Systemd/src/libsystemd-bus/sd-bus.c

1437 lines
38 KiB
C
Raw Normal View History

/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/
/***
This file is part of systemd.
Copyright 2013 Lennart Poettering
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see <http://www.gnu.org/licenses/>.
***/
#include <endian.h>
#include <assert.h>
#include <stdlib.h>
#include <unistd.h>
#include <netdb.h>
#include <sys/poll.h>
#include <byteswap.h>
#include "util.h"
#include "macro.h"
#include "sd-bus.h"
#include "bus-internal.h"
#include "bus-message.h"
#include "bus-type.h"
#define WQUEUE_MAX 128
static void bus_free(sd_bus *b) {
struct filter_callback *f;
assert(b);
if (b->fd >= 0)
close_nointr_nofail(b->fd);
free(b->rbuffer);
free(b->rqueue);
free(b->wqueue);
free(b->unique_name);
hashmap_free_free(b->reply_callbacks);
while ((f = b->filter_callbacks)) {
LIST_REMOVE(struct filter_callback, callbacks, b->filter_callbacks, f);
free(f);
}
free(b);
}
static sd_bus* bus_new(void) {
sd_bus *r;
r = new0(sd_bus, 1);
if (!r)
return NULL;
r->n_ref = 1;
r->fd = -1;
r->message_version = 1;
/* We guarantee that wqueue always has space for at least one
* entry */
r->wqueue = new(sd_bus_message*, 1);
if (!r->wqueue) {
free(r);
return NULL;
}
return r;
};
static int hello_callback(sd_bus *bus, sd_bus_message *reply, void *userdata) {
const char *s;
int r;
assert(bus);
assert(reply);
bus->state = BUS_RUNNING;
r = sd_bus_message_read(reply, "s", &s);
if (r < 0)
return r;
bus->unique_name = strdup(s);
if (!bus->unique_name)
return -ENOMEM;
return 1;
}
static int bus_send_hello(sd_bus *bus) {
_cleanup_bus_message_unref_ sd_bus_message *m = NULL;
int r;
assert(bus);
r = sd_bus_message_new_method_call(
bus,
"org.freedesktop.DBus",
"/",
"org.freedesktop.DBus",
"Hello",
&m);
if (r < 0)
return r;
r = sd_bus_send_with_reply(bus, m, hello_callback, NULL, (uint64_t) -1, NULL);
if (r < 0)
return r;
return 0;
}
static int bus_start_running(sd_bus *bus) {
int r;
assert(bus);
if (bus->send_hello) {
bus->state = BUS_HELLO;
r = bus_send_hello(bus);
if (r < 0)
return r;
}
bus->state = BUS_RUNNING;
return 0;
}
static int parse_address_key(const char **p, const char *key, char **value) {
size_t l, n = 0;
const char *a;
char *r = NULL;
assert(p);
assert(*p);
assert(key);
assert(value);
l = strlen(key);
if (!strncmp(*p, key, l) != 0)
return 0;
if ((*p)[l] != '=')
return 0;
if (*value)
return -EINVAL;
a = *p + l + 1;
while (*a != ';' && *a != 0) {
char c, *t;
if (*a == '%') {
int x, y;
x = unhexchar(a[1]);
if (x < 0) {
free(r);
return x;
}
y = unhexchar(a[2]);
if (y < 0) {
free(r);
return y;
}
a += 3;
c = (char) ((x << 4) | y);
} else
c = *a;
t = realloc(r, n + 1);
if (!t) {
free(r);
return -ENOMEM;
}
r = t;
r[n++] = c;
}
*p = a;
*value = r;
return 1;
}
static void skip_address_key(const char **p) {
assert(p);
assert(*p);
*p += strcspn(*p, ";");
}
static int bus_parse_next_address(sd_bus *b) {
const char *a, *p;
_cleanup_free_ char *guid = NULL;
int r;
assert(b);
if (!b->address)
