response has been receieved which needs to be validated, as long as we are still waiting for the DNSKEY/DS RRs from other DnsTransactions. This patch will request the DNSKEY/DS RRs bottom-up, and then validate them top-down. Caching of RRs is now only done after verification, so that the cache is not poisoned with known invalid data. The "DnsAnswer" object gained a substantial number of new calls, since we need to add/remove RRs to it dynamically now.
2015-12-09 18:13:16 +01:00
if (set_isempty(t->notify_zone_items)) {
r = dns_zone_lookup(&t->scope->zone, t->key, &t->answer, NULL, NULL);
if (r < 0)
return r;
if (r > 0) {
t->answer_rcode = DNS_RCODE_SUCCESS;
t->answer_source = DNS_TRANSACTION_ZONE;
t->answer_authenticated = true;
dns_transaction_complete(t, DNS_TRANSACTION_SUCCESS);
return 0;
}
}
/* Check the cache, but only if this transaction is not used
* for probing or verifying a zone item. */
resolved: chase DNSKEY/DS RRs when doing look-ups with DNSSEC enabled This adds initial support for validating RRSIG/DNSKEY/DS chains when doing lookups. Proof-of-non-existance, or proof-of-unsigned-zones is not implemented yet. With this change DnsTransaction objects will generate additional DnsTransaction objects when looking for DNSKEY or DS RRs to validate an RRSIG on a response. DnsTransaction objects are thus created for three reasons now: 1) Because a user asked for something to be resolved, i.e. requested by a DnsQuery/DnsQueryCandidate object. 2) As result of LLMNR RR probing, requested by a DnsZoneItem. 3) Because another DnsTransaction requires the requested RRs for validation of its own response. DnsTransactions are shared between all these users, and are GC automatically as soon as all of these users don't need a specific transaction anymore. To unify the handling of these three reasons for existance for a DnsTransaction, a new common naming is introduced: each DnsTransaction now tracks its "owners" via a Set* object named "notify_xyz", containing all owners to notify on completion. A new DnsTransaction state is introduced called "VALIDATING" that is entered after a response has been receieved which needs to be validated, as long as we are still waiting for the DNSKEY/DS RRs from other DnsTransactions. This patch will request the DNSKEY/DS RRs bottom-up, and then validate them top-down. Caching of RRs is now only done after verification, so that the cache is not poisoned with known invalid data. The "DnsAnswer" object gained a substantial number of new calls, since we need to add/remove RRs to it dynamically now.
2015-12-09 18:13:16 +01:00
if (set_isempty(t->notify_zone_items)) {
/* Before trying the cache, let's make sure we figured out a
* server to use. Should this cause a change of server this
* might flush the cache. */
dns_scope_get_dns_server(t->scope);
/* Let's then prune all outdated entries */
dns_cache_prune(&t->scope->cache);
r = dns_cache_lookup(&t->scope->cache, t->key, &t->answer_rcode, &t->answer, &t->answer_authenticated);
if (r < 0)
return r;
if (r > 0) {
t->answer_source = DNS_TRANSACTION_CACHE;
if (t->answer_rcode == DNS_RCODE_SUCCESS)
dns_transaction_complete(t, DNS_TRANSACTION_SUCCESS);
else
dns_transaction_complete(t, DNS_TRANSACTION_FAILURE);
return 0;
}
}
return 1;
}
static int dns_transaction_make_packet_mdns(DnsTransaction *t) {
_cleanup_(dns_packet_unrefp) DnsPacket *p = NULL;
bool add_known_answers = false;
DnsTransaction *other;
unsigned qdcount;
usec_t ts;
int r;
assert(t);
assert(t->scope->protocol == DNS_PROTOCOL_MDNS);
/* Discard any previously prepared packet, so we can start over and coaleasce again */
t->sent = dns_packet_unref(t->sent);
r = dns_packet_new_query(&p, t->scope->protocol, 0, false);
if (r < 0)
return r;
r = dns_packet_append_key(p, t->key, NULL);
if (r < 0)
return r;
qdcount = 1;
if (dns_key_is_shared(t->key))
add_known_answers = true;
/*
* For mDNS, we want to coalesce as many open queries in pending transactions into one single
* query packet on the wire as possible. To achieve that, we iterate through all pending transactions
* in our current scope, and see whether their timing contraints allow them to be sent.
