/* SPDX-License-Identifier: LGPL-2.1+ */ #include #include #include #include #include #include #include #include #include #include "sd-event.h" #include "alloc-util.h" #include "btrfs-util.h" #include "chattr-util.h" #include "compress.h" #include "fd-util.h" #include "fs-util.h" #include "journal-authenticate.h" #include "journal-def.h" #include "journal-file.h" #include "lookup3.h" #include "memory-util.h" #include "parse-util.h" #include "path-util.h" #include "random-util.h" #include "set.h" #include "sort-util.h" #include "stat-util.h" #include "string-util.h" #include "strv.h" #include "xattr-util.h" #define DEFAULT_DATA_HASH_TABLE_SIZE (2047ULL*sizeof(HashItem)) #define DEFAULT_FIELD_HASH_TABLE_SIZE (333ULL*sizeof(HashItem)) #define DEFAULT_COMPRESS_THRESHOLD (512ULL) #define MIN_COMPRESS_THRESHOLD (8ULL) /* This is the minimum journal file size */ #define JOURNAL_FILE_SIZE_MIN (512ULL*1024ULL) /* 512 KiB */ /* These are the lower and upper bounds if we deduce the max_use value * from the file system size */ #define DEFAULT_MAX_USE_LOWER (1ULL*1024ULL*1024ULL) /* 1 MiB */ #define DEFAULT_MAX_USE_UPPER (4ULL*1024ULL*1024ULL*1024ULL) /* 4 GiB */ /* This is the default minimal use limit, how much we'll use even if keep_free suggests otherwise. */ #define DEFAULT_MIN_USE (1ULL*1024ULL*1024ULL) /* 1 MiB */ /* This is the upper bound if we deduce max_size from max_use */ #define DEFAULT_MAX_SIZE_UPPER (128ULL*1024ULL*1024ULL) /* 128 MiB */ /* This is the upper bound if we deduce the keep_free value from the * file system size */ #define DEFAULT_KEEP_FREE_UPPER (4ULL*1024ULL*1024ULL*1024ULL) /* 4 GiB */ /* This is the keep_free value when we can't determine the system * size */ #define DEFAULT_KEEP_FREE (1024ULL*1024ULL) /* 1 MB */ /* This is the default maximum number of journal files to keep around. */ #define DEFAULT_N_MAX_FILES (100) /* n_data was the first entry we added after the initial file format design */ #define HEADER_SIZE_MIN ALIGN64(offsetof(Header, n_data)) /* How many entries to keep in the entry array chain cache at max */ #define CHAIN_CACHE_MAX 20 /* How much to increase the journal file size at once each time we allocate something new. */ #define FILE_SIZE_INCREASE (8ULL*1024ULL*1024ULL) /* 8MB */ /* Reread fstat() of the file for detecting deletions at least this often */ #define LAST_STAT_REFRESH_USEC (5*USEC_PER_SEC) /* The mmap context to use for the header we pick as one above the last defined typed */ #define CONTEXT_HEADER _OBJECT_TYPE_MAX #ifdef __clang__ # pragma GCC diagnostic ignored "-Waddress-of-packed-member" #endif /* This may be called from a separate thread to prevent blocking the caller for the duration of fsync(). * As a result we use atomic operations on f->offline_state for inter-thread communications with * journal_file_set_offline() and journal_file_set_online(). */ static void journal_file_set_offline_internal(JournalFile *f) { assert(f); assert(f->fd >= 0); assert(f->header); for (;;) { switch (f->offline_state) { case OFFLINE_CANCEL: if (!__sync_bool_compare_and_swap(&f->offline_state, OFFLINE_CANCEL, OFFLINE_DONE)) continue; return; case OFFLINE_AGAIN_FROM_SYNCING: if (!__sync_bool_compare_and_swap(&f->offline_state, OFFLINE_AGAIN_FROM_SYNCING, OFFLINE_SYNCING)) continue; break; case OFFLINE_AGAIN_FROM_OFFLINING: if (!__sync_bool_compare_and_swap(&f->offline_state, OFFLINE_AGAIN_FROM_OFFLINING, OFFLINE_SYNCING)) continue; break; case OFFLINE_SYNCING: (void) fsync(f->fd); if (!__sync_bool_compare_and_swap(&f->offline_state, OFFLINE_SYNCING, OFFLINE_OFFLINING)) continue; f->header->state = f->archive ? STATE_ARCHIVED : STATE_OFFLINE; (void) fsync(f->fd); break; case OFFLINE_OFFLINING: if (!__sync_bool_compare_and_swap(&f->offline_state, OFFLINE_OFFLINING, OFFLINE_DONE)) continue; _fallthrough_; case OFFLINE_DONE: return; case OFFLINE_JOINED: log_debug("OFFLINE_JOINED unexpected offline state for journal_file_set_offline_internal()"); return; } } } static void * journal_file_set_offline_thread(void *arg) { JournalFile *f = arg; (void) pthread_setname_np(pthread_self(), "journal-offline"); journal_file_set_offline_internal(f); return NULL; } static int journal_file_set_offline_thread_join(JournalFile *f) { int r; assert(f); if (f->offline_state == OFFLINE_JOINED) return 0; r = pthread_join(f->offline_thread, NULL); if (r) return -r; f->offline_state = OFFLINE_JOINED; if (mmap_cache_got_sigbus(f->mmap, f->cache_fd)) return -EIO; return 0; } /* Trigger a restart if the offline thread is mid-flight in a restartable state. */ static bool journal_file_set_offline_try_restart(JournalFile *f) { for (;;) { switch (f->offline_state) { case OFFLINE_AGAIN_FROM_SYNCING: case OFFLINE_AGAIN_FROM_OFFLINING: return true; case OFFLINE_CANCEL: if (!__sync_bool_compare_and_swap(&f->offline_state, OFFLINE_CANCEL, OFFLINE_AGAIN_FROM_SYNCING)) continue; return true; case OFFLINE_SYNCING: if (!__sync_bool_compare_and_swap(&f->offline_state, OFFLINE_SYNCING, OFFLINE_AGAIN_FROM_SYNCING)) continue; return true; case OFFLINE_OFFLINING: if (!__sync_bool_compare_and_swap(&f->offline_state, OFFLINE_OFFLINING, OFFLINE_AGAIN_FROM_OFFLINING)) continue; return true; default: return false; } } } /* Sets a journal offline. * * If wait is false then an offline is dispatched in a separate thread for a * subsequent journal_file_set_offline() or journal_file_set_online() of the * same journal to synchronize with. * * If wait is true, then either an existing offline thread will be restarted * and joined, or if none exists the offline is simply performed in this * context without involving another thread. */ int journal_file_set_offline(JournalFile *f, bool wait) { bool restarted; int r; assert(f); if (!f->writable) return -EPERM; if (f->fd < 0 || !f->header) return -EINVAL; /* An offlining journal is implicitly online and may modify f->header->state, * we must also join any potentially lingering offline thread when not online. */ if (!journal_file_is_offlining(f) && f->header->state != STATE_ONLINE) return journal_file_set_offline_thread_join(f); /* Restart an in-flight offline thread and wait if needed, or join a lingering done one. */ restarted = journal_file_set_offline_try_restart(f); if ((restarted && wait) || !restarted) { r = journal_file_set_offline_thread_join(f); if (r < 0) return r; } if (restarted) return 0; /* Initiate a new offline. */ f->offline_state = OFFLINE_SYNCING; if (wait) /* Without using a thread if waiting. */ journal_file_set_offline_internal(f); else { sigset_t ss, saved_ss; int k; assert_se(sigfillset(&ss) >= 0); /* Don't block SIGBUS since the offlining thread accesses a memory mapped file. * Asynchronous SIGBUS signals can safely be handled by either thread. */ assert_se(sigdelset(&ss, SIGBUS) >= 0); r = pthread_sigmask(SIG_BLOCK, &ss, &saved_ss); if (r > 0) return -r; r = pthread_create(&f->offline_thread, NULL, journal_file_set_offline_thread, f); k = pthread_sigmask(SIG_SETMASK, &saved_ss, NULL); if (r > 0) { f->offline_state = OFFLINE_JOINED; return -r; } if (k > 0) return -k; } return 0; } static int journal_file_set_online(JournalFile *f) { bool wait = true; assert(f); if (!f->writable) return -EPERM; if (f->fd < 0 || !f->header) return -EINVAL; while (wait) { switch (f->offline_state) { case OFFLINE_JOINED: /* No offline thread, no need to wait. */ wait = false; break; case OFFLINE_SYNCING: if (!__sync_bool_compare_and_swap(&f->offline_state, OFFLINE_SYNCING, OFFLINE_CANCEL)) continue; /* Canceled syncing prior to offlining, no need to wait. */ wait = false; break; case OFFLINE_AGAIN_FROM_SYNCING: if (!__sync_bool_compare_and_swap(&f->offline_state, OFFLINE_AGAIN_FROM_SYNCING, OFFLINE_CANCEL)) continue; /* Canceled restart from syncing, no need to wait. */ wait = false; break; case OFFLINE_AGAIN_FROM_OFFLINING: if (!