return 0;
if (b->address[b->address_index] == 0)
return 0;
a = b->address + b->address_index;
zero(b->sockaddr);
b->sockaddr_size = 0;
b->peer = SD_ID128_NULL;
if (startswith(a, "unix:")) {
_cleanup_free_ char *path = NULL, *abstract = NULL;
p = a + 5;
while (*p != 0 && *p != ';') {
r = parse_address_key(&p, "guid", &guid);
if (r < 0)
return r;
else if (r > 0)
continue;
r = parse_address_key(&p, "path", &path);
if (r < 0)
return r;
else if (r > 0)
continue;
r = parse_address_key(&p, "abstract", &abstract);
if (r < 0)
return r;
else if (r > 0)
continue;
skip_address_key(&p);
}
if (!path && !abstract)
return -EINVAL;
if (path && abstract)
return -EINVAL;
if (path) {
size_t l;
l = strlen(path);
if (l > sizeof(b->sockaddr.un.sun_path))
return -E2BIG;
b->sockaddr.un.sun_family = AF_UNIX;
strncpy(b->sockaddr.un.sun_path, path, sizeof(b->sockaddr.un.sun_path));
b->sockaddr_size = offsetof(struct sockaddr_un, sun_path) + l;
} else if (abstract) {
size_t l;
l = strlen(path);
if (l > sizeof(b->sockaddr.un.sun_path) - 1)
return -E2BIG;
b->sockaddr.un.sun_family = AF_UNIX;
b->sockaddr.un.sun_path[0] = 0;
strncpy(b->sockaddr.un.sun_path+1, path, sizeof(b->sockaddr.un.sun_path)-1);
b->sockaddr_size = offsetof(struct sockaddr_un, sun_path) + 1 + l;
}
} else if (startswith(a, "tcp:")) {
_cleanup_free_ char *host = NULL, *port = NULL, *family = NULL;
struct addrinfo hints, *result;
p = a + 4;
while (*p != 0 && *p != ';') {
r = parse_address_key(&p, "guid", &guid);
if (r < 0)
return r;
else if (r > 0)
continue;
r = parse_address_key(&p, "host", &host);
if (r < 0)
return r;
else if (r > 0)
continue;
r = parse_address_key(&p, "port", &port);
if (r < 0)
return r;
else if (r > 0)
continue;
r = parse_address_key(&p, "family", &family);
if (r < 0)
return r;
else if (r > 0)
continue;
skip_address_key(&p);
}
if (!host || !port)
return -EINVAL;
zero(hints);
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_ADDRCONFIG;
if (family) {
if (streq(family, "ipv4"))
hints.ai_family = AF_INET;
else if (streq(family, "ipv6"))
hints.ai_family = AF_INET6;
else
return -EINVAL;
}
r = getaddrinfo(host, port, &hints, &result);
if (r == EAI_SYSTEM)
return -errno;
else if (r != 0)
return -EADDRNOTAVAIL;
memcpy(&b->sockaddr, result->ai_addr, result->ai_addrlen);
b->sockaddr_size = result->ai_addrlen;
freeaddrinfo(result);
}
if (guid) {
r = sd_id128_from_string(guid, &b->peer);
if (r < 0)
return r;
}
b->address_index = p - b->address;
return 1;
}
static void iovec_advance(struct iovec *iov, unsigned *idx, size_t size) {
while (size > 0) {
struct iovec *i = iov + *idx;
if (i->iov_len > size) {
i->iov_base = (uint8_t*) i->iov_base + size;
i->iov_len -= size;
return;
}
size -= i->iov_len;
i->iov_base = NULL;
i->iov_len = 0;
(*idx) ++;
}
}
static int bus_write_auth(sd_bus *b) {
struct msghdr mh;
ssize_t k;
assert(b);
assert(b->state == BUS_AUTHENTICATING);
if (b->auth_index >= ELEMENTSOF(b->auth_iovec))
return 0;
zero(mh);
mh.msg_iov = b->auth_iovec + b->auth_index;