*/
assert_se(sd_event_now(t->scope->manager->event, clock_boottime_or_monotonic(), &ts) >= 0);
LIST_FOREACH(transactions_by_scope, other, t->scope->transactions) {
/* Skip ourselves */
if (other == t)
continue;
if (other->state != DNS_TRANSACTION_PENDING)
continue;
if (other->next_attempt_after > ts)
continue;
if (qdcount >= UINT16_MAX)
break;
r = dns_packet_append_key(p, other->key, NULL);
/*
* If we can't stuff more questions into the packet, just give up.
* One of the 'other' transactions will fire later and take care of the rest.
*/
if (r == -EMSGSIZE)
break;
if (r < 0)
return r;
r = dns_transaction_prepare(other, ts);
if (r <= 0)
continue;
ts += transaction_get_resend_timeout(other);
r = sd_event_add_time(
other->scope->manager->event,
&other->timeout_event_source,
clock_boottime_or_monotonic(),
ts, 0,
on_transaction_timeout, other);
if (r < 0)
return r;
other->state = DNS_TRANSACTION_PENDING;
other->next_attempt_after = ts;
qdcount ++;
if (dns_key_is_shared(other->key))
add_known_answers = true;
}
DNS_PACKET_HEADER(p)->qdcount = htobe16(qdcount);
/* Append known answer section if we're asking for any shared record */
if (add_known_answers) {
r = dns_cache_export_shared_to_packet(&t->scope->cache, p);
if (r < 0)
return r;
}
t->sent = p;
p = NULL;
return 0;
}
static int dns_transaction_make_packet(DnsTransaction *t) {
_cleanup_(dns_packet_unrefp) DnsPacket *p = NULL;
int r;
assert(t);
if (t->scope->protocol == DNS_PROTOCOL_MDNS)
return dns_transaction_make_packet_mdns(t);
if (t->sent)
return 0;
r = dns_packet_new_query(&p, t->scope->protocol, 0, t->scope->dnssec_mode == DNSSEC_YES);
if (r < 0)
return r;
r = dns_scope_good_key(t->scope, t->key);
if (r < 0)
return r;
if (r == 0)
return -EDOM;
r = dns_packet_append_key(p, t->key, NULL);
if (r < 0)
return r;
DNS_PACKET_HEADER(p)->qdcount = htobe16(1);
DNS_PACKET_HEADER(p)->id = t->id;
t->sent = p;
p = NULL;
return 0;
}
int dns_transaction_go(DnsTransaction *t) {
usec_t ts;
int r;
assert(t);
assert_se(sd_event_now(t->scope->manager->event, clock_boottime_or_monotonic(), &ts) >= 0);
resolved: chase DNSKEY/DS RRs when doing look-ups with DNSSEC enabled This adds initial support for validating RRSIG/DNSKEY/DS chains when doing lookups. Proof-of-non-existance, or proof-of-unsigned-zones is not implemented yet. With this change DnsTransaction objects will generate additional DnsTransaction objects when looking for DNSKEY or DS RRs to validate an RRSIG on a response. DnsTransaction objects are thus created for three reasons now: 1) Because a user asked for something to be resolved, i.e. requested by a DnsQuery/DnsQueryCandidate object. 2) As result of LLMNR RR probing, requested by a DnsZoneItem. 3) Because another DnsTransaction requires the requested RRs for validation of its own response. DnsTransactions are shared between all these users, and are GC automatically as soon as all of these users don't need a specific transaction anymore. To unify the handling of these three reasons for existance for a DnsTransaction, a new common naming is introduced: each DnsTransaction now tracks its "owners" via a Set* object named "notify_xyz", containing all owners to notify on completion. A new DnsTransaction state is introduced called "VALIDATING" that is entered after a response has been receieved which needs to be validated, as long as we are still waiting for the DNSKEY/DS RRs from other DnsTransactions. This patch will request the DNSKEY/DS RRs bottom-up, and then validate them top-down. Caching of RRs is now only done after verification, so that the cache is not poisoned with known invalid data. The "DnsAnswer" object gained a substantial number of new calls, since we need to add/remove RRs to it dynamically now.
