Minor grammar changes

mostly inserting / removing commas / periods as appropriate.
occasionally fixing duplicated words, proper brand case, and singular/plurals.
This commit is contained in:
Josh Soref 2018-07-20 15:40:15 -04:00 committed by Zbigniew Jędrzejewski-Szmek
parent f14d0b2314
commit 7957e55d05
1 changed files with 20 additions and 20 deletions

View File

@ -15,9 +15,9 @@ Of course, without this specification things already work mostly fine. But here'
* To make the boot more robust, as no explicit rewriting of configuration files is required any more
* To improve dual-boot scenarios. Currently, multiple Linux installations tend to fight over which boot loader becomes the primary one in possession of the MBR, and only that one installation can then update the boot loader configuration of it freely. Other Linux installs have to be manually configured to never touch the MBR and instead install a chain-loaded boot loader in their own partition headers. In this new scheme as all installations share a loader directory no manual configuration has to take place, and all participants implicitly cooperate due to removal of name collisions and can install/remove their own boot menu entries at free will, without interfering with the entries of other installed operating systems.
* Drop-in directories are otherwise now pretty ubiquitous on Linux as an easy way to extend configuration without having to edit, regenerate or manipulate configuration files. For the sake of uniformity we should do the same for extending the boot menu.
* Drop-in directories are otherwise now pretty ubiquitous on Linux as an easy way to extend configuration without having to edit, regenerate or manipulate configuration files. For the sake of uniformity, we should do the same for extending the boot menu.
* Userspace code can sanely parse boot loader configuration which is essential with modern BIOSes which do not necessarily initialize USB keyboards anymore during boot, which makes boot menus hard to reach for the user. If userspace code can parse the boot loader configuration, too, this allows for UIs that can select a boot menu item to boot into, before rebooting the machine, thus not requiring interactivity during early boot.
* To unify and thus simplify configuration of the various boot loaders around, which makes configuration of the boot loading process easier for users, administrators and developers alike
* To unify and thus simplify configuration of the various boot loaders around, which makes configuration of the boot loading process easier for users, administrators and developers alike.
* For boot loaders with configuration _scripts_ such as grub2, adopting this spec allows for mostly static scripts that are generated only once at first installation, but then do not need to be updated anymore as that is done via drop-in files exclusively.
## Why not simply rely on the EFI boot menu logic?
@ -25,7 +25,7 @@ Of course, without this specification things already work mostly fine. But here'
The EFI specification provides a boot options logic that can offer similar functionality. Here's why we think that it is not enough for our uses:
* The various EFI implementations implement the boot order/boot item logic to different levels. Some firmware implementations do not offer a boot menu at all and instead unconditionally follow the EFI boot order, booting the first item that is working.
* If the firmware setup is used to reset all data usually all EFI boot entries are lost, making the system entirely unbootable, as the firmware setups generally do not offer a UI to define additional boot items. By placing the menu item information on disk it is always available, regardless if the BIOS setup data is lost.
* If the firmware setup is used to reset all data usually all EFI boot entries are lost, making the system entirely unbootable, as the firmware setups generally do not offer a UI to define additional boot items. By placing the menu item information on disk, it is always available, regardless if the BIOS setup data is lost.
* Harddisk images should be moveable between machines and be bootable without requiring explicit EFI variables to be set. This also requires that the list of boot options is defined on disk, and not in EFI variables alone.
* EFI is not universal yet (especially on non-x86 platforms), this specification is useful both for EFI and non-EFI boot loaders.
* Many EFI systems disable USB support during early boot to optimize boot times, thus making keyboard input unavailable in the EFI menu. It is thus useful if the OS UI has a standardized way to discover available boot options which can be booted to.
@ -36,14 +36,14 @@ Everything described below is located on a placeholder file system `$BOOT`. The
* On disks with MBR disk labels
* If the OS is installed on a disk with MBR disk label, and a partition with the MBR type id of 0xEA already exists it should be used as `$BOOT`.
* Otherwise, if the the OS is installed on a disk with MBR disk label, a new partition with MBR type id of 0xEA shall be created, of a suitable size (let's say 500MB), and it should be used as `$BOOT`.
* Otherwise, if the OS is installed on a disk with MBR disk label, a new partition with MBR type id of 0xEA shall be created, of a suitable size (let's say 500MB), and it should be used as `$BOOT`.
* On disks with GPT disk labels
* If the OS is installed on a disk with GPT disk label, and a partition with the GPT type GUID of bc13c2ff-59e6-4262-a352-b275fd6f7172 already exists, it should be used as `$BOOT`.