mh.msg_iovlen = ELEMENTSOF(b->auth_iovec) - b->auth_index;
k = sendmsg(b->fd, &mh, MSG_DONTWAIT|MSG_NOSIGNAL);
if (k < 0)
return errno == EAGAIN ? 0 : -errno;
iovec_advance(b->auth_iovec, &b->auth_index, (size_t) k);
return 1;
}
static int bus_auth_verify(sd_bus *b) {
char *e, *f;
sd_id128_t peer;
unsigned i;
int r;
/* We expect two response lines: "OK", "AGREE_UNIX_FD", and
* that's it */
e = memmem(b->rbuffer, b->rbuffer_size, "\r\n", 2);
if (!e)
return 0;
f = memmem(e, b->rbuffer_size - (e - (char*) b->rbuffer), "\r\n", 2);
if (!f)
return 0;
if (e - (char*) b->rbuffer != 3 + 32)
return -EPERM;
if (memcmp(b->rbuffer, "OK ", 3))
return -EPERM;
for (i = 0; i < 32; i += 2) {
int x, y;
x = unhexchar(((char*) b->rbuffer)[3 + i]);
y = unhexchar(((char*) b->rbuffer)[3 + i + 2]);
if (x < 0 || y < 0)
return -EINVAL;
peer.bytes[i/2] = ((uint8_t) x << 4 | (uint8_t) y);
}
if (!sd_id128_equal(b->peer, SD_ID128_NULL) &&
!sd_id128_equal(b->peer, peer))
return -EPERM;
b->peer = peer;
b->can_fds =
(f - e == sizeof("\r\nAGREE_UNIX_FD") - 1) &&
memcmp(e + 2, "AGREE_UNIX_FD", sizeof("AGREE_UNIX_FD") - 1) == 0;
if (f + 2 > (char*) b->rbuffer + b->rbuffer_size) {
b->rbuffer_size -= (f - (char*) b->rbuffer);
memmove(b->rbuffer, f + 2, b->rbuffer_size);
}
r = bus_start_running(b);
if (r < 0)
return r;
return 1;
}
static int bus_read_auth(sd_bus *b) {
struct msghdr mh;
struct iovec iov;
size_t n;
ssize_t k;
int r;
assert(b);
r = bus_auth_verify(b);
if (r != 0)
return r;
n = MAX(3 + 32 + 2 + sizeof("AGREE_UNIX_FD") - 1 + 2, b->rbuffer_size * 2);
zero(iov);
iov.iov_base = (uint8_t*) b->rbuffer + b->rbuffer_size;
iov.iov_len = n - b->rbuffer_size;
zero(mh);
mh.msg_iov = &iov;
mh.msg_iovlen = 1;
k = recvmsg(b->fd, &mh, MSG_DONTWAIT|MSG_NOSIGNAL);
if (k < 0)
return errno == EAGAIN ? 0 : -errno;
b->rbuffer_size += k;
r = bus_auth_verify(b);
if (r != 0)
return r;
return 0;
}
static int bus_start_auth(sd_bus *b) {
static const char auth_prefix[] = "\0AUTH_EXTERNAL ";
static const char auth_suffix[] = "\r\nNEGOTIATE_UNIX_FD\r\nBEGIN\r\n";
char text[20 + 1]; /* enough space for a 64bit integer plus NUL */
size_t l;
assert(b);
b->state = BUS_AUTHENTICATING;
snprintf(text, sizeof(text), "%llu", (unsigned long long) geteuid());
char_array_0(text);
l = strlen(text);
b->auth_uid = hexmem(text, l);
if (!b->auth_uid)
return -ENOMEM;
b->auth_iovec[0].iov_base = (void*) auth_prefix;
b->auth_iovec[0].iov_len = sizeof(auth_prefix) -1;
b->auth_iovec[1].iov_base = (void*) b->auth_uid;
b->auth_iovec[1].iov_len = l * 2;
b->auth_iovec[2].iov_base = (void*) auth_suffix;
b->auth_iovec[2].iov_len = sizeof(auth_suffix) -1;
b->auth_size = sizeof(auth_prefix) - 1 + l * 2 + sizeof(auth_suffix) - 1;
return bus_write_auth(b);
}
static int bus_start_connect(sd_bus *b) {
int r;
assert(b);
assert(b->fd < 0);
for (;;) {
if (b->sockaddr.sa.sa_family == AF_UNSPEC) {
r = bus_parse_next_address(b);
if (r < 0)
return r;
if (r == 0)
return b->last_connect_error ? b->last_connect_error : -ECONNREFUSED;
}
