Systemd/src/resolve/resolved-dns-question.c

448 lines
12 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: LGPL-2.1-or-later */
#include "alloc-util.h"
2015-06-02 20:49:43 +02:00
#include "dns-domain.h"
#include "dns-type.h"
#include "resolved-dns-question.h"
DnsQuestion *dns_question_new(size_t n) {
DnsQuestion *q;
if (n > UINT16_MAX) /* We can only place 64K key in an question section at max */
n = UINT16_MAX;
q = malloc0(offsetof(DnsQuestion, keys) + sizeof(DnsResourceKey*) * n);
if (!q)
return NULL;
q->n_ref = 1;
q->n_allocated = n;
return q;
}
static DnsQuestion *dns_question_free(DnsQuestion *q) {
size_t i;
assert(q);
for (i = 0; i < q->n_keys; i++)
dns_resource_key_unref(q->keys[i]);
return mfree(q);
}
DEFINE_TRIVIAL_REF_UNREF_FUNC(DnsQuestion, dns_question, dns_question_free);
int dns_question_add_raw(DnsQuestion *q, DnsResourceKey *key) {
/* Insert without checking for duplicates. */
assert(key);
assert(q);
if (q->n_keys >= q->n_allocated)
return -ENOSPC;
q->keys[q->n_keys++] = dns_resource_key_ref(key);
return 0;
}
int dns_question_add(DnsQuestion *q, DnsResourceKey *key) {
2014-07-23 00:57:25 +02:00
int r;
assert(key);
if (!q)
return -ENOSPC;
for (size_t i = 0; i < q->n_keys; i++) {
2014-07-23 00:57:25 +02:00
r = dns_resource_key_equal(q->keys[i], key);
if (r < 0)
return r;
if (r > 0)
return 0;
}
return dns_question_add_raw(q, key);
}
int dns_question_matches_rr(DnsQuestion *q, DnsResourceRecord *rr, const char *search_domain) {
size_t i;
int r;
assert(rr);
if (!q)
return 0;
for (i = 0; i < q->n_keys; i++) {
r = dns_resource_key_match_rr(q->keys[i], rr, search_domain);
if (r != 0)
return r;
}
return 0;
}
int dns_question_matches_cname_or_dname(DnsQuestion *q, DnsResourceRecord *rr, const char *search_domain) {
size_t i;
int r;
assert(rr);
if (!q)
return 0;
if (!IN_SET(rr->key->type, DNS_TYPE_CNAME, DNS_TYPE_DNAME))
return 0;
for (i = 0; i < q->n_keys; i++) {
/* For a {C,D}NAME record we can never find a matching {C,D}NAME record */
if (!dns_type_may_redirect(q->keys[i]->type))
return 0;
r = dns_resource_key_match_cname_or_dname(q->keys[i], rr->key, search_domain);
if (r != 0)
return r;
}
2014-07-30 14:46:40 +02:00
return 0;
}
int dns_question_is_valid_for_query(DnsQuestion *q) {
const char *name;
size_t i;
int r;
if (!q)
return 0;
if (q->n_keys <= 0)
return 0;
if (q->n_keys > 65535)
return 0;
name = dns_resource_key_name(q->keys[0]);
if (!name)
return 0;
/* Check that all keys in this question bear the same name */
for (i = 0; i < q->n_keys; i++) {
2014-07-30 14:46:40 +02:00
assert(q->keys[i]);
if (i > 0) {
r = dns_name_equal(dns_resource_key_name(q->keys[i]), name);
if (r <= 0)
return r;
}
if (!dns_type_is_valid_query(q->keys[i]->type))
return 0;
}
return 1;
}
int dns_question_contains(DnsQuestion *a, const DnsResourceKey *k) {
size_t j;
int r;
assert(k);
if (!a)
return 0;
for (j = 0; j < a->n_keys; j++) {
r = dns_resource_key_equal(a->keys[j], k);
if (r != 0)
return r;
}
return 0;
}
int dns_question_is_equal(DnsQuestion *a, DnsQuestion *b) {
size_t j;
int r;
if (a == b)
return 1;
if (!a)
return !b || b->n_keys == 0;
if (!b)
return a->n_keys == 0;
/* Checks if all keys in a are also contained b, and vice versa */
for (j = 0; j < a->n_keys; j++) {
r = dns_question_contains(b, a->keys[j]);
if (r <= 0)
return r;
}
for (j = 0; j < b->n_keys; j++) {
r = dns_question_contains(a, b->keys[j]);
if (r <= 0)