__sync_bool_compare_and_swap(&f->offline_state, OFFLINE_AGAIN_FROM_OFFLINING, OFFLINE_CANCEL)) continue; /* Canceled restart from offlining, must wait for offlining to complete however. */ _fallthrough_; default: { int r; r = journal_file_set_offline_thread_join(f); if (r < 0) return r; wait = false; break; } } } if (mmap_cache_got_sigbus(f->mmap, f->cache_fd)) return -EIO; switch (f->header->state) { case STATE_ONLINE: return 0; case STATE_OFFLINE: f->header->state = STATE_ONLINE; (void) fsync(f->fd); return 0; default: return -EINVAL; } } bool journal_file_is_offlining(JournalFile *f) { assert(f); __sync_synchronize(); if (IN_SET(f->offline_state, OFFLINE_DONE, OFFLINE_JOINED)) return false; return true; } JournalFile* journal_file_close(JournalFile *f) { assert(f); #if HAVE_GCRYPT /* Write the final tag */ if (f->seal && f->writable) { int r; r = journal_file_append_tag(f); if (r < 0) log_error_errno(r, "Failed to append tag when closing journal: %m"); } #endif if (f->post_change_timer) { if (sd_event_source_get_enabled(f->post_change_timer, NULL) > 0) journal_file_post_change(f); sd_event_source_disable_unref(f->post_change_timer); } journal_file_set_offline(f, true); if (f->mmap && f->cache_fd) mmap_cache_free_fd(f->mmap, f->cache_fd); if (f->fd >= 0 && f->defrag_on_close) { /* Be friendly to btrfs: turn COW back on again now, * and defragment the file. We won't write to the file * ever again, hence remove all fragmentation, and * reenable all the good bits COW usually provides * (such as data checksumming). */ (void) chattr_fd(f->fd, 0, FS_NOCOW_FL, NULL); (void) btrfs_defrag_fd(f->fd); } if (f->close_fd) safe_close(f->fd); free(f->path); mmap_cache_unref(f->mmap); ordered_hashmap_free_free(f->chain_cache); #if HAVE_XZ || HAVE_LZ4 free(f->compress_buffer); #endif #if HAVE_GCRYPT if (f->fss_file) munmap(f->fss_file, PAGE_ALIGN(f->fss_file_size)); else free(f->fsprg_state); free(f->fsprg_seed); if (f->hmac) gcry_md_close(f->hmac); #endif return mfree(f); } static int journal_file_init_header(JournalFile *f, JournalFile *template) { Header h = {}; ssize_t k; int r; assert(f); memcpy(h.signature, HEADER_SIGNATURE, 8); h.header_size = htole64(ALIGN64(sizeof(h))); h.incompatible_flags |= htole32( f->compress_xz * HEADER_INCOMPATIBLE_COMPRESSED_XZ | f->compress_lz4 * HEADER_INCOMPATIBLE_COMPRESSED_LZ4); h.compatible_flags = htole32( f->seal * HEADER_COMPATIBLE_SEALED); r = sd_id128_randomize(&h.file_id); if (r < 0) return r; if (template) { h.seqnum_id = template->header->seqnum_id; h.tail_entry_seqnum = template->header->tail_entry_seqnum; } else h.seqnum_id = h.file_id; k = pwrite(f->fd, &h, sizeof(h), 0); if (k < 0) return -errno; if (k != sizeof(h)) return -EIO; return 0; } static int journal_file_refresh_header(JournalFile *f) { sd_id128_t boot_id; int r; assert(f); assert(f->header); r = sd_id128_get_machine(&f->header->machine_id); if (IN_SET(r, -ENOENT, -ENOMEDIUM)) /* We don't have a machine-id, let's continue without */ zero(f->header->machine_id); else if (r < 0) return r; r = sd_id128_get_boot(&boot_id); if (r < 0) return r; f->header->boot_id = boot_id; r = journal_file_set_online(f); /* Sync the online state to disk */ (void) fsync(f->fd); /* We likely just created a new file, also sync the directory this file is located in. */ (void) fsync_directory_of_file(f->fd); return r; } static bool warn_wrong_flags(const JournalFile *f, bool compatible) { const uint32_t any = compatible ? HEADER_COMPATIBLE_ANY : HEADER_INCOMPATIBLE_ANY, supported = compatible ? HEADER_COMPATIBLE_SUPPORTED : HEADER_INCOMPATIBLE_SUPPORTED; const char *type = compatible ? "compatible" : "incompatible"; uint32_t flags; flags = le32toh(compatible ? f->header->compatible_flags : f->header->incompatible_flags); if (flags & ~supported) { if (flags & ~any) log_debug("Journal file %s has unknown %s flags 0x%"PRIx32, f->path, type, flags & ~any); flags = (flags & any) & ~supported; if (flags) { const char* strv[3]; unsigned n = 0; _cleanup_free_ char *t = NULL; if (compatible && (flags & HEADER_COMPATIBLE_SEALED)) strv[n++] = "sealed"; if (!compatible && (flags & HEADER_INCOMPATIBLE_COMPRESSED_XZ)) strv[n++] = "xz-compressed"; if (!compatible && (flags & HEADER_INCOMPATIBLE_COMPRESSED_LZ4)) strv[n++] = "lz4-compressed"; strv[n] = NULL; assert(n < ELEMENTSOF(strv)); t = strv_join((char**) strv, ", "); log_debug("Journal file %s uses %s %s %s disabled at compilation time.", f->path, type, n > 1 ? "flags" : "flag", strnull(t)); } return true; } return false; } static int journal_file_verify_header(JournalFile *f) { uint64_t arena_size, header_size; assert(f); assert(f->header); if (memcmp(f->header->signature, HEADER_SIGNATURE, 8)) return -EBADMSG; /* In both read and write mode we refuse to open files with incompatible * flags we don't know. */ if (warn_wrong_flags(f, false)) return -EPROTONOSUPPORT; /* When open for writing we refuse to open files with compatible flags, too. */ if (f->writable && warn_wrong_flags(f, true)) return -EPROTONOSUPPORT; if (f->header->state >= _STATE_MAX) return -EBADMSG; header_size = le64toh(f->header->header_size); /* The first addition was n_data, so check that we are at least this large */ if (header_size < HEADER_SIZE_MIN) return -EBADMSG; if (JOURNAL_HEADER_SEALED(f->header) && !JOURNAL_HEADER_CONTAINS(f->header, n_entry_arrays)) return -EBADMSG; arena_size = le64toh(f->header->arena_size); if (UINT64_MAX - header_size < arena_size || header_size + arena_size > (uint64_t) f->last_stat.st_size) return -ENODATA; if (le64toh(f->header->tail_object_offset) > header_size + arena_size) return -ENODATA; if (!VALID64(le64toh(f->header->data_hash_table_offset)) || !VALID64(le64toh(f->header->field_hash_table_offset)) || !VALID64(le64toh(f->header->tail_object_offset)) || !VALID64(le64toh(f->header->entry_array_offset))) return -ENODATA; if (f->writable) { sd_id128_t machine_id; uint8_t state; int r; r = sd_id128_get_machine(&machine_id); if (r < 0) return r; if (!sd_id128_equal(machine_id, f->header->machine_id)) return -EHOSTDOWN; state = f->header->state; if (state == STATE_ARCHIVED) return -ESHUTDOWN; /* Already archived */ else if (state == STATE_ONLINE) return log_debug_errno(SYNTHETIC_ERRNO(EBUSY), "Journal file %s is already online. Assuming unclean closing.", f->path); else if (state != STATE_OFFLINE) return log_debug_errno(SYNTHETIC_ERRNO(EBUSY), "Journal file %s has unknown state %i.", f->path, state); if (f->header->field_hash_table_size == 0 || f->header->data_hash_table_size == 0) return -EBADMSG; /* Don't permit appending to files from the future. Because otherwise the realtime timestamps wouldn't * be strictly ordered in the entries in the file anymore, and we can't have that since it breaks * bisection. */ if (le64toh(f->header->tail_entry_realtime) > now(CLOCK_REALTIME)) return log_debug_errno(SYNTHETIC_ERRNO(ETXTBSY), "Journal file %s is from the future, refusing to append new data to it that'd be older.", f->path); } f->compress_xz = JOURNAL_HEADER_COMPRESSED_XZ(f->header); f->compress_lz4 = JOURNAL_HEADER_COMPRESSED_LZ4(f->header); f->seal = JOURNAL_HEADER_SEALED(f->header); return 0; } static int journal_file_fstat(JournalFile *f) { int r; assert(f); assert(f->fd >= 0); if (fstat(f->fd, &f->last_stat) < 0) return -errno; f->last_stat_usec = now(CLOCK_MONOTONIC); /* Refuse dealing with with files that aren't regular */ r = stat_verify_regular(&f->last_stat); if (r < 0) return r; /* Refuse appending to files that are already deleted */ if (f->last_stat.st_nlink <= 0) return -EIDRM; return 0; } static int journal_file_allocate(JournalFile *f, uint64_t offset, uint64_t size) { uint64_t old_size, new_size; int r; assert(f); assert(f->header); /* We assume that this file is not sparse, and we know that * for sure, since we always call posix_fallocate() * ourselves */ if (mmap_cache_got_sigbus(f->mmap, f->cache_fd)) return -EIO; old_size = le64toh(f->header->header_size) + le64toh(f->header->arena_size); new_size = PAGE_ALIGN(offset + size); if (new_size < le64toh(f->header->header_size)) new_size = le64toh(f->header->header_size); if (new_size <= old_size) { /* We already pre-allocated enough space, but before * we write to it, let's check with fstat() if the * file got deleted, in order make sure we don't throw * away the data immediately. Don't check fstat() for * all writes though, but only once ever 10s. */ if (f->last_stat_usec + LAST_STAT_REFRESH_USEC > now(CLOCK_MONOTONIC)) return 0; return journal_file_fstat(f); } /* Allocate more space. */ if (f->metrics.max_size > 0 && new_size > f->metrics.max_size) return -E2BIG; if (new_size > f->metrics.min_size && f->metrics.keep_free > 0) { struct statvfs svfs; if (fstatvfs(f->fd, &svfs) >= 0) { uint64_t available; available = LESS_BY((uint64_t) svfs.f_bfree * (uint64_t) svfs.f_bsize, f->metrics.keep_free); if (new_size - old_size > available) return -E2BIG; } } /* Increase by larger blocks at once */ new_size = DIV_ROUND_UP(new_size, FILE_SIZE_INCREASE) * FILE_SIZE_INCREASE; if (f->metrics.max_size > 0 && new_size > f->metrics.max_size) new_size = f->metrics.max_size; /* Note that the glibc fallocate() fallback is very inefficient, hence we try to minimize the allocation area as we can. */ r = posix_fallocate(f->fd, old_size, new_size - old_size); if (r != 0) return -r; f->header->arena_size = htole64(new_size - le64toh(f->header->header_size)); return journal_file_fstat(f); } static unsigned type_to_context(ObjectType type) { /* One context for each type, plus one catch-all for the rest */ assert_cc(_OBJECT_TYPE_MAX <= MMAP_CACHE_MAX_CONTEXTS); assert_cc(CONTEXT_HEADER < MMAP_CACHE_MAX_CONTEXTS); return type > OBJECT_UNUSED && type < _OBJECT_TYPE_MAX ? type : 0; } static int journal_file_move_to(JournalFile *f, ObjectType type, bool keep_always, uint64_t offset, uint64_t size, void **ret, size_t *ret_size) { int r; assert(f); assert(ret); if (size <= 0) return -EINVAL; /* Avoid SIGBUS on invalid accesses */ if (offset + size > (uint64_t) f->last_stat.st_size) { /* Hmm, out of range? Let's refresh the fstat() data * first, before we trust that check. */ r = journal_file_fstat(f); if (r < 0) return r; if (offset + size > (uint64_t) f->last_stat.st_size) return -EADDRNOTAVAIL; } return mmap_cache_get(f->mmap, f->cache_fd, f->prot, type_to_context(type), keep_always, offset, size, &f->last_stat, ret, ret_size); } static uint64_t minimum_header_size(Object *o) { static const uint64_t table[] = { [OBJECT_DATA] = sizeof(DataObject), [OBJECT_FIELD] = sizeof(FieldObject), [OBJECT_ENTRY] = sizeof(EntryObject), [OBJECT_DATA_HASH_TABLE] = sizeof(HashTableObject), [OBJECT_FIELD_HASH_TABLE] = sizeof(HashTableObject), [OBJECT_ENTRY_ARRAY] = sizeof(EntryArrayObject), [OBJECT_TAG] = sizeof(TagObject), }; if (o->object.type >= ELEMENTSOF(table) || table[o->object.type] <= 0) return sizeof(ObjectHeader); return table[o->object.type]; } /* Lightweight object checks. We want this to be fast, so that we won't * slowdown every journal_file_move_to_object() call too much. */ static int journal_file_check_object(JournalFile *f, uint64_t offset, Object *o) { assert(f); assert(o); switch (o->object.type) { case OBJECT_DATA: { if ((le64toh(o->data.entry_offset) == 0) ^ (le64toh(o->data.n_entries) == 0)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Bad n_entries: %" PRIu64 ": %" PRIu64, le64toh(o->data.n_entries), offset); if (le64toh(o->object.size) - offsetof(DataObject, payload) <= 0) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Bad object size (<= %zu): %" PRIu64 ": %" PRIu64, offsetof(DataObject, payload), le64toh(o->object.size), offset); if (!VALID64(le64toh(o->data.next_hash_offset)) || !VALID64(le64toh(o->data.next_field_offset)) || !VALID64(le64toh(o->data.entry_offset)) || !VALID64(le64toh(o->data.entry_array_offset))) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid offset, next_hash_offset=" OFSfmt ", next_field_offset=" OFSfmt ", entry_offset=" OFSfmt ", entry_array_offset=" OFSfmt ": %" PRIu64, le64toh(o->data.next_hash_offset), le64toh(o->data.next_field_offset), le64toh(o->data.entry_offset), le64toh(o->data.entry_array_offset), offset); break; } case OBJECT_FIELD: if (le64toh(o->object.size) - offsetof(FieldObject, payload) <= 0) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Bad field size (<= %zu): %" PRIu64 ": %" PRIu64, offsetof(FieldObject, payload), le64toh(o->object.size), offset); if (!VALID64(le64toh(o->field.next_hash_offset)) || !VALID64(le64toh(o->field.head_data_offset))) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid offset, next_hash_offset=" OFSfmt ", head_data_offset=" OFSfmt ": %" PRIu64, le64toh(o->field.next_hash_offset), le64toh(o->field.head_data_offset), offset); break; case OBJECT_ENTRY: if ((le64toh(o->object.size) - offsetof(EntryObject, items)) % sizeof(EntryItem) != 0) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Bad entry size (<= %zu): %" PRIu64 ": %" PRIu64, offsetof(EntryObject, items), le64toh(o->object.size), offset); if ((le64toh(o->object.size) - offsetof(EntryObject, items)) / sizeof(EntryItem) <= 0) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid number items in entry: %" PRIu64 ": %" PRIu64, (le64toh(o->object.size) - offsetof(EntryObject, items)) / sizeof(EntryItem), offset); if (le64toh(o->entry.seqnum) <= 0) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid entry seqnum: %" PRIx64 ": %" PRIu64, le64toh(o->entry.seqnum), offset); if (!VALID_REALTIME(le64toh(o->entry.realtime))) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid entry realtime timestamp: %" PRIu64 ": %" PRIu64, le64toh(o->entry.realtime), offset); if (!VALID_MONOTONIC(le64toh(o->entry.monotonic))) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid entry monotonic timestamp: %" PRIu64 ": %" PRIu64, le64toh(o->entry.monotonic), offset); break; case OBJECT_DATA_HASH_TABLE: case OBJECT_FIELD_HASH_TABLE: if ((le64toh(o->object.size) - offsetof(HashTableObject, items)) % sizeof(HashItem) != 0 || (le64toh(o->object.size) - offsetof(HashTableObject, items)) / sizeof(HashItem) <= 0) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid %s hash table size: %" PRIu64 ": %" PRIu64, o->object.type == OBJECT_DATA_HASH_TABLE ? "data" : "field", le64toh(o->object.size), offset); break; case OBJECT_ENTRY_ARRAY: if ((le64toh(o->object.size) - offsetof(EntryArrayObject, items)) % sizeof(le64_t) != 0 || (le64toh(o->object.size) - offsetof(EntryArrayObject, items)) / sizeof(le64_t) <= 0) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid object entry array size: %" PRIu64 ": %" PRIu64, le64toh(o->object.size), offset); if (!VALID64(le64toh(o->entry_array.next_entry_array_offset))) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid object entry array next_entry_array_offset: " OFSfmt ": %" PRIu64, le64toh(o->entry_array.next_entry_array_offset), offset); break; case OBJECT_TAG: if (le64toh(o->object.size) != sizeof(TagObject)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid object tag size: %" PRIu64 ": %" PRIu64, le64toh(o->object.size), offset); if (!VALID_EPOCH(le64toh(o->tag.epoch))) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid object tag epoch: %" PRIu64 ": %" PRIu64, le64toh(o->tag.epoch), offset); break; } return 0; } int journal_file_move_to_object(JournalFile *f, ObjectType type, uint64_t offset, Object **ret) { int r; void *t; size_t tsize; Object *o; uint64_t s; assert(f); assert(ret); /* Objects may only be located at multiple of 64 bit */ if (!VALID64(offset)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to move to object at non-64bit boundary: %" PRIu64, offset); /* Object may not be located in the file header */ if (offset < le64toh(f->header->header_size)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to move to object located in file header: %" PRIu64, offset); r = journal_file_move_to(f, type, false, offset, sizeof(ObjectHeader), &t, &tsize); if (r < 0) return r; o = (Object*) t; s = le64toh(o->object.size); if (s == 0) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to move to uninitialized object: %" PRIu64, offset); if (s < sizeof(ObjectHeader)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to move to overly short object: %" PRIu64, offset); if (o->object.type <= OBJECT_UNUSED) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to move to object with invalid type: %" PRIu64, offset); if (s < minimum_header_size(o)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to move to truncated object: %" PRIu64, offset); if (type > OBJECT_UNUSED && o->object.type != type) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to move to object of unexpected type: %" PRIu64, offset); if (s > tsize) { r = journal_file_move_to(f, type, false, offset, s, &t, NULL); if (r < 0) return r; o = (Object*) t; } r = journal_file_check_object(f, offset, o); if (r < 0) return r; *ret = o; return 0; } static uint64_t journal_file_entry_seqnum(JournalFile *f, uint64_t *seqnum) { uint64_t r; assert(f); assert(f->header); r = le64toh(f->header->tail_entry_seqnum) + 1; if (seqnum) { /* If an external seqnum counter was passed, we update * both the local and the external one, and set it to * the maximum of both */ if (*seqnum + 1 > r) r = *seqnum + 1; *seqnum = r; } f->header->tail_entry_seqnum = htole64(r); if (f->header->head_entry_seqnum == 0) f->header->head_entry_seqnum = htole64(r); return r; } int journal_file_append_object(JournalFile *f, ObjectType type, uint64_t size, Object **ret, uint64_t *offset) { int r; uint64_t p; Object *tail, *o; void *t; assert(f); assert(f->header); assert(type > OBJECT_UNUSED && type < _OBJECT_TYPE_MAX); assert(size >= sizeof(ObjectHeader)); assert(offset); assert(ret); r = journal_file_set_online(f); if (r < 0) return r; p = le64toh(f->header->tail_object_offset); if (p == 0) p = le64toh(f->header->header_size); else { r = journal_file_move_to_object(f, OBJECT_UNUSED, p, &tail); if (r < 0) return r; p += ALIGN64(le64toh(tail->object.size)); } r = journal_file_allocate(f, p, size); if (r < 0) return r; r = journal_file_move_to(f, type, false, p, size, &t, NULL); if (r < 0) return r; o = (Object*) t; zero(o->object); o->object.type = type; o->object.size = htole64(size); f->header->tail_object_offset = htole64(p); f->header->n_objects = htole64(le64toh(f->header->n_objects) + 1); *ret = o; *offset = p; return 0; } static int journal_file_setup_data_hash_table(JournalFile *f) { uint64_t s, p; Object *o; int r; assert(f); assert(f->header); /* We estimate that we need 1 hash table entry per 768 bytes of journal file and we want to make sure we never get beyond 75% fill level. Calculate the hash table size for the maximum file size based on these metrics. */ s = (f->metrics.max_size * 4 / 768 / 3) * sizeof(HashItem); if (s < DEFAULT_DATA_HASH_TABLE_SIZE) s = DEFAULT_DATA_HASH_TABLE_SIZE; log_debug("Reserving %"PRIu64" entries in hash table.", s / sizeof(HashItem)); r = journal_file_append_object(f, OBJECT_DATA_HASH_TABLE, offsetof(Object, hash_table.items) + s, &o, &p); if (r < 0) return r; memzero(o->hash_table.items, s); f->header->data_hash_table_offset = htole64(p + offsetof(Object, hash_table.items)); f->header->data_hash_table_size = htole64(s); return 0; } static int journal_file_setup_field_hash_table(JournalFile *f) { uint64_t s, p; Object *o; int r; assert(f); assert(f->header); /* We use a fixed size hash table for the fields as this * number should grow very slowly only */ s = DEFAULT_FIELD_HASH_TABLE_SIZE; r = journal_file_append_object(f, OBJECT_FIELD_HASH_TABLE, offsetof(Object, hash_table.items) + s, &o, &p); if (r < 0) return r; memzero(o->hash_table.items, s); f->header->field_hash_table_offset = htole64(p + offsetof(Object, hash_table.items)); f->header->field_hash_table_size = htole64(s); return 0; } int journal_file_map_data_hash_table(JournalFile *f) { uint64_t s, p; void *t; int r; assert(f); assert(f->header); if (f->data_hash_table) return 0; p = le64toh(f->header->data_hash_table_offset); s = le64toh(f->header->data_hash_table_size); r = journal_file_move_to(f, OBJECT_DATA_HASH_TABLE, true, p, s, &t, NULL); if (r < 0) return r; f->data_hash_table = t; return 0; } int journal_file_map_field_hash_table(JournalFile *f) { uint64_t s, p; void *t; int r; assert(f); assert(f->header); if (f->field_hash_table) return 0; p = le64toh(f->header->field_hash_table_offset); s = le64toh(f->header->field_hash_table_size); r = journal_file_move_to(f, OBJECT_FIELD_HASH_TABLE, true, p, s, &t, NULL); if (r < 0) return r; f->field_hash_table = t; return 0; } static int journal_file_link_field( JournalFile *f, Object *o, uint64_t offset, uint64_t hash) { uint64_t p, h, m; int r; assert(f); assert(f->header); assert(f->field_hash_table); assert(o); assert(offset > 0); if (o->object.type != OBJECT_FIELD) return -EINVAL; m = le64toh(f->header->field_hash_table_size) / sizeof(HashItem); if (m <= 0) return -EBADMSG; /* This might alter the window we are looking at */ o->field.next_hash_offset = o->field.head_data_offset = 0; h = hash % m; p = le64toh(f->field_hash_table[h].tail_hash_offset); if (p == 0) f->field_hash_table[h].head_hash_offset = htole64(offset); else { r = journal_file_move_to_object(f, OBJECT_FIELD, p, &o); if (r < 0) return r; o->field.next_hash_offset = htole64(offset); } f->field_hash_table[h].tail_hash_offset = htole64(offset); if (JOURNAL_HEADER_CONTAINS(f->header, n_fields)) f->header->n_fields = htole64(le64toh(f->header->n_fields) + 1); return 0; } static int journal_file_link_data( JournalFile *f, Object *o, uint64_t offset, uint64_t hash) { uint64_t p, h, m; int r; assert(f); assert(f->header); assert(f->data_hash_table); assert(o); assert(offset > 0); if (o->object.type != OBJECT_DATA) return -EINVAL; m = le64toh(f->header->data_hash_table_size) / sizeof(HashItem); if (m <= 0) return -EBADMSG; /* This might alter the window we are looking at */ o->data.next_hash_offset = o->data.next_field_offset = 0; o->data.entry_offset = o->data.entry_array_offset = 0; o->data.n_entries = 0; h = hash % m; p = le64toh(f->data_hash_table[h].tail_hash_offset); if (p == 0) /* Only entry in the hash table is easy */ f->data_hash_table[h].head_hash_offset = htole64(offset); else { /* Move back to the previous data object, to patch in * pointer */ r = journal_file_move_to_object(f, OBJECT_DATA, p, &o); if (r < 0) return r; o->data.next_hash_offset = htole64(offset); } f->data_hash_table[h].tail_hash_offset = htole64(offset); if (JOURNAL_HEADER_CONTAINS(f->header, n_data)) f->header->n_data = htole64(le64toh(f->header->n_data) + 1); return 0; } int journal_file_find_field_object_with_hash( JournalFile *f, const void *field, uint64_t size, uint64_t hash, Object **ret, uint64_t *offset) { uint64_t p, osize, h, m; int r; assert(f); assert(f->header); assert(field && size > 0); /* If the field hash table is empty, we can't find anything */ if (le64toh(f->header->field_hash_table_size) <= 0) return 0; /* Map the field hash table, if it isn't mapped yet. */ r = journal_file_map_field_hash_table(f); if (r < 0) return r; osize = offsetof(Object, field.payload) + size; m = le64toh(f->header->field_hash_table_size) / sizeof(HashItem); if (m <= 0) return -EBADMSG; h = hash % m; p = le64toh(f->field_hash_table[h].head_hash_offset); while (p > 0) { Object *o; r = journal_file_move_to_object(f, OBJECT_FIELD, p, &o); if (r < 0) return r; if (le64toh(o->field.hash) == hash && le64toh(o->object.size) == osize && memcmp(o->field.payload, field, size) == 0) { if (ret) *ret = o; if (offset) *offset = p; return 1; } p = le64toh(o->field.next_hash_offset); } return 0; } int journal_file_find_field_object( JournalFile *f, const void *field, uint64_t size, Object **ret, uint64_t *offset) { uint64_t hash; assert(f); assert(field && size > 0); hash = hash64(field, size); return journal_file_find_field_object_with_hash(f, field, size, hash, ret, offset); } int journal_file_find_data_object_with_hash( JournalFile *f, const