b->fd = socket(b->sockaddr.sa.sa_family, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0);
if (b->fd < 0) {
b->last_connect_error = -errno;
zero(b->sockaddr);
continue;
}
r = connect(b->fd, &b->sockaddr.sa, b->sockaddr_size);
if (r < 0) {
if (errno == EINPROGRESS)
return 0;
b->last_connect_error = -errno;
close_nointr_nofail(b->fd);
b->fd = -1;
zero(b->sockaddr);
continue;
}
return bus_start_auth(b);
}
}
int sd_bus_open_system(sd_bus **ret) {
const char *e;
sd_bus *b;
int r;
if (!ret)
return -EINVAL;
e = getenv("DBUS_SYSTEM_BUS_ADDRESS");
if (e) {
r = sd_bus_open_address(e, &b);
if (r < 0)
return r;
b->send_hello = true;
*ret = b;
return r;
}
b = bus_new();
if (!b)
return -ENOMEM;
b->send_hello = true;
b->sockaddr.un.sun_family = AF_UNIX;
strncpy(b->sockaddr.un.sun_path, "/run/dbus/system_bus_socket", sizeof(b->sockaddr.un.sun_path));
b->sockaddr_size = offsetof(struct sockaddr_un, sun_path) + sizeof("/run/dbus/system_bus_socket") - 1;
r = bus_start_connect(b);
if (r < 0) {
bus_free(b);
return r;
}
*ret = b;
return 0;
}
int sd_bus_open_user(sd_bus **ret) {
const char *e;
sd_bus *b;
size_t l;
int r;
if (!ret)
return -EINVAL;
e = getenv("DBUS_SESSION_BUS_ADDRESS");
if (e) {
r = sd_bus_open_address(e, &b);
if (r < 0)
return r;
b->send_hello = true;
*ret = b;
return r;
}
e = getenv("XDG_RUNTIME_DIR");
if (!e)
return -ENOENT;
l = strlen(e);
if (l + 4 > sizeof(b->sockaddr.un.sun_path))
return -E2BIG;
b = bus_new();
if (!b)
return -ENOMEM;
b->send_hello = true;
b->sockaddr.un.sun_family = AF_UNIX;
memcpy(mempcpy(b->sockaddr.un.sun_path, e, l), "/bus", 4);
b->sockaddr_size = offsetof(struct sockaddr_un, sun_path) + l + 4;
r = bus_start_connect(b);
if (r < 0) {
bus_free(b);
return r;
}
*ret = b;
return 0;
}
int sd_bus_open_address(const char *address, sd_bus **ret) {
sd_bus *b;
int r;
if (!address)
return -EINVAL;
if (!ret)
return -EINVAL;
b = bus_new();
if (!b)
return -ENOMEM;
b->address = strdup(address);
if (!b->address) {
bus_free(b);
return -ENOMEM;
}
r = bus_start_connect(b);
if (r < 0) {
bus_free(b);
return r;
}
*ret = b;
return 0;
}
int sd_bus_open_fd(int fd, sd_bus **ret) {
sd_bus *b;
int r;
if (fd < 0)
return -EINVAL;
if (!ret)
return -EINVAL;
b = bus_new();
if (!b)
return -ENOMEM;
b->fd = fd;
fd_nonblock(b->fd, true);
fd_cloexec(b->fd, true);
r = bus_start_auth(b);
if (r < 0) {
bus_free(b);
return r;
}
*ret = b;
return 0;
}
void sd_bus_close(sd_bus *bus) {
if (!bus)
return;
if (bus->fd < 0)
return;
close_nointr_nofail(bus->fd);
bus->fd = -1;
}
sd_bus *sd_bus_ref(sd_bus *bus) {
if (!bus)
return NULL;
assert(bus->n_ref > 0);
bus->n_ref++;
return bus;
}
sd_bus *sd_bus_unref(sd_bus *bus) {
if (!bus)
return NULL;
assert(bus->n_ref > 0);
bus->n_ref--;
if (bus->n_ref <= 0)
bus_free(bus);
return NULL;
}
int sd_bus_is_running(sd_bus *bus) {
if (!bus)
return -EINVAL;
if (bus->fd < 0)
return -ENOTCONN;
return bus->state == BUS_RUNNING;
}
int sd_bus_can_send(sd_bus *bus, char type) {
if (!bus)
return -EINVAL;
if (type == SD_BUS_TYPE_UNIX_FD)
return bus->can_fds;