return r;
}
return 1;
}
int dns_question_cname_redirect(DnsQuestion *q, const DnsResourceRecord *cname, DnsQuestion **ret) {
_cleanup_(dns_question_unrefp) DnsQuestion *n = NULL;
resolved: rework IDNA logic Move IDNA logic out of the normal domain name processing, and into the bus frontend calls. Previously whenever comparing two domain names we'd implicitly do IDNA conversion so that "pöttering.de" and "xn--pttering-n4a.de" would be considered equal. This is problematic not only for DNSSEC, but actually also against he IDNA specs. Moreover it creates problems when encoding DNS-SD services in classic DNS. There, the specification suggests using UTF8 encoding for the actual service name, but apply IDNA encoding to the domain suffix. With this change IDNA conversion is done only: - When the user passes a non-ASCII hostname when resolving a host name using ResolveHostname() - When the user passes a non-ASCII domain suffix when resolving a service using ResolveService() No IDNA encoding is done anymore: - When the user does raw ResolveRecord() RR resolving - On the service part of a DNS-SD service name Previously, IDNA encoding was done when serializing names into packets, at a point where information whether something is a label that needs IDNA encoding or not was not available, but at a point whether it was known whether to generate a classic DNS packet (where IDNA applies), or an mDNS/LLMNR packet (where IDNA does not apply, and UTF8 is used instead for all host names). With this change each DnsQuery object will now maintain two copies of the DnsQuestion to ask: one encoded in IDNA for use with classic DNS, and one encoded in UTF8 for use with LLMNR and MulticastDNS.
2016-01-18 20:31:39 +01:00
DnsResourceKey *key;
bool same = true;
int r;
assert(cname);
assert(ret);
assert(IN_SET(cname->key->type, DNS_TYPE_CNAME, DNS_TYPE_DNAME));
resolved: rework IDNA logic Move IDNA logic out of the normal domain name processing, and into the bus frontend calls. Previously whenever comparing two domain names we'd implicitly do IDNA conversion so that "pöttering.de" and "xn--pttering-n4a.de" would be considered equal. This is problematic not only for DNSSEC, but actually also against he IDNA specs. Moreover it creates problems when encoding DNS-SD services in classic DNS. There, the specification suggests using UTF8 encoding for the actual service name, but apply IDNA encoding to the domain suffix. With this change IDNA conversion is done only: - When the user passes a non-ASCII hostname when resolving a host name using ResolveHostname() - When the user passes a non-ASCII domain suffix when resolving a service using ResolveService() No IDNA encoding is done anymore: - When the user does raw ResolveRecord() RR resolving - On the service part of a DNS-SD service name Previously, IDNA encoding was done when serializing names into packets, at a point where information whether something is a label that needs IDNA encoding or not was not available, but at a point whether it was known whether to generate a classic DNS packet (where IDNA applies), or an mDNS/LLMNR packet (where IDNA does not apply, and UTF8 is used instead for all host names). With this change each DnsQuery object will now maintain two copies of the DnsQuestion to ask: one encoded in IDNA for use with classic DNS, and one encoded in UTF8 for use with LLMNR and MulticastDNS.