void *data, uint64_t size, uint64_t hash, Object **ret, uint64_t *offset) { uint64_t p, osize, h, m; int r; assert(f); assert(f->header); assert(data || size == 0); /* If there's no data hash table, then there's no entry. */ if (le64toh(f->header->data_hash_table_size) <= 0) return 0; /* Map the data hash table, if it isn't mapped yet. */ r = journal_file_map_data_hash_table(f); if (r < 0) return r; osize = offsetof(Object, data.payload) + size; m = le64toh(f->header->data_hash_table_size) / sizeof(HashItem); if (m <= 0) return -EBADMSG; h = hash % m; p = le64toh(f->data_hash_table[h].head_hash_offset); while (p > 0) { Object *o; r = journal_file_move_to_object(f, OBJECT_DATA, p, &o); if (r < 0) return r; if (le64toh(o->data.hash) != hash) goto next; if (o->object.flags & OBJECT_COMPRESSION_MASK) { #if HAVE_XZ || HAVE_LZ4 uint64_t l; size_t rsize = 0; l = le64toh(o->object.size); if (l <= offsetof(Object, data.payload)) return -EBADMSG; l -= offsetof(Object, data.payload); r = decompress_blob(o->object.flags & OBJECT_COMPRESSION_MASK, o->data.payload, l, &f->compress_buffer, &f->compress_buffer_size, &rsize, 0); if (r < 0) return r; if (rsize == size && memcmp(f->compress_buffer, data, size) == 0) { if (ret) *ret = o; if (offset) *offset = p; return 1; } #else return -EPROTONOSUPPORT; #endif } else if (le64toh(o->object.size) == osize && memcmp(o->data.payload, data, size) == 0) { if (ret) *ret = o; if (offset) *offset = p; return 1; } next: p = le64toh(o->data.next_hash_offset); } return 0; } int journal_file_find_data_object( JournalFile *f, const void *data, uint64_t size, Object **ret, uint64_t *offset) { uint64_t hash; assert(f); assert(data || size == 0); hash = hash64(data, size); return journal_file_find_data_object_with_hash(f, data, size, hash, ret, offset); } static int journal_file_append_field( JournalFile *f, const void *field, uint64_t size, Object **ret, uint64_t *offset) { uint64_t hash, p; uint64_t osize; Object *o; int r; assert(f); assert(field && size > 0); hash = hash64(field, size); r = journal_file_find_field_object_with_hash(f, field, size, hash, &o, &p); if (r < 0) return r; else if (r > 0) { if (ret) *ret = o; if (offset) *offset = p; return 0; } osize = offsetof(Object, field.payload) + size; r = journal_file_append_object(f, OBJECT_FIELD, osize, &o, &p); if (r < 0) return r; o->field.hash = htole64(hash); memcpy(o->field.payload, field, size); r = journal_file_link_field(f, o, p, hash); if (r < 0) return r; /* The linking might have altered the window, so let's * refresh our pointer */ r = journal_file_move_to_object(f, OBJECT_FIELD, p, &o); if (r < 0) return r; #if HAVE_GCRYPT r = journal_file_hmac_put_object(f, OBJECT_FIELD, o, p); if (r < 0) return r; #endif if (ret) *ret = o; if (offset) *offset = p; return 0; } static int journal_file_append_data( JournalFile *f, const void *data, uint64_t size, Object **ret, uint64_t *offset) { uint64_t hash, p; uint64_t osize; Object *o; int r, compression = 0; const void *eq; assert(f); assert(data || size == 0); hash = hash64(data, size); r = journal_file_find_data_object_with_hash(f, data, size, hash, &o, &p); if (r < 0) return r; if (r > 0) { if (ret) *ret = o; if (offset) *offset = p; return 0; } osize = offsetof(Object, data.payload) + size; r = journal_file_append_object(f, OBJECT_DATA, osize, &o, &p); if (r < 0) return r; o->data.hash = htole64(hash); #if HAVE_XZ || HAVE_LZ4 if (JOURNAL_FILE_COMPRESS(f) && size >= f->compress_threshold_bytes) { size_t rsize = 0; compression = compress_blob(data, size, o->data.payload, size - 1, &rsize); if (compression >= 0) { o->object.size = htole64(offsetof(Object, data.payload) + rsize); o->object.flags |= compression; log_debug("Compressed data object %"PRIu64" -> %zu using %s", size, rsize, object_compressed_to_string(compression)); } else /* Compression didn't work, we don't really care why, let's continue without compression */ compression = 0; } #endif if (compression == 0) memcpy_safe(o->data.payload, data, size); r = journal_file_link_data(f, o, p, hash); if (r < 0) return r; #if HAVE_GCRYPT r = journal_file_hmac_put_object(f, OBJECT_DATA, o, p); if (r < 0) return r; #endif /* The linking might have altered the window, so let's * refresh our pointer */ r = journal_file_move_to_object(f, OBJECT_DATA, p, &o); if (r < 0) return r; if (!data) eq = NULL; else eq = memchr(data, '=', size); if (eq && eq > data) { Object *fo = NULL; uint64_t fp; /* Create field object ... */ r = journal_file_append_field(f, data, (uint8_t*) eq - (uint8_t*) data, &fo, &fp); if (r < 0) return r; /* ... and link it in. */ o->data.next_field_offset = fo->field.head_data_offset; fo->field.head_data_offset = le64toh(p); } if (ret) *ret = o; if (offset) *offset = p; return 0; } uint64_t journal_file_entry_n_items(Object *o) { assert(o); if (o->object.type != OBJECT_ENTRY) return 0; return (le64toh(o->object.size) - offsetof(Object, entry.items)) / sizeof(EntryItem); } uint64_t journal_file_entry_array_n_items(Object *o) { assert(o); if (o->object.type != OBJECT_ENTRY_ARRAY) return 0; return (le64toh(o->object.size) - offsetof(Object, entry_array.items)) / sizeof(uint64_t); } uint64_t journal_file_hash_table_n_items(Object *o) { assert(o); if (!IN_SET(o->object.type, OBJECT_DATA_HASH_TABLE, OBJECT_FIELD_HASH_TABLE)) return 0; return (le64toh(o->object.size) - offsetof(Object, hash_table.items)) / sizeof(HashItem); } static int link_entry_into_array(JournalFile *f, le64_t *first, le64_t *idx, uint64_t p) { int r; uint64_t n = 0, ap = 0, q, i, a, hidx; Object *o; assert(f); assert(f->header); assert(first); assert(idx); assert(p > 0); a = le64toh(*first); i = hidx = le64toh(*idx); while (a > 0) { r = journal_file_move_to_object(f, OBJECT_ENTRY_ARRAY, a, &o); if (r < 0) return r; n = journal_file_entry_array_n_items(o); if (i < n) { o->entry_array.items[i] = htole64(p); *idx = htole64(hidx + 1); return 0; } i -= n; ap = a; a = le64toh(o->entry_array.next_entry_array_offset); } if (hidx > n) n = (hidx+1) * 2; else n = n * 2; if (n < 4) n = 4; r = journal_file_append_object(f, OBJECT_ENTRY_ARRAY, offsetof(Object, entry_array.items) + n * sizeof(uint64_t), &o, &q); if (r < 0) return r; #if HAVE_GCRYPT r = journal_file_hmac_put_object(f, OBJECT_ENTRY_ARRAY, o, q); if (r < 0) return r; #endif o->entry_array.items[i] = htole64(p); if (ap == 0) *first = htole64(q); else { r = journal_file_move_to_object(f, OBJECT_ENTRY_ARRAY, ap, &o); if (r < 0) return r; o->entry_array.next_entry_array_offset = htole64(q); } if (JOURNAL_HEADER_CONTAINS(f->header, n_entry_arrays)) f->header->n_entry_arrays = htole64(le64toh(f->header->n_entry_arrays) + 1); *idx = htole64(hidx + 1); return 0; } static int link_entry_into_array_plus_one(JournalFile *f, le64_t *extra, le64_t *first, le64_t *idx, uint64_t p) { int r; assert(f); assert(extra); assert(first); assert(idx); assert(p > 0); if (*idx == 0) *extra = htole64(p); else { le64_t i; i = htole64(le64toh(*idx) - 1); r = link_entry_into_array(f, first, &i, p); if (r < 0) return r; } *idx = htole64(le64toh(*idx) + 1); return 0; } static int journal_file_link_entry_item(JournalFile *f, Object *o, uint64_t offset, uint64_t i) { uint64_t p; int r; assert(f); assert(o); assert(offset > 0); p = le64toh(o->entry.items[i].object_offset); if (p == 0) return -EINVAL; r = journal_file_move_to_object(f, OBJECT_DATA, p, &o); if (r < 0) return r; return link_entry_into_array_plus_one(f, &o->data.entry_offset, &o->data.entry_array_offset, &o->data.n_entries, offset); } static int journal_file_link_entry(JournalFile *f, Object *o, uint64_t offset) { uint64_t n, i; int r; assert(f); assert(f->header); assert(o); assert(offset > 0); if (o->object.type != OBJECT_ENTRY) return -EINVAL; __sync_synchronize(); /* Link up the entry itself */ r = link_entry_into_array(f, &f->header->entry_array_offset, &f->header->n_entries, offset); if (r < 0) return r; /* log_debug("=> %s