* Otherwise, if the OS is installed on a disk with GPT disk label, and an ESP partition (i.e. with the GPT type UID of c12a7328-f81f-11d2-ba4b-00a0c93ec93b) already exists and is large enough (let's say 250MB) and otherwise qualifies, it should be used as `$BOOT`.
* Otherwise, if the OS is installed on a disk with GPT disk label, and if the ESP partition already exists but is too small, a new suitably sized (let's say 500MB) partition with GPT type GUID of bc13c2ff-59e6-4262-a352-b275fd6f7172 shall be created and it should be used as `$BOOT`.
* Otherwise, if the OS is installed on a disk with GPT disk label, and no ESP partition exists yet, a new suitably sized (let's say 500MB) ESP should be created and should be used as `$BOOT`.
This placeholder file system shall be determined during _installation time_, and an fstab entry maybe be created. It should be mounted to either /boot or /efi. Additional locations like /boot/efi, with /boot being a separate file system, might be supported by implementations. This is not recommended because the mounting of `$BOOT` is then dependent on and requires the mounting of the intermediate file system.
This placeholder file system shall be determined during _installation time_, and an fstab entry may be created. It should be mounted to either /boot or /efi. Additional locations like /boot/efi, with /boot being a separate file system, might be supported by implementations. This is not recommended because the mounting of `$BOOT` is then dependent on and requires the mounting of the intermediate file system.
**Note:** _`$BOOT` should be considered **shared** among all OS installations of a system. Instead of maintaining one `$BOOT` per installed OS (as `/boot` was traditionally handled), all installed OS share the same place to drop in their boot-time configuration._
@ -58,23 +58,23 @@ We define two directories below `$BOOT`:
**Note:** _In all cases the /loader directory should be located directly in the root of the file system. Specifically, if `$BOOT` is the ESP, then /loader directory should be located directly in the root directory of the ESP, and not in the EFI/ subdirectory._
Inside the `$BOOT/loader/entries/` directory each OS vendor may drop one or more configuration snippets with the suffix ".conf", one for each boot menu item. The file name of the file is used for identification of the boot item, but shall never be presented to the user in the UI. The file name may be chosen freely but should be unique enough to avoid clashes between OS installations. More specifically it is suggested to include the machine ID (`/etc/machine-id` or the D-Bus machine ID for OSes that lack `/etc/machine-id`), the kernel version (as returned by `uname -r`) and an OS identifier (The ID field of `/etc/os-release`). Example: `$BOOT/loader/entries/6a9857a393724b7a981ebb5b8495b9ea-3.8.0-2.fc19.x86_64.conf`.
Inside the `$BOOT/loader/entries/` directory each OS vendor may drop one or more configuration snippets with the suffix ".conf", one for each boot menu item. The file name of the file is used for identification of the boot item but shall never be presented to the user in the UI. The file name may be chosen freely but should be unique enough to avoid clashes between OS installations. More specifically it is suggested to include the machine ID (`/etc/machine-id` or the D-Bus machine ID for OSes that lack `/etc/machine-id`), the kernel version (as returned by `uname -r`) and an OS identifier (The ID field of `/etc/os-release`). Example: `$BOOT/loader/entries/6a9857a393724b7a981ebb5b8495b9ea-3.8.0-2.fc19.x86_64.conf`.
These configuration snippets shall be Unix-style text files (i.e. line separation with a single newline character), in the UTF-8 encoding. The configuration snippets are loosely inspired on Grub1's configuration syntax. Lines beginning with '#' shall be ignored and used for commenting. The first word of a line is used as key, and shall be separated by a space from its value. The following keys are known:
These configuration snippets shall be Unix-style text files (i.e. line separation with a single newline character), in the UTF-8 encoding. The configuration snippets are loosely inspired on Grub1's configuration syntax. Lines beginning with '#' shall be ignored and used for commenting. The first word of a line is used as key and shall be separated by a space from its value. The following keys are known:
* `title` shall contain a human readable title string for this menu item. This will be displayed in the boot menu for the item. It is a good idea to initialize this from the `PRETTY_NAME` of `/etc/os-release`. This name should be descriptive and does not have to be unique. If a boot loader discovers two entries with the same title it is a good idea to show more than just the raw title in the UI, for example by appending the `version` field. This field is optional. Example: "Fedora 18 (Spherical Cow)".