2016-01-18 20:31:39 +01:00
if (dns_question_size(q) <= 0) {
*ret = NULL;
return 0;
}
resolved: rework IDNA logic Move IDNA logic out of the normal domain name processing, and into the bus frontend calls. Previously whenever comparing two domain names we'd implicitly do IDNA conversion so that "pöttering.de" and "xn--pttering-n4a.de" would be considered equal. This is problematic not only for DNSSEC, but actually also against he IDNA specs. Moreover it creates problems when encoding DNS-SD services in classic DNS. There, the specification suggests using UTF8 encoding for the actual service name, but apply IDNA encoding to the domain suffix. With this change IDNA conversion is done only: - When the user passes a non-ASCII hostname when resolving a host name using ResolveHostname() - When the user passes a non-ASCII domain suffix when resolving a service using ResolveService() No IDNA encoding is done anymore: - When the user does raw ResolveRecord() RR resolving - On the service part of a DNS-SD service name Previously, IDNA encoding was done when serializing names into packets, at a point where information whether something is a label that needs IDNA encoding or not was not available, but at a point whether it was known whether to generate a classic DNS packet (where IDNA applies), or an mDNS/LLMNR packet (where IDNA does not apply, and UTF8 is used instead for all host names). With this change each DnsQuery object will now maintain two copies of the DnsQuestion to ask: one encoded in IDNA for use with classic DNS, and one encoded in UTF8 for use with LLMNR and MulticastDNS.
2016-01-18 20:31:39 +01:00
DNS_QUESTION_FOREACH(key, q) {
_cleanup_free_ char *destination = NULL;
const char *d;
if (cname->key->type == DNS_TYPE_CNAME)
d = cname->cname.name;
else {
r = dns_name_change_suffix(dns_resource_key_name(key), dns_resource_key_name(cname->key), cname->dname.name, &destination);
if (r < 0)
return r;
if (r == 0)
continue;
d = destination;
}
r = dns_name_equal(dns_resource_key_name(key), d);
if (r < 0)
return r;
if (r == 0) {
same = false;
break;
}
}
resolved: rework IDNA logic Move IDNA logic out of the normal domain name processing, and into the bus frontend calls. Previously whenever comparing two domain names we'd implicitly do IDNA conversion so that "pöttering.de" and "xn--pttering-n4a.de" would be considered equal. This is problematic not only for DNSSEC, but actually also against he IDNA specs. Moreover it creates problems when encoding DNS-SD services in classic DNS. There, the specification suggests using UTF8 encoding for the actual service name, but apply IDNA encoding to the domain suffix. With this change IDNA conversion is done only: - When the user passes a non-ASCII hostname when resolving a host name using ResolveHostname() - When the user passes a non-ASCII domain suffix when resolving a service using ResolveService() No IDNA encoding is done anymore: - When the user does raw ResolveRecord() RR resolving - On the service part of a DNS-SD service name Previously, IDNA encoding was done when serializing names into packets, at a point where information whether something is a label that needs IDNA encoding or not was not available, but at a point whether it was known whether to generate a classic DNS packet (where IDNA applies), or an mDNS/LLMNR packet (where IDNA does not apply, and UTF8 is used instead for all host names). With this change each DnsQuery object will now maintain two copies of the DnsQuestion to ask: one encoded in IDNA for use with classic DNS, and one encoded in UTF8 for use with LLMNR and MulticastDNS.