2015-12-09 18:13:16 +01:00
r = dns_transaction_prepare(t, ts);
if (r <= 0)
return r;
resolved: chase DNSKEY/DS RRs when doing look-ups with DNSSEC enabled This adds initial support for validating RRSIG/DNSKEY/DS chains when doing lookups. Proof-of-non-existance, or proof-of-unsigned-zones is not implemented yet. With this change DnsTransaction objects will generate additional DnsTransaction objects when looking for DNSKEY or DS RRs to validate an RRSIG on a response. DnsTransaction objects are thus created for three reasons now: 1) Because a user asked for something to be resolved, i.e. requested by a DnsQuery/DnsQueryCandidate object. 2) As result of LLMNR RR probing, requested by a DnsZoneItem. 3) Because another DnsTransaction requires the requested RRs for validation of its own response. DnsTransactions are shared between all these users, and are GC automatically as soon as all of these users don't need a specific transaction anymore. To unify the handling of these three reasons for existance for a DnsTransaction, a new common naming is introduced: each DnsTransaction now tracks its "owners" via a Set* object named "notify_xyz", containing all owners to notify on completion. A new DnsTransaction state is introduced called "VALIDATING" that is entered after a response has been receieved which needs to be validated, as long as we are still waiting for the DNSKEY/DS RRs from other DnsTransactions. This patch will request the DNSKEY/DS RRs bottom-up, and then validate them top-down. Caching of RRs is now only done after verification, so that the cache is not poisoned with known invalid data. The "DnsAnswer" object gained a substantial number of new calls, since we need to add/remove RRs to it dynamically now.
2015-12-09 18:13:16 +01:00
if (log_get_max_level() >= LOG_DEBUG) {
_cleanup_free_ char *ks = NULL;
(void) dns_resource_key_to_string(t->key, &ks);
log_debug("Excercising transaction for <%s> on scope %s on %s/%s",
ks ? strstrip(ks) : "???",
dns_protocol_to_string(t->scope->protocol),
t->scope->link ? t->scope->link->name : "*",
t->scope->family == AF_UNSPEC ? "*" : af_to_name(t->scope->family));
}
if (!t->initial_jitter_scheduled &&
(t->scope->protocol == DNS_PROTOCOL_LLMNR ||
t->scope->protocol == DNS_PROTOCOL_MDNS)) {
usec_t jitter, accuracy;
/* RFC 4795 Section 2.7 suggests all queries should be
* delayed by a random time from 0 to JITTER_INTERVAL. */
t->initial_jitter_scheduled = true;
random_bytes(&jitter, sizeof(jitter));
switch (t->scope->protocol) {
case DNS_PROTOCOL_LLMNR:
jitter %= LLMNR_JITTER_INTERVAL_USEC;
accuracy = LLMNR_JITTER_INTERVAL_USEC;
break;
case DNS_PROTOCOL_MDNS:
jitter %= MDNS_JITTER_RANGE_USEC;
jitter += MDNS_JITTER_MIN_USEC;
accuracy = MDNS_JITTER_RANGE_USEC;
break;
default:
assert_not_reached("bad protocol");
}
r = sd_event_add_time(
t->scope->manager->event,
&t->timeout_event_source,
clock_boottime_or_monotonic(),
ts + jitter, accuracy,
on_transaction_timeout, t);
if (r < 0)
return r;
t->n_attempts = 0;
t->next_attempt_after = ts;
t->state = DNS_TRANSACTION_PENDING;
log_debug("Delaying %s transaction for " USEC_FMT "us.", dns_protocol_to_string(t->scope->protocol), jitter);
return 0;
}
/* Otherwise, we need to ask the network */
r = dns_transaction_make_packet(t);
if (r == -EDOM) {
/* Not the right request to make on this network?