* `version` shall contain a human readable version string for this menu item. This is usually the kernel version and is intended for use by OSes to install multiple kernel versions at the same time with the same `title` field. This field shall be in a syntax that is useful for Debian-style version sorts, so that the boot loader UI can determine the newest version easily and show it first or preselect it automatically. This field is optional. Example: `3.7.2-201.fc18.x86_64`
* `machine-id` shall contain the machine ID of the OS `/etc/machine-id`. This is useful for boot loaders and applications to filter out boot entries, for example to show only a single newest kernel per OS, or to group items by OS, or to maybe filter out the currently booted OS in UIs that want to show only other installed operating systems. This ID shall be formatted as 32 lower case hexadecimal characters (i.e. without any UUID formatting). This key is optional. Example: `4098b3f648d74c13b1f04ccfba7798e8`
* `linux` refers to the kernel to spawn, and shall be a path relative to the `$BOOT` directory. It is recommended that every distribution creates a machine id and version specific subdirectory below `$BOOT` and places its kernels and initial RAM disk images there. Example: `/6a9857a393724b7a981ebb5b8495b9ea/3.8.0-2.fc19.x86_64/linux`.
* `initrd` refers to the initrd to use when executing the kernel. This also shall be a path relative to the `$BOOT` directory. This key is optional. This key may appear more than once in which case all specified images are used, in the order they are listed. Example: `6a9857a393724b7a981ebb5b8495b9ea/3.8.0-2.fc19.x86_64/initrd`
* `version` shall contain a human readable version string for this menu item. This is usually the kernel version and is intended for use by OSes to install multiple kernel versions at the same time with the same `title` field. This field shall be in a syntax that is useful for Debian-style version sorts, so that the boot loader UI can determine the newest version easily and show it first or preselect it automatically. This field is optional. Example: `3.7.2-201.fc18.x86_64`.
* `machine-id` shall contain the machine ID of the OS `/etc/machine-id`. This is useful for boot loaders and applications to filter out boot entries, for example to show only a single newest kernel per OS, or to group items by OS, or to maybe filter out the currently booted OS in UIs that want to show only other installed operating systems. This ID shall be formatted as 32 lower case hexadecimal characters (i.e. without any UUID formatting). This key is optional. Example: `4098b3f648d74c13b1f04ccfba7798e8`.
* `linux` refers to the kernel to spawn and shall be a path relative to the `$BOOT` directory. It is recommended that every distribution creates a machine id and version specific subdirectory below `$BOOT` and places its kernels and initial RAM disk images there. Example: `/6a9857a393724b7a981ebb5b8495b9ea/3.8.0-2.fc19.x86_64/linux`.
* `initrd` refers to the initrd to use when executing the kernel. This also shall be a path relative to the `$BOOT` directory. This key is optional. This key may appear more than once in which case all specified images are used, in the order they are listed. Example: `6a9857a393724b7a981ebb5b8495b9ea/3.8.0-2.fc19.x86_64/initrd`.
* `efi` to spawn arbitrary EFI programs. This also takes a path relative to `$BOOT`. This key is only available on EFI systems.
* `options` shall contain kernel parameters to pass to the Linux kernel to spawn. This key is optional and may appear more than once in which case all specified parameters are used in the order they are listed.
* `devicetree` refers to the binary device tree to use when executing the
kernel. This also shall be a path relative to the `$BOOT` directory. This
key is optional. Example: `6a9857a393724b7a981ebb5b8495b9ea/3.8.0-2.fc19.armv7hl/tegra20-paz00.dtb`
key is optional. Example: `6a9857a393724b7a981ebb5b8495b9ea/3.8.0-2.fc19.armv7hl/tegra20-paz00.dtb`.
* `architecture` refers to the UEFI architecture this entry is defined for. If specified and this does not match the local UEFI system architecture the entry is hidden.
Each configuration drop-in snippet must include at least a `linux` or an `efi` key, and is otherwise not valid. Here's an example for a complete drop-in file:
Each configuration drop-in snippet must include at least a `linux` or an `efi` key and is otherwise not valid. Here's an example for a complete drop-in file:
# /boot/loader/entries/6a9857a393724b7a981ebb5b8495b9ea-3.8.0-2.fc19.x86_64.conf
title Fedora 19 (Rawhide)
@ -90,7 +90,7 @@ Note that these configuration snippets may only reference kernels (and EFI progr
### Unified kernel images
A unified kernel image is a single UEFI executable combining an UEFI stub loader, a kernel image, an initramfs image, and the kernel command line. See the description of the `--uefi` option in [dracut(8)](http://man7.org/linux/man-pages/man8/dracut.8.html). Such images will be searched for under `$BOOT/EFI/Linux`, and must have the extension `.efi`.