seqnr=%"PRIu64" n_entries=%"PRIu64, f->path, o->entry.seqnum, f->header->n_entries); */ if (f->header->head_entry_realtime == 0) f->header->head_entry_realtime = o->entry.realtime; f->header->tail_entry_realtime = o->entry.realtime; f->header->tail_entry_monotonic = o->entry.monotonic; /* Link up the items */ n = journal_file_entry_n_items(o); for (i = 0; i < n; i++) { r = journal_file_link_entry_item(f, o, offset, i); if (r < 0) return r; } return 0; } static int journal_file_append_entry_internal( JournalFile *f, const dual_timestamp *ts, const sd_id128_t *boot_id, uint64_t xor_hash, const EntryItem items[], unsigned n_items, uint64_t *seqnum, Object **ret, uint64_t *offset) { uint64_t np; uint64_t osize; Object *o; int r; assert(f); assert(f->header); assert(items || n_items == 0); assert(ts); osize = offsetof(Object, entry.items) + (n_items * sizeof(EntryItem)); r = journal_file_append_object(f, OBJECT_ENTRY, osize, &o, &np); if (r < 0) return r; o->entry.seqnum = htole64(journal_file_entry_seqnum(f, seqnum)); memcpy_safe(o->entry.items, items, n_items * sizeof(EntryItem)); o->entry.realtime = htole64(ts->realtime); o->entry.monotonic = htole64(ts->monotonic); o->entry.xor_hash = htole64(xor_hash); if (boot_id) f->header->boot_id = *boot_id; o->entry.boot_id = f->header->boot_id; #if HAVE_GCRYPT r = journal_file_hmac_put_object(f, OBJECT_ENTRY, o, np); if (r < 0) return r; #endif r = journal_file_link_entry(f, o, np); if (r < 0) return r; if (ret) *ret = o; if (offset) *offset = np; return 0; } void journal_file_post_change(JournalFile *f) { assert(f); if (f->fd < 0) return; /* inotify() does not receive IN_MODIFY events from file * accesses done via mmap(). After each access we hence * trigger IN_MODIFY by truncating the journal file to its * current size which triggers IN_MODIFY. */ __sync_synchronize(); if (ftruncate(f->fd, f->last_stat.st_size) < 0) log_debug_errno(errno, "Failed to truncate file to its own size: %m"); } static int post_change_thunk(sd_event_source *timer, uint64_t usec, void *userdata) { assert(userdata); journal_file_post_change(userdata); return 1; } static void schedule_post_change(JournalFile *f) { uint64_t now; int r; assert(f); assert(f->post_change_timer); r = sd_event_source_get_enabled(f->post_change_timer, NULL); if (r < 0) { log_debug_errno(r, "Failed to get ftruncate timer state: %m"); goto fail; } if (r > 0) return; r = sd_event_now(sd_event_source_get_event(f->post_change_timer), CLOCK_MONOTONIC, &now); if (r < 0) { log_debug_errno(r, "Failed to get clock's now for scheduling ftruncate: %m"); goto fail; } r = sd_event_source_set_time(f->post_change_timer, now + f->post_change_timer_period); if (r < 0) { log_debug_errno(r, "Failed to set time for scheduling ftruncate: %m"); goto fail; } r = sd_event_source_set_enabled(f->post_change_timer, SD_EVENT_ONESHOT); if (r < 0) { log_debug_errno(r, "Failed to enable scheduled ftruncate: %m"); goto fail; } return; fail: /* On failure, let's simply post the change immediately. */ journal_file_post_change(f); } /* Enable coalesced change posting in a timer on the provided sd_event instance */ int journal_file_enable_post_change_timer(JournalFile *f, sd_event *e, usec_t t) { _cleanup_(sd_event_source_unrefp) sd_event_source *timer = NULL; int r; assert(f); assert_return(!f->post_change_timer, -EINVAL); assert(e); assert(t); r = sd_event_add_time(e, &timer, CLOCK_MONOTONIC, 0, 0, post_change_thunk, f); if (r < 0) return r; r = sd_event_source_set_enabled(timer, SD_EVENT_OFF); if (r < 0) return r; f->post_change_timer = TAKE_PTR(timer); f->post_change_timer_period = t; return r; } static int entry_item_cmp(const EntryItem *a, const EntryItem *b) { return CMP(le64toh(a->object_offset), le64toh(b->object_offset)); } int journal_file_append_entry( JournalFile *f, const dual_timestamp *ts, const sd_id128_t *boot_id, const struct iovec iovec[], unsigned n_iovec, uint64_t *seqnum, Object **ret, uint64_t *offset) { unsigned i; EntryItem *items; int r; uint64_t xor_hash = 0; struct dual_timestamp _ts; assert(f); assert(f->header); assert(iovec || n_iovec == 0); if (ts) { if (!VALID_REALTIME(ts->realtime)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid realtime timestamp %" PRIu64 ", refusing entry.", ts->realtime); if (!VALID_MONOTONIC(ts->monotonic)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid monotomic timestamp %" PRIu64 ", refusing entry.", ts->monotonic); } else { dual_timestamp_get(&_ts); ts = &_ts; } #if HAVE_GCRYPT r = journal_file_maybe_append_tag(f, ts->realtime); if (r < 0) return r; #endif /* alloca() can't take 0, hence let's allocate at least one */ items = newa(EntryItem, MAX(1u, n_iovec)); for (i = 0; i < n_iovec; i++) { uint64_t p; Object *o; r = journal_file_append_data(f, iovec[i].iov_base, iovec[i].iov_len, &o, &p); if (r < 0) return r; xor_hash ^= le64toh(o->data.hash); items[i].object_offset = htole64(p); items[i].hash = o->data.hash; } /* Order by the position on disk, in order to improve seek * times for rotating media. */ typesafe_qsort(items, n_iovec, entry_item_cmp); r = journal_file_append_entry_internal(f, ts, boot_id, xor_hash, items, n_iovec, seqnum, ret, offset); /* If the memory mapping triggered a SIGBUS then we return an * IO error and ignore the error code passed down to us, since * it is very likely just an effect of a nullified replacement * mapping page */ if (mmap_cache_got_sigbus(f->mmap, f->cache_fd)) r = -EIO; if (f->post_change_timer) schedule_post_change(f); else journal_file_post_change(f); return r; } typedef struct ChainCacheItem { uint64_t first; /* the array at the beginning of the chain */ uint64_t array; /* the cached array */ uint64_t begin; /* the first item in the cached array */ uint64_t total; /* the total number of items in all arrays before this one in the chain */ uint64_t last_index; /* the last index we looked at, to optimize locality when bisecting */ } ChainCacheItem; static void chain_cache_put( OrderedHashmap *h, ChainCacheItem *ci, uint64_t first, uint64_t array, uint64_t begin, uint64_t total, uint64_t last_index) { if (!ci) { /* If the chain item to cache for this chain is the * first one it's not worth caching anything */ if (array == first) return; if (ordered_hashmap_size(h) >= CHAIN_CACHE_MAX) { ci = ordered_hashmap_steal_first(h); assert(ci); } else { ci = new(ChainCacheItem, 1); if (!ci) return; } ci->first = first; if (ordered_hashmap_put(h, &ci->first, ci) < 0) { free(ci); return; } } else assert(ci->first == first); ci->array = array; ci->begin = begin; ci->total = total; ci->last_index = last_index; } static int generic_array_get( JournalFile *f, uint64_t first, uint64_t i, Object **ret, uint64_t *offset) { Object *o; uint64_t p = 0, a, t = 0; int r; ChainCacheItem *ci; assert(f); a = first; /* Try the chain cache first */ ci = ordered_hashmap_get(f->chain_cache, &first); if (ci && i > ci->total) { a = ci->array; i -= ci->total; t = ci->total; } while (a > 0) { uint64_t k; r = journal_file_move_to_object(f, OBJECT_ENTRY_ARRAY, a, &o); if (r < 0) return r; k = journal_file_entry_array_n_items(o); if (i < k) { p = le64toh(o->entry_array.items[i]); goto found; } i -= k; t += k; a = le64toh(o->entry_array.next_entry_array_offset); } return 0; found: /* Let's cache this item for the next invocation */ chain_cache_put(f->chain_cache, ci, first, a, le64toh(o->entry_array.items[0]), t, i); r = journal_file_move_to_object(f, OBJECT_ENTRY, p, &o); if (r < 0) return r; if (ret) *ret = o; if (offset) *offset = p; return 1; } static int generic_array_get_plus_one( JournalFile *f, uint64_t extra, uint64_t first, uint64_t i, Object **ret, uint64_t *offset) { Object *o; assert(f); if (i == 0) { int r; r = journal_file_move_to_object(f, OBJECT_ENTRY, extra, &o); if (r < 0) return r; if (ret) *ret = o; if (offset) *offset = extra; return 1; } return generic_array_get(f, first, i-1, ret, offset); } enum { TEST_FOUND, TEST_LEFT, TEST_RIGHT }; static int