* (i.e. an A request made on IPv6 or an AAAA request
* made on IPv4, on LLMNR or mDNS.) */
dns_transaction_complete(t, DNS_TRANSACTION_NO_SERVERS);
return 0;
}
if (r < 0)
return r;
if (t->scope->protocol == DNS_PROTOCOL_LLMNR &&
(dns_name_endswith(DNS_RESOURCE_KEY_NAME(t->key), "in-addr.arpa") > 0 ||
dns_name_endswith(DNS_RESOURCE_KEY_NAME(t->key), "ip6.arpa") > 0)) {
/* RFC 4795, Section 2.4. says reverse lookups shall
* always be made via TCP on LLMNR */
r = dns_transaction_open_tcp(t);
} else {
/* Try via UDP, and if that fails due to large size or lack of
* support try via TCP */
r = dns_transaction_emit(t);
if (r == -EMSGSIZE || r == -EAGAIN)
r = dns_transaction_open_tcp(t);
}
if (r == -ESRCH) {
/* No servers to send this to? */
dns_transaction_complete(t, DNS_TRANSACTION_NO_SERVERS);
return 0;
} else if (r < 0) {
if (t->scope->protocol != DNS_PROTOCOL_DNS) {
dns_transaction_complete(t, DNS_TRANSACTION_RESOURCES);
return 0;
}
/* Couldn't send? Try immediately again, with a new server */
dns_transaction_next_dns_server(t);
return dns_transaction_go(t);
}
ts += transaction_get_resend_timeout(t);
r = sd_event_add_time(
t->scope->manager->event,
&t->timeout_event_source,
clock_boottime_or_monotonic(),
ts, 0,
on_transaction_timeout, t);
if (r < 0)
return r;
t->state = DNS_TRANSACTION_PENDING;
t->next_attempt_after = ts;
return 1;
}
resolved: chase DNSKEY/DS RRs when doing look-ups with DNSSEC enabled This adds initial support for validating RRSIG/DNSKEY/DS chains when doing lookups. Proof-of-non-existance, or proof-of-unsigned-zones is not implemented yet. With this change DnsTransaction objects will generate additional DnsTransaction objects when looking for DNSKEY or DS RRs to validate an RRSIG on a response. DnsTransaction objects are thus created for three reasons now: 1) Because a user asked for something to be resolved, i.e. requested by a DnsQuery/DnsQueryCandidate object. 2) As result of LLMNR RR probing, requested by a DnsZoneItem. 3) Because another DnsTransaction requires the requested RRs for validation of its own response. DnsTransactions are shared between all these users, and are GC automatically as soon as all of these users don't need a specific transaction anymore. To unify the handling of these three reasons for existance for a DnsTransaction, a new common naming is introduced: each DnsTransaction now tracks its "owners" via a Set* object named "notify_xyz", containing all owners to notify on completion. A new DnsTransaction state is introduced called "VALIDATING" that is entered after a response has been receieved which needs to be validated, as long as we are still waiting for the DNSKEY/DS RRs from other DnsTransactions. This patch will request the DNSKEY/DS RRs bottom-up, and then validate them top-down. Caching of RRs is now only done after verification, so that the cache is not poisoned with known invalid data. The "DnsAnswer" object gained a substantial number of new calls, since we need to add/remove RRs to it dynamically now.