2016-01-18 20:31:39 +01:00
/* Fully the same, indicate we didn't do a thing */
if (same) {
resolved: rework IDNA logic Move IDNA logic out of the normal domain name processing, and into the bus frontend calls. Previously whenever comparing two domain names we'd implicitly do IDNA conversion so that "pöttering.de" and "xn--pttering-n4a.de" would be considered equal. This is problematic not only for DNSSEC, but actually also against he IDNA specs. Moreover it creates problems when encoding DNS-SD services in classic DNS. There, the specification suggests using UTF8 encoding for the actual service name, but apply IDNA encoding to the domain suffix. With this change IDNA conversion is done only: - When the user passes a non-ASCII hostname when resolving a host name using ResolveHostname() - When the user passes a non-ASCII domain suffix when resolving a service using ResolveService() No IDNA encoding is done anymore: - When the user does raw ResolveRecord() RR resolving - On the service part of a DNS-SD service name Previously, IDNA encoding was done when serializing names into packets, at a point where information whether something is a label that needs IDNA encoding or not was not available, but at a point whether it was known whether to generate a classic DNS packet (where IDNA applies), or an mDNS/LLMNR packet (where IDNA does not apply, and UTF8 is used instead for all host names). With this change each DnsQuery object will now maintain two copies of the DnsQuestion to ask: one encoded in IDNA for use with classic DNS, and one encoded in UTF8 for use with LLMNR and MulticastDNS.
2016-01-18 20:31:39 +01:00
*ret = NULL;
return 0;
}
n = dns_question_new(q->n_keys);
if (!n)
return -ENOMEM;
/* Create a new question, and patch in the new name */
resolved: rework IDNA logic Move IDNA logic out of the normal domain name processing, and into the bus frontend calls. Previously whenever comparing two domain names we'd implicitly do IDNA conversion so that "pöttering.de" and "xn--pttering-n4a.de" would be considered equal. This is problematic not only for DNSSEC, but actually also against he IDNA specs. Moreover it creates problems when encoding DNS-SD services in classic DNS. There, the specification suggests using UTF8 encoding for the actual service name, but apply IDNA encoding to the domain suffix. With this change IDNA conversion is done only: - When the user passes a non-ASCII hostname when resolving a host name using ResolveHostname() - When the user passes a non-ASCII domain suffix when resolving a service using ResolveService() No IDNA encoding is done anymore: - When the user does raw ResolveRecord() RR resolving - On the service part of a DNS-SD service name Previously, IDNA encoding was done when serializing names into packets, at a point where information whether something is a label that needs IDNA encoding or not was not available, but at a point whether it was known whether to generate a classic DNS packet (where IDNA applies), or an mDNS/LLMNR packet (where IDNA does not apply, and UTF8 is used instead for all host names). With this change each DnsQuery object will now maintain two copies of the DnsQuestion to ask: one encoded in IDNA for use with classic DNS, and one encoded in UTF8 for use with LLMNR and MulticastDNS.
2016-01-18 20:31:39 +01:00
DNS_QUESTION_FOREACH(key, q) {
_cleanup_(dns_resource_key_unrefp) DnsResourceKey *k = NULL;
resolved: rework IDNA logic Move IDNA logic out of the normal domain name processing, and into the bus frontend calls. Previously whenever comparing two domain names we'd implicitly do IDNA conversion so that "pöttering.de" and "xn--pttering-n4a.de" would be considered equal. This is problematic not only for DNSSEC, but actually also against he IDNA specs. Moreover it creates problems when encoding DNS-SD services in classic DNS. There, the specification suggests using UTF8 encoding for the actual service name, but apply IDNA encoding to the domain suffix. With this change IDNA conversion is done only: - When the user passes a non-ASCII hostname when resolving a host name using ResolveHostname() - When the user passes a non-ASCII domain suffix when resolving a service using ResolveService() No IDNA encoding is done anymore: - When the user does raw ResolveRecord() RR resolving - On the service part of a DNS-SD service name Previously, IDNA encoding was done when serializing names into packets, at a point where information whether something is a label that needs IDNA encoding or not was not available, but at a point whether it was known whether to generate a classic DNS packet (where IDNA applies), or an mDNS/LLMNR packet (where IDNA does not apply, and UTF8 is used instead for all host names). With this change each DnsQuery object will now maintain two copies of the DnsQuestion to ask: one encoded in IDNA for use with classic DNS, and one encoded in UTF8 for use with LLMNR and MulticastDNS.