return bus_type_is_valid(type);
}
static int bus_seal_message(sd_bus *b, sd_bus_message *m) {
assert(m);
if (m->sealed)
return 0;
2013-03-20 03:15:03 +01:00
return bus_message_seal(m, ++b->serial);
}
static int message_write(sd_bus *bus, sd_bus_message *m, size_t *idx) {
struct msghdr mh;
struct iovec *iov;
ssize_t k;
size_t n;
unsigned j;
assert(bus);
assert(m);
assert(idx);
n = m->n_iovec * sizeof(struct iovec);
iov = alloca(n);
memcpy(iov, m->iovec, n);
j = 0;
iovec_advance(iov, &j, *idx);
zero(mh);
mh.msg_iov = iov;
mh.msg_iovlen = m->n_iovec;
k = sendmsg(bus->fd, &mh, MSG_DONTWAIT|MSG_NOSIGNAL);
if (k < 0)
return -errno;
*idx += (size_t) k;
iovec_advance(iov, &j, *idx);
return j > m->n_iovec;
}
static int message_read_need(sd_bus *bus, size_t *need) {
uint32_t a, b;
uint8_t e;
assert(bus);
assert(need);
if (bus->rbuffer_size <= sizeof(struct bus_header)) {
*need = sizeof(struct bus_header);
return 0;
}
a = ((const uint32_t*) bus->rbuffer)[1];
b = ((const uint32_t*) bus->rbuffer)[3];
e = ((const uint8_t*) bus->rbuffer)[0];
if (e == SD_BUS_LITTLE_ENDIAN) {
a = le32toh(a);
b = le32toh(b);
} else if (e == SD_BUS_BIG_ENDIAN) {
a = be32toh(a);
b = be32toh(b);
} else
return -EIO;
*need = sizeof(struct bus_header) + ALIGN_TO(a, 8) + b;
return 0;
}
static int message_make(sd_bus *bus, size_t size, sd_bus_message **m) {
sd_bus_message *t;
void *b = NULL;
int r;
assert(bus);
assert(m);
assert(bus->rbuffer_size >= size);
if (bus->rbuffer_size > size) {
b = memdup((const uint8_t*) bus->rbuffer + size, bus->rbuffer_size - size);
if (!b) {
free(t);
return -ENOMEM;
}
}
2013-03-20 05:29:20 +01:00
r = bus_message_from_malloc(bus->rbuffer, size, &t);
if (r < 0) {
free(b);
return r;
}
bus->rbuffer = b;
bus->rbuffer_size -= size;
2013-03-20 03:15:03 +01:00
r = bus_message_parse(t);
if (r < 0) {
sd_bus_message_unref(t);
return r;
}
*m = t;
return 1;
}
static int message_read(sd_bus *bus, sd_bus_message **m) {
struct msghdr mh;
struct iovec iov;
ssize_t k;
size_t need;
int r;
void *b;
assert(bus);
assert(m);
r = message_read_need(bus, &need);
if (r < 0)
return r;
if (bus->rbuffer_size >= need)
return message_make(bus, need, m);
b = realloc(bus->rbuffer, need);
if (!b)
return -ENOMEM;
zero(iov);
iov.iov_base = (uint8_t*) bus->rbuffer + bus->rbuffer_size;
iov.iov_len = need - bus->rbuffer_size;
zero(mh);
mh.msg_iov = &iov;
mh.msg_iovlen = 1;
k = recvmsg(bus->fd, &mh, MSG_DONTWAIT|MSG_NOSIGNAL);
if (k < 0)
return errno == EAGAIN ? 0 : -errno;
bus->rbuffer_size += k;
r = message_read_need(bus, &need);
if (r < 0)
return r;
if (bus->rbuffer_size >= need)
return message_make(bus, need, m);
return 0;
}
static int dispatch_wqueue(sd_bus *bus) {
int r, c = 0;
assert(bus);
if (bus->fd < 0)
return -ENOTCONN;
while (bus->wqueue_size > 0) {
r = message_write(bus, bus->wqueue[0], &bus->windex);
if (r < 0) {
sd_bus_close(bus);
return r;
} else if (r == 0)
/* Wasn't fully written yet... */
break;
else {
/* Fully written. Let's drop the entry from
* the queue.