2015-12-09 18:13:16 +01:00
static int dns_transaction_add_dnssec_transaction(DnsTransaction *t, DnsResourceKey *key, DnsTransaction **ret) {
DnsTransaction *aux;
int r;
assert(t);
assert(ret);
assert(key);
aux = dns_scope_find_transaction(t->scope, key, true);
if (!aux) {
r = dns_transaction_new(&aux, t->scope, key);
if (r < 0)
return r;
} else {
if (set_contains(t->dnssec_transactions, aux)) {
*ret = aux;
return 0;
}
}
r = set_ensure_allocated(&t->dnssec_transactions, NULL);
if (r < 0)
goto gc;
r = set_ensure_allocated(&aux->notify_transactions, NULL);
if (r < 0)
goto gc;
r = set_put(t->dnssec_transactions, aux);
if (r < 0)
goto gc;
r = set_put(aux->notify_transactions, t);
if (r < 0) {
(void) set_remove(t->dnssec_transactions, aux);
goto gc;
}
*ret = aux;
return 1;
gc:
dns_transaction_gc(aux);
return r;
}
static int dns_transaction_request_dnssec_rr(DnsTransaction *t, DnsResourceKey *key) {
_cleanup_(dns_answer_unrefp) DnsAnswer *a = NULL;
DnsTransaction *aux;
int r;
assert(t);
assert(key);
/* Try to get the data from the trust anchor */
r = dns_trust_anchor_lookup(&t->scope->manager->trust_anchor, key, &a);
if (r < 0)
return r;
if (r > 0) {
r = dns_answer_extend(&t->validated_keys, a);
if (r < 0)
return r;
return 0;
}
/* This didn't work, ask for it via the network/cache then. */
r = dns_transaction_add_dnssec_transaction(t, key, &aux);
if (r < 0)
return r;
if (aux->state == DNS_TRANSACTION_NULL) {
r = dns_transaction_go(aux);
if (r < 0)
return r;
}
return 0;
}
int dns_transaction_request_dnssec_keys(DnsTransaction *t) {
DnsResourceRecord *rr;
int r;
assert(t);
if (t->scope->dnssec_mode != DNSSEC_YES)
return 0;
DNS_ANSWER_FOREACH(rr, t->answer) {
switch (rr->key->type) {
case DNS_TYPE_RRSIG: {
/* For each RRSIG we request the matching DNSKEY */
_cleanup_(dns_resource_key_unrefp) DnsResourceKey *dnskey = NULL;
/* If this RRSIG is about a DNSKEY RR and the
* signer is the same as the owner, then we
* already have the DNSKEY, and we don't have
* to look for more. */
if (rr->rrsig.type_covered == DNS_TYPE_DNSKEY) {
r = dns_name_equal(rr->rrsig.signer, DNS_RESOURCE_KEY_NAME(rr->key));
if (r < 0)
return r;
if (r > 0)
continue;
}
/* If the signer is not a parent of the owner,
* then the signature is bogus, let's ignore
* it. */
r = dns_name_endswith(DNS_RESOURCE_KEY_NAME(rr->key), rr->rrsig.signer);
if (r < 0)
return r;
if (r == 0)
continue;
dnskey = dns_resource_key_new(rr->key->class, DNS_TYPE_DNSKEY, rr->rrsig.signer);
if (!dnskey)
return -ENOMEM;
log_debug("Requesting DNSKEY to validate transaction %" PRIu16" (key tag: %" PRIu16 ").", t->id, rr->rrsig.key_tag);
r = dns_transaction_request_dnssec_rr(t, dnskey);
if (r < 0)
return r;
break;
}
case DNS_TYPE_DNSKEY: {
/* For each DNSKEY we request the matching DS */
_cleanup_(dns_resource_key_unrefp) DnsResourceKey *ds = NULL;
ds = dns_resource_key_new(rr->key->class, DNS_TYPE_DS, DNS_RESOURCE_KEY_NAME(rr->key));
if (!ds)
return -ENOMEM;
log_debug("Requesting DS to validate transaction %" PRIu16" (key tag: %" PRIu16 ").", t->id, dnssec_keytag(rr));
r = dns_transaction_request_dnssec_rr(t, ds);
if (r < 0)
return r;
break;
}}
}
return !set_isempty(t->dnssec_transactions);
}
void dns_transaction_notify(DnsTransaction *t, DnsTransaction *source) {
int r;
assert(t);
assert(IN_SET(t->state, DNS_TRANSACTION_PENDING, DNS_TRANSACTION_VALIDATING));
assert(source);
/* Invoked whenever any of our auxiliary DNSSEC transactions
completed its work. We simply copy the answer from that
transaction over. */
if (source->state != DNS_TRANSACTION_SUCCESS) {
log_debug("Auxiliary DNSSEC RR query failed.");
t->dnssec_result = DNSSEC_FAILED_AUXILIARY;
} else {
r = dns_answer_extend(&t->validated_keys, source->answer);
if (r < 0) {
log_error_errno(r, "Failed to merge validated DNSSEC key data: %m");
t->dnssec_result = DNSSEC_FAILED_AUXILIARY;