2016-01-18 20:31:39 +01:00
k = dns_resource_key_new_redirect(key, cname);
if (!k)
return -ENOMEM;
r = dns_question_add(n, k);
if (r < 0)
return r;
}
*ret = TAKE_PTR(n);
return 1;
}
const char *dns_question_first_name(DnsQuestion *q) {
if (!q)
return NULL;
if (q->n_keys < 1)
return NULL;
return dns_resource_key_name(q->keys[0]);
}
resolved: rework IDNA logic Move IDNA logic out of the normal domain name processing, and into the bus frontend calls. Previously whenever comparing two domain names we'd implicitly do IDNA conversion so that "pöttering.de" and "xn--pttering-n4a.de" would be considered equal. This is problematic not only for DNSSEC, but actually also against he IDNA specs. Moreover it creates problems when encoding DNS-SD services in classic DNS. There, the specification suggests using UTF8 encoding for the actual service name, but apply IDNA encoding to the domain suffix. With this change IDNA conversion is done only: - When the user passes a non-ASCII hostname when resolving a host name using ResolveHostname() - When the user passes a non-ASCII domain suffix when resolving a service using ResolveService() No IDNA encoding is done anymore: - When the user does raw ResolveRecord() RR resolving - On the service part of a DNS-SD service name Previously, IDNA encoding was done when serializing names into packets, at a point where information whether something is a label that needs IDNA encoding or not was not available, but at a point whether it was known whether to generate a classic DNS packet (where IDNA applies), or an mDNS/LLMNR packet (where IDNA does not apply, and UTF8 is used instead for all host names). With this change each DnsQuery object will now maintain two copies of the DnsQuestion to ask: one encoded in IDNA for use with classic DNS, and one encoded in UTF8 for use with LLMNR and MulticastDNS.
2016-01-18 20:31:39 +01:00
int dns_question_new_address(DnsQuestion **ret, int family, const char *name, bool convert_idna) {
_cleanup_(dns_question_unrefp) DnsQuestion *q = NULL;
resolved: rework IDNA logic Move IDNA logic out of the normal domain name processing, and into the bus frontend calls. Previously whenever comparing two domain names we'd implicitly do IDNA conversion so that "pöttering.de" and "xn--pttering-n4a.de" would be considered equal. This is problematic not only for DNSSEC, but actually also against he IDNA specs. Moreover it creates problems when encoding DNS-SD services in classic DNS. There, the specification suggests using UTF8 encoding for the actual service name, but apply IDNA encoding to the domain suffix. With this change IDNA conversion is done only: - When the user passes a non-ASCII hostname when resolving a host name using ResolveHostname() - When the user passes a non-ASCII domain suffix when resolving a service using ResolveService() No IDNA encoding is done anymore: - When the user does raw ResolveRecord() RR resolving - On the service part of a DNS-SD service name Previously, IDNA encoding was done when serializing names into packets, at a point where information whether something is a label that needs IDNA encoding or not was not available, but at a point whether it was known whether to generate a classic DNS packet (where IDNA applies), or an mDNS/LLMNR packet (where IDNA does not apply, and UTF8 is used instead for all host names). With this change each DnsQuery object will now maintain two copies of the DnsQuestion to ask: one encoded in IDNA for use with classic DNS, and one encoded in UTF8 for use with LLMNR and MulticastDNS.