*
* This isn't particularly optimized, but
* well, this is supposed to be our worst-case
* buffer only, and the socket buffer is
* supposed to be our primary buffer, and if
* it got full, then all bets are off
* anyway. */
sd_bus_message_unref(bus->wqueue[0]);
bus->wqueue_size --;
memmove(bus->wqueue, bus->wqueue + 1, sizeof(sd_bus_message*) * bus->wqueue_size);
bus->windex = 0;
c++;
}
}
return c;
}
static int dispatch_rqueue(sd_bus *bus, sd_bus_message **m) {
int r;
assert(bus);
assert(m);
if (bus->fd < 0)
return -ENOTCONN;
if (bus->rqueue_size > 0) {
/* Dispatch a queued message */
*m = bus->rqueue[0];
bus->rqueue_size --;
memmove(bus->rqueue, bus->rqueue + 1, sizeof(sd_bus_message*) * bus->rqueue_size);
return 1;
}
/* Try to read a new message */
r = message_read(bus, m);
if (r < 0) {
sd_bus_close(bus);
return r;
}
return r;
}
int sd_bus_send(sd_bus *bus, sd_bus_message *m, uint64_t *serial) {
int r;
if (!bus)
return -EINVAL;
if (bus->fd < 0)
return -ENOTCONN;
if (!m)
return -EINVAL;
if (m->header->version > bus->message_version)
return -EPERM;
r = bus_seal_message(bus, m);
if (r < 0)
return r;
/* If this is a reply and no reply was requested, then let's
* suppress this, if we can */
if (m->dont_send && !serial)
return 0;
if (bus->wqueue_size <= 0) {
size_t idx = 0;
r = message_write(bus, m, &idx);
if (r < 0) {
sd_bus_close(bus);
return r;
} else if (r == 0) {
/* Wasn't fully written. So let's remember how
* much was written. Note that the first entry
* of the wqueue array is always allocated so
* that we always can remember how much was
* written. */
bus->wqueue[0] = sd_bus_message_ref(m);
bus->wqueue_size = 1;
bus->windex = idx;
}
} else {
sd_bus_message **q;
/* Just append it to the queue. */
if (bus->wqueue_size >= WQUEUE_MAX)
return -ENOBUFS;
q = realloc(bus->wqueue, sizeof(sd_bus_message*) * (bus->wqueue_size + 1));
if (!q)
return -ENOMEM;
bus->wqueue = q;
q[bus->wqueue_size ++] = sd_bus_message_ref(m);
}
if (serial)
*serial = BUS_MESSAGE_SERIAL(m);
return 0;
}
static usec_t calc_elapse(uint64_t usec) {
if (usec == (uint64_t) -1)
return 0;
if (usec == 0)
usec = SD_BUS_DEFAULT_TIMEOUT;
return now(CLOCK_MONOTONIC) + usec;
}
int sd_bus_send_with_reply(
sd_bus *bus,
sd_bus_message *m,
sd_message_handler_t callback,
void *userdata,
uint64_t usec,
uint64_t *serial) {
struct reply_callback *c;
int r;
if (!bus)
return -EINVAL;
if (!bus->fd < 0)
return -ENOTCONN;
if (!m)
return -EINVAL;
if (!callback)
return -EINVAL;
if (!m->header->type != SD_BUS_MESSAGE_TYPE_METHOD_CALL)
return -EINVAL;
r = bus_seal_message(bus, m);
if (r < 0)
return r;
c = new(struct reply_callback, 1);
if (!c)
return -ENOMEM;
c->callback = callback;
c->userdata = userdata;
c->serial = BUS_MESSAGE_SERIAL(m);
c->timeout = calc_elapse(usec);
r = hashmap_put(bus->reply_callbacks, &c->serial, c);
if (r < 0) {
free(c);
return r;