}
}
/* Detach us from the DNSSEC transaction. */
(void) set_remove(t->dnssec_transactions, source);
(void) set_remove(source->notify_transactions, t);
/* If the state is still PENDING, we are still in the loop
* that adds further DNSSEC transactions, hence don't check if
* we are ready yet. If the state is VALIDATING however, we
* should check if we are complete now. */
if (t->state == DNS_TRANSACTION_VALIDATING)
dns_transaction_process_dnssec(t);
}
int dns_transaction_validate_dnssec(DnsTransaction *t) {
_cleanup_(dns_answer_unrefp) DnsAnswer *validated = NULL;
DnsResourceRecord *rr;
int ifindex, r;
assert(t);
/* We have now collected all DS and DNSKEY RRs in
* t->validated_keys, let's see which RRs we can now
* authenticate with that. */
if (t->scope->dnssec_mode != DNSSEC_YES)
return 0;
/* Already validated */
if (t->dnssec_result != _DNSSEC_RESULT_INVALID)
return 0;
if (IN_SET(t->answer_source, DNS_TRANSACTION_ZONE, DNS_TRANSACTION_TRUST_ANCHOR)) {
t->dnssec_result = DNSSEC_VALIDATED;
t->answer_authenticated = true;
return 0;
}
if (log_get_max_level() >= LOG_DEBUG) {
_cleanup_free_ char *ks = NULL;
(void) dns_resource_key_to_string(t->key, &ks);
log_debug("Validating response from transaction %" PRIu16 " (%s).", t->id, ks ? strstrip(ks) : "???");
}
/* First see if there are DNSKEYs we already known a validated DS for. */
DNS_ANSWER_FOREACH_IFINDEX(rr, ifindex, t->answer) {
r = dnssec_verify_dnskey_search(rr, t->validated_keys);
if (r < 0)
return r;
if (r == 0)
continue;
/* If so, the DNSKEY is validated too. */
r = dns_answer_add_extend(&t->validated_keys, rr, ifindex);
if (r < 0)
return r;
}
for (;;) {
bool changed = false, missing_key_for_transaction = false;
DNS_ANSWER_FOREACH(rr, t->answer) {
DnssecResult result;
if (rr->key->type == DNS_TYPE_RRSIG)
continue;
r = dnssec_verify_rrset_search(t->answer, rr->key, t->validated_keys, USEC_INFINITY, &result);
if (r < 0)
return r;
if (log_get_max_level() >= LOG_DEBUG) {
_cleanup_free_ char *rrs = NULL;
(void) dns_resource_record_to_string(rr, &rrs);
log_debug("Looking at %s: %s", rrs ? strstrip(rrs) : "???", dnssec_result_to_string(result));
}
switch (result) {
case DNSSEC_VALIDATED:
/* Add the validated RRset to the new list of validated RRsets */
r = dns_answer_copy_by_key(&validated, t->answer, rr->key);
if (r < 0)
return r;
if (rr->key->type == DNS_TYPE_DNSKEY) {
/* If we just validated a
* DNSKEY RRset, then let's
* add these keys to the set
* of validated keys for this
* transaction. */
r = dns_answer_copy_by_key(&t->validated_keys, t->answer, rr->key);
if (r < 0)
return r;
}
/* Now, remove this RRset from the RRs still to process */
r = dns_answer_remove_by_key(&t->answer, rr->key);
if (r < 0)
return r;
changed = true;
break;
case DNSSEC_INVALID:
case DNSSEC_NO_SIGNATURE:
case DNSSEC_SIGNATURE_EXPIRED:
/* Is this the RRset that we were looking for? If so, this is fatal for the whole transaction */
r = dns_resource_key_match_rr(t->key, rr, NULL);
if (r < 0)
return r;
if (r > 0) {
t->dnssec_result = result;
return 0;
}
/* Is this a CNAME for a record we were looking for? If so, it's also fatal for the whole transaction */
r = dns_resource_key_match_cname_or_dname(t->key, rr->key, NULL);
resolved: chase DNSKEY/DS RRs when doing look-ups with DNSSEC enabled This adds initial support for validating RRSIG/DNSKEY/DS chains when doing lookups. Proof-of-non-existance, or proof-of-unsigned-zones is not implemented yet. With this change DnsTransaction objects will generate additional DnsTransaction objects when looking for DNSKEY or DS RRs to validate an RRSIG on a response. DnsTransaction objects are thus created for three reasons now: 1) Because a user asked for something to be resolved, i.e. requested by a DnsQuery/DnsQueryCandidate object. 2) As result of LLMNR RR probing, requested by a DnsZoneItem. 