2016-01-18 20:31:39 +01:00
_cleanup_free_ char *buf = NULL;
int r;
assert(ret);
assert(name);
if (!IN_SET(family, AF_INET, AF_INET6, AF_UNSPEC))
return -EAFNOSUPPORT;
resolved: rework IDNA logic Move IDNA logic out of the normal domain name processing, and into the bus frontend calls. Previously whenever comparing two domain names we'd implicitly do IDNA conversion so that "pöttering.de" and "xn--pttering-n4a.de" would be considered equal. This is problematic not only for DNSSEC, but actually also against he IDNA specs. Moreover it creates problems when encoding DNS-SD services in classic DNS. There, the specification suggests using UTF8 encoding for the actual service name, but apply IDNA encoding to the domain suffix. With this change IDNA conversion is done only: - When the user passes a non-ASCII hostname when resolving a host name using ResolveHostname() - When the user passes a non-ASCII domain suffix when resolving a service using ResolveService() No IDNA encoding is done anymore: - When the user does raw ResolveRecord() RR resolving - On the service part of a DNS-SD service name Previously, IDNA encoding was done when serializing names into packets, at a point where information whether something is a label that needs IDNA encoding or not was not available, but at a point whether it was known whether to generate a classic DNS packet (where IDNA applies), or an mDNS/LLMNR packet (where IDNA does not apply, and UTF8 is used instead for all host names). With this change each DnsQuery object will now maintain two copies of the DnsQuestion to ask: one encoded in IDNA for use with classic DNS, and one encoded in UTF8 for use with LLMNR and MulticastDNS.
2016-01-18 20:31:39 +01:00
if (convert_idna) {
r = dns_name_apply_idna(name, &buf);
if (r < 0)
return r;
if (r > 0 && !streq(name, buf))
name = buf;
else
/* We did not manage to create convert the idna name, or it's
* the same as the original name. We assume the caller already
2019-04-27 02:22:40 +02:00
* created an unconverted question, so let's not repeat work
* unnecessarily. */
return -EALREADY;
resolved: rework IDNA logic Move IDNA logic out of the normal domain name processing, and into the bus frontend calls. Previously whenever comparing two domain names we'd implicitly do IDNA conversion so that "pöttering.de" and "xn--pttering-n4a.de" would be considered equal. This is problematic not only for DNSSEC, but actually also against he IDNA specs. Moreover it creates problems when encoding DNS-SD services in classic DNS. There, the specification suggests using UTF8 encoding for the actual service name, but apply IDNA encoding to the domain suffix. With this change IDNA conversion is done only: - When the user passes a non-ASCII hostname when resolving a host name using ResolveHostname() - When the user passes a non-ASCII domain suffix when resolving a service using ResolveService() No IDNA encoding is done anymore: - When the user does raw ResolveRecord() RR resolving - On the service part of a DNS-SD service name Previously, IDNA encoding was done when serializing names into packets, at a point where information whether something is a label that needs IDNA encoding or not was not available, but at a point whether it was known whether to generate a classic DNS packet (where IDNA applies), or an mDNS/LLMNR packet (where IDNA does not apply, and UTF8 is used instead for all host names). With this change each DnsQuery object will now maintain two copies of the DnsQuestion to ask: one encoded in IDNA for use with classic DNS, and one encoded in UTF8 for use with LLMNR and MulticastDNS.
2016-01-18 20:31:39 +01:00
}
q = dns_question_new(family == AF_UNSPEC ? 2 : 1);
if (!q)
return -ENOMEM;
if (family != AF_INET6) {
_cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
key = dns_resource_key_new(DNS_CLASS_IN, DNS_TYPE_A, name);
if (!key)
return -ENOMEM;
r = dns_question_add(q, key);
if (r < 0)
return r;
}
if (family != AF_INET) {
_cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
key = dns_resource_key_new(DNS_CLASS_IN, DNS_TYPE_AAAA, name);