}
r = sd_bus_send(bus, m, serial);
if (r < 0) {
hashmap_remove(bus->reply_callbacks, &c->serial);
free(c);
return r;
}
return r;
}
int sd_bus_send_with_reply_cancel(sd_bus *bus, uint64_t serial) {
struct reply_callbacks *c;
if (!bus)
return -EINVAL;
if (serial == 0)
return -EINVAL;
c = hashmap_remove(bus->reply_callbacks, &serial);
if (!c)
return 0;
free(c);
return 1;
}
int sd_bus_send_with_reply_and_block(
sd_bus *bus,
sd_bus_message *m,
uint64_t usec,
sd_bus_error *error,
sd_bus_message **reply) {
int r;
usec_t timeout;
uint64_t serial;
bool room = false;
if (!bus)
return -EINVAL;
if (!bus->fd < 0)
return -ENOTCONN;
if (!m)
return -EINVAL;
if (!m->header->type != SD_BUS_MESSAGE_TYPE_METHOD_CALL)
return -EINVAL;
if (sd_bus_error_is_dirty(error))
return -EINVAL;
r = sd_bus_send(bus, m, &serial);
if (r < 0)
return r;
timeout = calc_elapse(usec);
for (;;) {
usec_t left;
sd_bus_message *incoming;
if (!room) {
sd_bus_message **q;
/* Make sure there's room for queuing this
* locally, before we read the message */
q = realloc(bus->rqueue, (bus->rqueue_size + 1) * sizeof(sd_bus_message*));
if (!q)
return -ENOMEM;
bus->rqueue = q;
room = true;
}
r = message_read(bus, &incoming);
if (r < 0)
return r;
if (r > 0) {
if (incoming->reply_serial == serial) {
/* Found a match! */
if (incoming->header->type == SD_BUS_MESSAGE_TYPE_METHOD_RETURN) {
*reply = incoming;
return 0;
}
if (incoming->header->type == SD_BUS_MESSAGE_TYPE_METHOD_ERROR) {
int k;
r = sd_bus_error_copy(error, &incoming->error);
if (r < 0) {
sd_bus_message_unref(incoming);
return r;
}
k = bus_error_to_errno(&incoming->error);
sd_bus_message_unref(incoming);
return k;
}
sd_bus_message_unref(incoming);
return -EIO;
}
/* There's already guaranteed to be room for
* this, so need to resize things here */
bus->rqueue[bus->rqueue_size ++] = incoming;
room = false;
/* Try to read more, right-away */
continue;
}
if (timeout > 0) {
usec_t n;
n = now(CLOCK_MONOTONIC);
if (n >= timeout)
return -ETIMEDOUT;
left = timeout - n;
} else
left = (uint64_t) -1;
r = sd_bus_wait(bus, left);
if (r < 0)
return r;
r = dispatch_wqueue(bus);
if (r < 0)
return r;
}
}
int sd_bus_get_fd(sd_bus *bus) {
if (!bus)
return -EINVAL;
if (bus->fd < 0)
return -EINVAL;
return bus->fd;
}
int sd_bus_get_events(sd_bus *bus) {
int flags = 0;
if (!bus)
return -EINVAL;
if (bus->fd < 0)
return -EINVAL;
if (bus->state == BUS_OPENING)
flags |= POLLOUT;
else if (bus->state == BUS_RUNNING || bus->state == BUS_HELLO) {
if (bus->rqueue_size <= 0)
flags |= POLLIN;
if (bus->wqueue_size > 0)
flags |= POLLOUT;
}
return flags;
}
int sd_bus_process(sd_bus *bus, sd_bus_message **ret) {
sd_bus_message *m;
int r;
if (!bus)
return -EINVAL;
if (bus->fd < 0)
return -ENOTCONN;
if (bus->state == BUS_OPENING) {
struct pollfd p;
zero(p);
p.fd = bus->fd;
p.events = POLLOUT;
r = poll(&p, 1, 0);
if (r < 0)