A unified kernel image is a single UEFI executable combining an UEFI stub loader, a kernel image, an initramfs image, and the kernel command line. See the description of the `--uefi` option in [dracut(8)](http://man7.org/linux/man-pages/man8/dracut.8.html). Such images will be searched for under `$BOOT/EFI/Linux` and must have the extension `.efi`.
A valid unified kernel image must contain two PE sections:
@ -114,21 +114,21 @@ Note that all paths used in the configuration snippets use a Unix-style "/" as p
A _boot loader_ needs a file system driver to discover and read `$BOOT`, then simply reads all files `$BOOT/loader/entries/*.conf`, and populates its boot menu with this. It then extends this with any unified kernel images found in `$BOOT/EFI/Linux`. It may also add additional entries, for example "Reboot into firmware". Optionally it may sort the menu based on the `machine-id` and `version` fields, and possibly others. It uses the file name to identify specific items, for example in case it supports storing away default entry information somewhere. A boot loader should generally not modify these files.
For "boot loader specification" entries, the _kernel package installer_ installs the kernel and initrd images to `$BOOT` (it is recommended to place these files in a vendor and OS and installation specific directory) and then generates a configuration snippet for it, placing this in `$BOOT/loader/entries/xyz.conf`, with xyz as concatenation of machine id and version information (see above). The files created by a kernel package are private property of the kernel package, and should be removed along with it.
For "boot loader specification" entries, the _kernel package installer_ installs the kernel and initrd images to `$BOOT` (it is recommended to place these files in a vendor and OS and installation specific directory) and then generates a configuration snippet for it, placing this in `$BOOT/loader/entries/xyz.conf`, with xyz as concatenation of machine id and version information (see above). The files created by a kernel package are private property of the kernel package and should be removed along with it.
For "unified kernel images", the _kernel install_ creates the combined image and drops it into `$BOOT/EFI/Linux`. This file is also private property of the kernel package, and should be removed along with it.
For "unified kernel images", the _kernel install_ creates the combined image and drops it into `$BOOT/EFI/Linux`. This file is also private property of the kernel package and should be removed along with it.
A _UI application_ intended to show available boot options shall operate similar to a boot loader, but might apply additional filters, for example by filtering out the booted OS via the machine ID, or by suppressing all but the newest kernel versions.
An _OS installer_ picks the right place for `$BOOT` as defined above (possibly creating a partition and file system for it), and pre-creates the `/loader/entries/` directory in it. It then installs an appropriate boot loader that can read these snippets. Finally it installs one or more kernel packages.
An _OS installer_ picks the right place for `$BOOT` as defined above (possibly creating a partition and file system for it) and pre-creates the `/loader/entries/` directory in it. It then installs an appropriate boot loader that can read these snippets. Finally, it installs one or more kernel packages.
## Out of Focus
There are a couple of items that are out of focus for this specifications:
There are a couple of items that are out of focus for this specification:
* If userspace can figure out the available boot options, then this is only useful so much: we'd still need to come up with a way how userspace could communicate to the boot loader the default boot loader entry temporarily or persistently. Defining a common scheme for this is certainly a good idea, but out of focus for this specifications.
* This specifications is just about "Free" Operating systems. Hooking in other operating systems (like Windows, MacOS) into the boot menu is a different story, and should probably happen outside of this specification. For example, boot loaders might choose to detect other available OSes dynamically at runtime without explicit configuration (like <strike>Gummiboot</strike> systemd-boot does it), or via native configuration (for example via explicit Grub2 configuration generated once at installation).
* If userspace can figure out the available boot options, then this is only useful so much: we'd still need to come up with a way how userspace could communicate to the boot loader the default boot loader entry temporarily or persistently. Defining a common scheme for this is certainly a good idea, but out of focus for this specification.
* This specification is just about "Free" Operating systems. Hooking in other operating systems (like Windows and macOS) into the boot menu is a different story and should probably happen outside of this specification. For example, boot loaders might choose to detect other available OSes dynamically at runtime without explicit configuration (like <strike>Gummiboot</strike> systemd-boot does it), or via native configuration (for example via explicit Grub2 configuration generated once at installation).
* This specification leaves undefined what to do about systems which are upgraded from an OS that does not implement this specification. As the previous boot loader logic was largely handled by in distribution-specific ways we probably should leave the upgrade path (and whether there actually is one) to the distributions. The simplest solution might be to simply continue with the old scheme for old installations and use this new scheme only for new installations.