3) Because another DnsTransaction requires the requested RRs for validation of its own response. DnsTransactions are shared between all these users, and are GC automatically as soon as all of these users don't need a specific transaction anymore. To unify the handling of these three reasons for existance for a DnsTransaction, a new common naming is introduced: each DnsTransaction now tracks its "owners" via a Set* object named "notify_xyz", containing all owners to notify on completion. A new DnsTransaction state is introduced called "VALIDATING" that is entered after a response has been receieved which needs to be validated, as long as we are still waiting for the DNSKEY/DS RRs from other DnsTransactions. This patch will request the DNSKEY/DS RRs bottom-up, and then validate them top-down. Caching of RRs is now only done after verification, so that the cache is not poisoned with known invalid data. The "DnsAnswer" object gained a substantial number of new calls, since we need to add/remove RRs to it dynamically now.
2015-12-09 18:13:16 +01:00
if (r < 0)
return r;
if (r > 0) {
t->dnssec_result = result;
return 0;
}
/* This is just something auxiliary. Just remove the RRset and continue. */
r = dns_answer_remove_by_key(&t->answer, rr->key);
if (r < 0)
return r;
changed = true;
break;
case DNSSEC_MISSING_KEY:
/* They key is missing? Let's continue
* with the next iteration, maybe
* we'll find it in an DNSKEY RRset
* later on. */
r = dns_resource_key_equal(rr->key, t->key);
if (r < 0)
return r;
if (r > 0)
missing_key_for_transaction = true;
break;
default:
assert_not_reached("Unexpected DNSSEC result");
}
if (changed)
break;
}
if (changed)
continue;
/* This didn't work either, there's no point in
* continuing. */
if (missing_key_for_transaction) {
t->dnssec_result = DNSSEC_MISSING_KEY;
return 0;
}
break;
}
dns_answer_unref(t->answer);
t->answer = validated;
validated = NULL;
t->answer_authenticated = true;
t->dnssec_result = DNSSEC_VALIDATED;
return 1;
}
static const char* const dns_transaction_state_table[_DNS_TRANSACTION_STATE_MAX] = {
[DNS_TRANSACTION_NULL] = "null",
[DNS_TRANSACTION_PENDING] = "pending",
resolved: chase DNSKEY/DS RRs when doing look-ups with DNSSEC enabled This adds initial support for validating RRSIG/DNSKEY/DS chains when doing lookups. Proof-of-non-existance, or proof-of-unsigned-zones is not implemented yet. With this change DnsTransaction objects will generate additional DnsTransaction objects when looking for DNSKEY or DS RRs to validate an RRSIG on a response. DnsTransaction objects are thus created for three reasons now: 1) Because a user asked for something to be resolved, i.e. requested by a DnsQuery/DnsQueryCandidate object. 2) As result of LLMNR RR probing, requested by a DnsZoneItem. 3) Because another DnsTransaction requires the requested RRs for validation of its own response. DnsTransactions are shared between all these users, and are GC automatically as soon as all of these users don't need a specific transaction anymore. To unify the handling of these three reasons for existance for a DnsTransaction, a new common naming is introduced: each DnsTransaction now tracks its "owners" via a Set* object named "notify_xyz", containing all owners to notify on completion. A new DnsTransaction state is introduced called "VALIDATING" that is entered after a response has been receieved which needs to be validated, as long as we are still waiting for the DNSKEY/DS RRs from other DnsTransactions. This patch will request the DNSKEY/DS RRs bottom-up, and then validate them top-down. Caching of RRs is now only done after verification, so that the cache is not poisoned with known invalid data. The "DnsAnswer" object gained a substantial number of new calls, since we need to add/remove RRs to it dynamically now.