return -errno;
if (p.revents & (POLLOUT|POLLERR|POLLHUP)) {
int error;
socklen_t slen = sizeof(error);
r = getsockopt(bus->fd, SOL_SOCKET, SO_ERROR, &error, &slen);
if (r < 0)
return -errno;
if (error != 0)
bus->last_connect_error = -error;
else if (p.revents & (POLLERR|POLLHUP))
bus->last_connect_error = -ECONNREFUSED;
else
return bus_start_auth(bus);
/* Try next address */
return bus_start_connect(bus);
}
return 0;
} else if (bus->state == BUS_AUTHENTICATING) {
r = bus_write_auth(bus);
if (r < 0)
return r;
r = bus_read_auth(bus);
if (r <= 0)
return r;
return bus_start_running(bus);
} else if (bus->state == BUS_RUNNING || bus->state == BUS_HELLO) {
struct filter_callback *l;
r = dispatch_wqueue(bus);
if (r < 0)
return r;
r = dispatch_rqueue(bus, &m);
if (r <= 0)
return r;
if (m->header->type == SD_BUS_MESSAGE_TYPE_METHOD_CALL || m->header->type == SD_BUS_MESSAGE_TYPE_METHOD_RETURN) {
struct reply_callback *c;
c = hashmap_remove(bus->reply_callbacks, &m->reply_serial);
if (c) {
r = c->callback(bus, m, c->userdata);
free(c);
if (r != 0) {
sd_bus_message_unref(m);
return r < 0 ? r : 0;
}
}
}
LIST_FOREACH(callbacks, l, bus->filter_callbacks) {
r = l->callback(bus, m, l->userdata);
if (r != 0) {
sd_bus_message_unref(m);
return r < 0 ? r : 0;
}
}
if (ret) {
*ret = m;
return 1;
}
sd_bus_message_unref(m);
return 0;
}
return -ENOTSUP;
}
int sd_bus_wait(sd_bus *bus, uint64_t timeout_usec) {
struct pollfd p;
int r, e;
struct timespec ts;
if (!bus)
return -EINVAL;
if (bus->fd < 0)
return -ECONNREFUSED;
e = sd_bus_get_events(bus);
if (e < 0)
return e;
zero(p);
p.fd = bus->fd;
p.events = e;
r = ppoll(&p, 1, timeout_usec == (uint64_t) -1 ? NULL : timespec_store(&ts, timeout_usec), NULL);
if (r < 0)
return -EINVAL;
return r;
}
int sd_bus_flush(sd_bus *bus) {
int r;
if (!bus)
return -EINVAL;
if (bus->fd < 0)
return -ENOTCONN;
if (bus->state == BUS_RUNNING && bus->wqueue_size <= 0)
return 0;
for (;;) {
r = dispatch_wqueue(bus);
if (r < 0)
return r;
if (bus->state == BUS_RUNNING && bus->wqueue_size <= 0)
return 0;
r = sd_bus_wait(bus, (uint64_t) -1);
if (r < 0)
return r;
}
}
int sd_bus_add_filter(sd_bus *bus, sd_message_handler_t callback, void *userdata) {
struct filter_callback *f;
if (!bus)
return -EINVAL;
if (!callback)
return -EINVAL;
f = new(struct filter_callback, 1);
if (!f)
return -ENOMEM;
f->callback = callback;
f->userdata = userdata;
LIST_PREPEND(struct filter_callback, callbacks, bus->filter_callbacks, f);
return 0;
}
int sd_bus_remove_filter(sd_bus *bus, sd_message_handler_t callback, void *userdata) {
struct filter_callback *f;
if (!bus)
return -EINVAL;
if (!callback)
return -EINVAL;
LIST_FOREACH(callbacks, f, bus->filter_callbacks) {
if (f->callback == callback && f->userdata == userdata) {
LIST_REMOVE(struct filter_callback, callbacks, bus->filter_callbacks, f);
free(f);
return 1;
}
}
return 0;
}