if (!key)
return -ENOMEM;
r = dns_question_add(q, key);
if (r < 0)
return r;
}
*ret = TAKE_PTR(q);
return 0;
}
int dns_question_new_reverse(DnsQuestion **ret, int family, const union in_addr_union *a) {
_cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
_cleanup_(dns_question_unrefp) DnsQuestion *q = NULL;
_cleanup_free_ char *reverse = NULL;
int r;
assert(ret);
assert(a);
if (!IN_SET(family, AF_INET, AF_INET6, AF_UNSPEC))
return -EAFNOSUPPORT;
r = dns_name_reverse(family, a, &reverse);
if (r < 0)
return r;
q = dns_question_new(1);
if (!q)
return -ENOMEM;
key = dns_resource_key_new_consume(DNS_CLASS_IN, DNS_TYPE_PTR, reverse);
if (!key)
return -ENOMEM;
reverse = NULL;
r = dns_question_add(q, key);
if (r < 0)
return r;
*ret = TAKE_PTR(q);
return 0;
}
resolved: rework IDNA logic Move IDNA logic out of the normal domain name processing, and into the bus frontend calls. Previously whenever comparing two domain names we'd implicitly do IDNA conversion so that "pöttering.de" and "xn--pttering-n4a.de" would be considered equal. This is problematic not only for DNSSEC, but actually also against he IDNA specs. Moreover it creates problems when encoding DNS-SD services in classic DNS. There, the specification suggests using UTF8 encoding for the actual service name, but apply IDNA encoding to the domain suffix. With this change IDNA conversion is done only: - When the user passes a non-ASCII hostname when resolving a host name using ResolveHostname() - When the user passes a non-ASCII domain suffix when resolving a service using ResolveService() No IDNA encoding is done anymore: - When the user does raw ResolveRecord() RR resolving - On the service part of a DNS-SD service name Previously, IDNA encoding was done when serializing names into packets, at a point where information whether something is a label that needs IDNA encoding or not was not available, but at a point whether it was known whether to generate a classic DNS packet (where IDNA applies), or an mDNS/LLMNR packet (where IDNA does not apply, and UTF8 is used instead for all host names). With this change each DnsQuery object will now maintain two copies of the DnsQuestion to ask: one encoded in IDNA for use with classic DNS, and one encoded in UTF8 for use with LLMNR and MulticastDNS.
2016-01-18 20:31:39 +01:00
int dns_question_new_service(
DnsQuestion **ret,
const char *service,
const char *type,
const char *domain,
bool with_txt,
bool convert_idna) {
_cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
_cleanup_(dns_question_unrefp) DnsQuestion *q = NULL;
resolved: rework IDNA logic Move IDNA logic out of the normal domain name processing, and into the bus frontend calls. Previously whenever comparing two domain names we'd implicitly do IDNA conversion so that "pöttering.de" and "xn--pttering-n4a.de" would be considered equal. This is problematic not only for DNSSEC, but actually also against he IDNA specs. Moreover it creates problems when encoding DNS-SD services in classic DNS. There, the specification suggests using UTF8 encoding for the actual service name, but apply IDNA encoding to the domain suffix. With this change IDNA conversion is done only: - When the user passes a non-ASCII hostname when resolving a host name using ResolveHostname() - When the user passes a non-ASCII domain suffix when resolving a service using ResolveService() No IDNA encoding is done anymore: - When the user does raw ResolveRecord() RR resolving - On the service part of a DNS-SD service name Previously, IDNA encoding was done when serializing names into packets, at a point where information whether something is a label that needs IDNA encoding or not was not available, but at a point whether it was known whether to generate a classic DNS packet (where IDNA applies), or an mDNS/LLMNR packet (where IDNA does not apply, and UTF8 is used instead for all host names). With this change each DnsQuery object will now maintain two copies of the DnsQuestion to ask: one encoded in IDNA for use with classic DNS, and one encoded in UTF8 for use with LLMNR and MulticastDNS.