generic_array_bisect( JournalFile *f, uint64_t first, uint64_t n, uint64_t needle, int (*test_object)(JournalFile *f, uint64_t p, uint64_t needle), direction_t direction, Object **ret, uint64_t *offset, uint64_t *idx) { uint64_t a, p, t = 0, i = 0, last_p = 0, last_index = (uint64_t) -1; bool subtract_one = false; Object *o, *array = NULL; int r; ChainCacheItem *ci; assert(f); assert(test_object); /* Start with the first array in the chain */ a = first; ci = ordered_hashmap_get(f->chain_cache, &first); if (ci && n > ci->total && ci->begin != 0) { /* Ah, we have iterated this bisection array chain * previously! Let's see if we can skip ahead in the * chain, as far as the last time. But we can't jump * backwards in the chain, so let's check that * first. */ r = test_object(f, ci->begin, needle); if (r < 0) return r; if (r == TEST_LEFT) { /* OK, what we are looking for is right of the * begin of this EntryArray, so let's jump * straight to previously cached array in the * chain */ a = ci->array; n -= ci->total; t = ci->total; last_index = ci->last_index; } } while (a > 0) { uint64_t left, right, k, lp; r = journal_file_move_to_object(f, OBJECT_ENTRY_ARRAY, a, &array); if (r < 0) return r; k = journal_file_entry_array_n_items(array); right = MIN(k, n); if (right <= 0) return 0; i = right - 1; lp = p = le64toh(array->entry_array.items[i]); if (p <= 0) r = -EBADMSG; else r = test_object(f, p, needle); if (r == -EBADMSG) { log_debug_errno(r, "Encountered invalid entry while bisecting, cutting algorithm short. (1)"); n = i; continue; } if (r < 0) return r; if (r == TEST_FOUND) r = direction == DIRECTION_DOWN ? TEST_RIGHT : TEST_LEFT; if (r == TEST_RIGHT) { left = 0; right -= 1; if (last_index != (uint64_t) -1) { assert(last_index <= right); /* If we cached the last index we * looked at, let's try to not to jump * too wildly around and see if we can * limit the range to look at early to * the immediate neighbors of the last * index we looked at. */ if (last_index > 0) { uint64_t x = last_index - 1; p = le64toh(array->entry_array.items[x]); if (p <= 0) return -EBADMSG; r = test_object(f, p, needle); if (r < 0) return r; if (r == TEST_FOUND) r = direction == DIRECTION_DOWN ? TEST_RIGHT : TEST_LEFT; if (r == TEST_RIGHT) right = x; else left = x + 1; } if (last_index < right) { uint64_t y = last_index + 1; p = le64toh(array->entry_array.items[y]); if (p <= 0) return -EBADMSG; r = test_object(f, p, needle); if (r < 0) return r; if (r == TEST_FOUND) r = direction == DIRECTION_DOWN ? TEST_RIGHT : TEST_LEFT; if (r == TEST_RIGHT) right = y; else left = y + 1; } } for (;;) { if (left == right) { if (direction == DIRECTION_UP) subtract_one = true; i = left; goto found; } assert(left < right); i = (left + right) / 2; p = le64toh(array->entry_array.items[i]); if (p <= 0) r = -EBADMSG; else r = test_object(f, p, needle); if (r == -EBADMSG) { log_debug_errno(r, "Encountered invalid entry while bisecting, cutting algorithm short. (2)"); right = n = i; continue; } if (r < 0) return r; if (r == TEST_FOUND) r = direction == DIRECTION_DOWN ? TEST_RIGHT : TEST_LEFT; if (r == TEST_RIGHT) right = i; else left = i + 1; } } if (k >= n) { if (direction == DIRECTION_UP) { i = n; subtract_one = true; goto found; } return 0; } last_p = lp; n -= k; t += k; last_index = (uint64_t) -1; a = le64toh(array->entry_array.next_entry_array_offset); } return 0; found: if (subtract_one && t == 0 && i == 0) return 0; /* Let's cache this item for the next invocation */ chain_cache_put(f->chain_cache, ci, first, a, le64toh(array->entry_array.items[0]), t, subtract_one ? (i > 0 ? i-1 : (uint64_t) -1) : i); if (subtract_one && i == 0) p = last_p; else if (subtract_one) p = le64toh(array->entry_array.items[i-1]); else p = le64toh(array->entry_array.items[i]); r = journal_file_move_to_object(f, OBJECT_ENTRY, p, &o); if (r < 0) return r; if (ret) *ret = o; if (offset) *offset = p; if (idx) *idx = t + i + (subtract_one ? -1 : 0); return 1; } static int generic_array_bisect_plus_one( JournalFile *f, uint64_t extra, uint64_t first, uint64_t n, uint64_t needle, int (*test_object)(JournalFile *f, uint64_t p, uint64_t needle), direction_t direction, Object **ret, uint64_t *offset, uint64_t *idx) { int r; bool step_back = false; Object *o; assert(f); assert(test_object); if (n <= 0) return 0; /* This bisects the array in object 'first', but first checks * an extra */ r = test_object(f, extra, needle); if (r < 0) return r; if (r == TEST_FOUND) r = direction == DIRECTION_DOWN ? TEST_RIGHT : TEST_LEFT; /* if we are looking with DIRECTION_UP then we need to first see if in the actual array there is a matching entry, and return the last one of that. But if there isn't any we need to return this one. Hence remember this, and return it below. */ if (r == TEST_LEFT) step_back = direction == DIRECTION_UP; if (r == TEST_RIGHT) { if (direction == DIRECTION_DOWN) goto found; else return 0; } r = generic_array_bisect(f, first, n-1, needle, test_object, direction, ret, offset, idx); if (r == 0 && step_back) goto found; if (r > 0 && idx) (*idx)++; return r; found: r = journal_file_move_to_object(f, OBJECT_ENTRY, extra, &o); if (r < 0) return r; if (ret) *ret = o; if (offset) *offset = extra; if (idx) *idx = 0; return 1; } _pure_ static int test_object_offset(JournalFile *f, uint64_t p, uint64_t needle) { assert(f); assert(p > 0); if (p == needle) return TEST_FOUND; else if (p < needle) return TEST_LEFT; else return TEST_RIGHT; } static int test_object_seqnum(JournalFile *f, uint64_t p, uint64_t needle) { Object *o; int r; assert(f); assert(p > 0); r = journal_file_move_to_object(f, OBJECT_ENTRY, p, &o); if (r < 0) return r; if (le64toh(o->entry.seqnum) == needle) return TEST_FOUND; else if (le64toh(o->entry.seqnum) < needle) return TEST_LEFT; else return TEST_RIGHT; } int journal_file_move_to_entry_by_seqnum( JournalFile *f, uint64_t seqnum, direction_t direction, Object **ret, uint64_t *offset) { assert(f); assert(f->header); return generic_array_bisect(f, le64toh(f->header->entry_array_offset), le64toh(f->header->n_entries), seqnum, test_object_seqnum, direction, ret, offset, NULL); } static int test_object_realtime(JournalFile *f, uint64_t p, uint64_t needle) { Object *o; int r; assert(f); assert(p > 0); r = journal_file_move_to_object(f, OBJECT_ENTRY, p, &o); if (r < 0) return r; if (le64toh(o->entry.realtime) == needle) return TEST_FOUND; else if (le64toh(o->entry.realtime) < needle) return TEST_LEFT; else return TEST_RIGHT; } int journal_file_move_to_entry_by_realtime( JournalFile *f, uint64_t realtime, direction_t direction, Object **ret, uint64_t *offset) { assert(f); assert(f->header); return generic_array_bisect(f, le64toh(f->header->entry_array_offset), le64toh(f->header->n_entries), realtime, test_object_realtime, direction, ret, offset, NULL); } static int test_object_monotonic(JournalFile *f, uint64_t p, uint64_t needle) { Object *o; int r; assert(f); assert(p > 0); r = journal_file_move_to_object(f, OBJECT_ENTRY, p, &o); if (r < 0) return r; if (le64toh(o->entry.monotonic) == needle) return TEST_FOUND; else if (le64toh(o->entry.monotonic) < needle) return TEST_LEFT; else return TEST_RIGHT; } static int find_data_object_by_boot_id( JournalFile *f, sd_id128_t boot_id, Object **o, uint64_t *b) { char t[STRLEN("_BOOT_ID=") + 32 + 1] = "_BOOT_ID="; sd_id128_to_string(boot_id, t + 9); return journal_file_find_data_object(f, t, sizeof(t) - 1, o, b); } int journal_file_move_to_entry_by_monotonic( JournalFile *f, sd_id128_t boot_id, uint64_t monotonic, direction_t direction, Object **ret, uint64_t *offset) { Object *o; int r; assert(f); r = find_data_object_by_boot_id(f, boot_id, &o, NULL); if (r < 0) return r; if (r == 0) return -ENOENT; return generic_array_bisect_plus_one(f, le64toh(o->data.entry_offset), le64toh(o->data.entry_array_offset), le64toh(o->data.n_entries), monotonic, test_object_monotonic, direction, ret, offset, NULL); } void