2015-12-09 18:13:16 +01:00
[DNS_TRANSACTION_VALIDATING] = "validating",
[DNS_TRANSACTION_FAILURE] = "failure",
[DNS_TRANSACTION_SUCCESS] = "success",
[DNS_TRANSACTION_NO_SERVERS] = "no-servers",
[DNS_TRANSACTION_TIMEOUT] = "timeout",
[DNS_TRANSACTION_ATTEMPTS_MAX_REACHED] = "attempts-max-reached",
[DNS_TRANSACTION_INVALID_REPLY] = "invalid-reply",
[DNS_TRANSACTION_RESOURCES] = "resources",
[DNS_TRANSACTION_ABORTED] = "aborted",
resolved: chase DNSKEY/DS RRs when doing look-ups with DNSSEC enabled This adds initial support for validating RRSIG/DNSKEY/DS chains when doing lookups. Proof-of-non-existance, or proof-of-unsigned-zones is not implemented yet. With this change DnsTransaction objects will generate additional DnsTransaction objects when looking for DNSKEY or DS RRs to validate an RRSIG on a response. DnsTransaction objects are thus created for three reasons now: 1) Because a user asked for something to be resolved, i.e. requested by a DnsQuery/DnsQueryCandidate object. 2) As result of LLMNR RR probing, requested by a DnsZoneItem. 3) Because another DnsTransaction requires the requested RRs for validation of its own response. DnsTransactions are shared between all these users, and are GC automatically as soon as all of these users don't need a specific transaction anymore. To unify the handling of these three reasons for existance for a DnsTransaction, a new common naming is introduced: each DnsTransaction now tracks its "owners" via a Set* object named "notify_xyz", containing all owners to notify on completion. A new DnsTransaction state is introduced called "VALIDATING" that is entered after a response has been receieved which needs to be validated, as long as we are still waiting for the DNSKEY/DS RRs from other DnsTransactions. This patch will request the DNSKEY/DS RRs bottom-up, and then validate them top-down. Caching of RRs is now only done after verification, so that the cache is not poisoned with known invalid data. The "DnsAnswer" object gained a substantial number of new calls, since we need to add/remove RRs to it dynamically now.
2015-12-09 18:13:16 +01:00
[DNS_TRANSACTION_DNSSEC_FAILED] = "dnssec-failed",
};
DEFINE_STRING_TABLE_LOOKUP(dns_transaction_state, DnsTransactionState);
static const char* const dns_transaction_source_table[_DNS_TRANSACTION_SOURCE_MAX] = {
[DNS_TRANSACTION_NETWORK] = "network",
[DNS_TRANSACTION_CACHE] = "cache",
[DNS_TRANSACTION_ZONE] = "zone",
[DNS_TRANSACTION_TRUST_ANCHOR] = "trust-anchor",
};
DEFINE_STRING_TABLE_LOOKUP(dns_transaction_source, DnsTransactionSource);