2016-01-18 20:31:39 +01:00
_cleanup_free_ char *buf = NULL, *joined = NULL;
const char *name;
int r;
assert(ret);
resolved: rework IDNA logic Move IDNA logic out of the normal domain name processing, and into the bus frontend calls. Previously whenever comparing two domain names we'd implicitly do IDNA conversion so that "pöttering.de" and "xn--pttering-n4a.de" would be considered equal. This is problematic not only for DNSSEC, but actually also against he IDNA specs. Moreover it creates problems when encoding DNS-SD services in classic DNS. There, the specification suggests using UTF8 encoding for the actual service name, but apply IDNA encoding to the domain suffix. With this change IDNA conversion is done only: - When the user passes a non-ASCII hostname when resolving a host name using ResolveHostname() - When the user passes a non-ASCII domain suffix when resolving a service using ResolveService() No IDNA encoding is done anymore: - When the user does raw ResolveRecord() RR resolving - On the service part of a DNS-SD service name Previously, IDNA encoding was done when serializing names into packets, at a point where information whether something is a label that needs IDNA encoding or not was not available, but at a point whether it was known whether to generate a classic DNS packet (where IDNA applies), or an mDNS/LLMNR packet (where IDNA does not apply, and UTF8 is used instead for all host names). With this change each DnsQuery object will now maintain two copies of the DnsQuestion to ask: one encoded in IDNA for use with classic DNS, and one encoded in UTF8 for use with LLMNR and MulticastDNS.
2016-01-18 20:31:39 +01:00
/* We support three modes of invocation:
*
* 1. Only a domain is specified, in which case we assume a properly encoded SRV RR name, including service
* type and possibly a service name. If specified in this way we assume it's already IDNA converted if
* that's necessary.
*
* 2. Both service type and a domain specified, in which case a normal SRV RR is assumed, without a DNS-SD
* style prefix. In this case we'll IDNA convert the domain, if that's requested.
*
* 3. All three of service name, type and domain are specified, in which case a DNS-SD service is put
* together. The service name is never IDNA converted, and the domain is if requested.
*
* It's not supported to specify a service name without a type, or no domain name.
*/
if (!domain)
return -EINVAL;
if (type) {
if (convert_idna) {
r = dns_name_apply_idna(domain, &buf);
if (r < 0)
return r;
if (r > 0)
domain = buf;
resolved: rework IDNA logic Move IDNA logic out of the normal domain name processing, and into the bus frontend calls. Previously whenever comparing two domain names we'd implicitly do IDNA conversion so that "pöttering.de" and "xn--pttering-n4a.de" would be considered equal. This is problematic not only for DNSSEC, but actually also against he IDNA specs. Moreover it creates problems when encoding DNS-SD services in classic DNS. There, the specification suggests using UTF8 encoding for the actual service name, but apply IDNA encoding to the domain suffix. With this change IDNA conversion is done only: - When the user passes a non-ASCII hostname when resolving a host name using ResolveHostname() - When the user passes a non-ASCII domain suffix when resolving a service using ResolveService() No IDNA encoding is done anymore: - When the user does raw ResolveRecord() RR resolving - On the service part of a DNS-SD service name Previously, IDNA encoding was done when serializing names into packets, at a point where information whether something is a label that needs IDNA encoding or not was not available, but at a point whether it was known whether to generate a classic DNS packet (where IDNA applies), or an mDNS/LLMNR packet (where IDNA does not apply, and UTF8 is used instead for all host names). With this change each DnsQuery object will now maintain two copies of the DnsQuestion to ask: one encoded in IDNA for use with classic DNS, and one encoded in UTF8 for use with LLMNR and MulticastDNS.
2016-01-18 20:31:39 +01:00
}
r = dns_service_join(service, type, domain, &joined);
if (r < 0)
return r;
name = joined;
} else {
if (service)
return -EINVAL;
name = domain;
}
q = dns_question_new(1 + with_txt);
if (!q)
return -ENOMEM;
key = dns_resource_key_new(DNS_CLASS_IN, DNS_TYPE_SRV, name);
if (!key)
return -ENOMEM;
r = dns_question_add(q, key);
if (r < 0)
return r;
if (with_txt) {
dns_resource_key_unref(key);
key = dns_resource_key_new(DNS_CLASS_IN, DNS_TYPE_TXT, name);
if (!key)
return -ENOMEM;
r = dns_question_add(q, key);
if (r < 0)
return r;
}
*ret = TAKE_PTR(q);
return 0;
}