journal_file_reset_location(JournalFile *f) { f->location_type = LOCATION_HEAD; f->current_offset = 0; f->current_seqnum = 0; f->current_realtime = 0; f->current_monotonic = 0; zero(f->current_boot_id); f->current_xor_hash = 0; } void journal_file_save_location(JournalFile *f, Object *o, uint64_t offset) { f->location_type = LOCATION_SEEK; f->current_offset = offset; f->current_seqnum = le64toh(o->entry.seqnum); f->current_realtime = le64toh(o->entry.realtime); f->current_monotonic = le64toh(o->entry.monotonic); f->current_boot_id = o->entry.boot_id; f->current_xor_hash = le64toh(o->entry.xor_hash); } int journal_file_compare_locations(JournalFile *af, JournalFile *bf) { int r; assert(af); assert(af->header); assert(bf); assert(bf->header); assert(af->location_type == LOCATION_SEEK); assert(bf->location_type == LOCATION_SEEK); /* If contents and timestamps match, these entries are * identical, even if the seqnum does not match */ if (sd_id128_equal(af->current_boot_id, bf->current_boot_id) && af->current_monotonic == bf->current_monotonic && af->current_realtime == bf->current_realtime && af->current_xor_hash == bf->current_xor_hash) return 0; if (sd_id128_equal(af->header->seqnum_id, bf->header->seqnum_id)) { /* If this is from the same seqnum source, compare * seqnums */ r = CMP(af->current_seqnum, bf->current_seqnum); if (r != 0) return r; /* Wow! This is weird, different data but the same * seqnums? Something is borked, but let's make the * best of it and compare by time. */ } if (sd_id128_equal(af->current_boot_id, bf->current_boot_id)) { /* If the boot id matches, compare monotonic time */ r = CMP(af->current_monotonic, bf->current_monotonic); if (r != 0) return r; } /* Otherwise, compare UTC time */ r = CMP(af->current_realtime, bf->current_realtime); if (r != 0) return r; /* Finally, compare by contents */ return CMP(af->current_xor_hash, bf->current_xor_hash); } static int bump_array_index(uint64_t *i, direction_t direction, uint64_t n) { /* Increase or decrease the specified index, in the right direction. */ if (direction == DIRECTION_DOWN) { if (*i >= n - 1) return 0; (*i) ++; } else { if (*i <= 0) return 0; (*i) --; } return 1; } static bool check_properly_ordered(uint64_t new_offset, uint64_t old_offset, direction_t direction) { /* Consider it an error if any of the two offsets is uninitialized */ if (old_offset == 0 || new_offset == 0) return false; /* If we go down, the new offset must be larger than the old one. */ return direction == DIRECTION_DOWN ? new_offset > old_offset : new_offset < old_offset; } int journal_file_next_entry( JournalFile *f, uint64_t p, direction_t direction, Object **ret, uint64_t *offset) { uint64_t i, n, ofs; int r; assert(f); assert(f->header); n = le64toh(f->header->n_entries); if (n <= 0) return 0; if (p == 0) i = direction == DIRECTION_DOWN ? 0 : n - 1; else { r = generic_array_bisect(f, le64toh(f->header->entry_array_offset), le64toh(f->header->n_entries), p, test_object_offset, DIRECTION_DOWN, NULL, NULL, &i); if (r <= 0) return r; r = bump_array_index(&i, direction, n); if (r <= 0) return r; } /* And jump to it */ for (;;) { r = generic_array_get(f, le64toh(f->header->entry_array_offset), i, ret, &ofs); if (r > 0) break; if (r != -EBADMSG) return r; /* OK, so this entry is borked. Most likely some entry didn't get synced to disk properly, let's see if * the next one might work for us instead. */ log_debug_errno(r, "Entry item %" PRIu64 " is bad, skipping over it.", i); r = bump_array_index(&i, direction, n); if (r <= 0) return r; } /* Ensure our array is properly ordered. */ if (p > 0 && !check_properly_ordered(ofs, p, direction)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "%s: entry array not properly ordered at entry %" PRIu64, f->path, i); if (offset) *offset = ofs; return 1; } int journal_file_next_entry_for_data( JournalFile *f, Object *o, uint64_t p, uint64_t data_offset, direction_t direction, Object **ret, uint64_t *offset) { uint64_t i, n, ofs; Object *d; int r; assert(f); assert(p > 0 || !o); r = journal_file_move_to_object(f, OBJECT_DATA, data_offset, &d); if (r < 0) return r; n = le64toh(d->data.n_entries); if (n <= 0) return n; if (!o) i = direction == DIRECTION_DOWN ? 0 : n - 1; else { if (o->object.type != OBJECT_ENTRY) return -EINVAL; r = generic_array_bisect_plus_one(f, le64toh(d->data.entry_offset), le64toh(d->data.entry_array_offset), le64toh(d->data.n_entries), p, test_object_offset, DIRECTION_DOWN, NULL, NULL, &i); if (r <= 0) return r; r = bump_array_index(&i, direction, n); if (r <= 0) return r; } for (;;) { r = generic_array_get_plus_one(f, le64toh(d->data.entry_offset), le64toh(d->data.entry_array_offset), i, ret, &ofs); if (r > 0) break; if (r != -EBADMSG) return r; log_debug_errno(r, "Data entry item %" PRIu64 " is bad, skipping over it.", i); r = bump_array_index(&i, direction, n); if (r <= 0) return r; } /* Ensure our array is properly ordered. */ if (p > 0 && check_properly_ordered(ofs, p, direction)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "%s data entry array not properly ordered at entry %" PRIu64, f->path, i); if (offset) *offset = ofs; return 1; } int journal_file_move_to_entry_by_offset_for_data( JournalFile *f, uint64_t data_offset, uint64_t p, direction_t direction, Object **ret, uint64_t *offset) { int r; Object *d; assert(f); r = journal_file_move_to_object(f, OBJECT_DATA, data_offset, &d); if (r < 0) return r; return generic_array_bisect_plus_one(f, le64toh(d->data.entry_offset), le64toh(d->data.entry_array_offset), le64toh(d->data.n_entries), p, test_object_offset, direction, ret, offset, NULL); } int journal_file_move_to_entry_by_monotonic_for_data( JournalFile *f, uint64_t data_offset, sd_id128_t boot_id, uint64_t monotonic, direction_t direction, Object **ret, uint64_t *offset) { Object *o, *d; int r; uint64_t b, z; assert(f); /* First, seek by time */ r = find_data_object_by_boot_id(f, boot_id, &o, &b); if (r < 0) return r; if (r == 0) return -ENOENT; r = generic_array_bisect_plus_one(f, le64toh(o->data.entry_offset), le64toh(o->data.entry_array_offset), le64toh(o->data.n_entries), monotonic, test_object_monotonic, direction, NULL, &z, NULL); if (r <= 0) return r; /* And now, continue seeking until we find an entry that * exists in both bisection arrays */ for (;;) { Object *qo; uint64_t p, q; r = journal_file_move_to_object(f, OBJECT_DATA, data_offset, &d); if (r < 0) return r; r = generic_array_bisect_plus_one(f, le64toh(d->data.entry_offset), le64toh(d->data.entry_array_offset), le64toh(d->data.n_entries), z, test_object_offset, direction, NULL, &p, NULL); if (r <= 0) return r; r = journal_file_move_to_object(f, OBJECT_DATA, b, &o); if (r < 0) return r; r = generic_array_bisect_plus_one(f, le64toh(o->data.entry_offset), le64toh(o->data.entry_array_offset), le64toh(o->data.n_entries), p, test_object_offset, direction, &qo, &q, NULL); if (r <= 0) return r; if (p == q) { if (ret) *ret = qo; if (offset) *offset = q; return 1; } z = q; } } int journal_file_move_to_entry_by_seqnum_for_data( JournalFile *f, uint64_t data_offset, uint64_t seqnum, direction_t direction, Object **ret, uint64_t *offset) { Object *d; int r; assert(f); r = journal_file_move_to_object(f, OBJECT_DATA, data_offset, &d); if (r < 0) return r; return generic_array_bisect_plus_one(f, le64toh(d->data.entry_offset), le64toh(d->data.entry_array_offset), le64toh(d->data.n_entries), seqnum, test_object_seqnum, direction, ret, offset, NULL); } int journal_file_move_to_entry_by_realtime_for_data( JournalFile *f, uint64_t data_offset, uint64_t realtime, direction_t direction, Object **ret, uint64_t *offset) { Object *d; int r; assert(f); r = journal_file_move_to_object(f, OBJECT_DATA, data_offset, &d); if (r < 0) return r; return generic_array_bisect_plus_one(f, le64toh(d->data.entry_offset), le64toh(d->data.entry_array_offset), le64toh(d->data.n_entries), realtime, test_object_realtime, direction, ret, offset, NULL); } void journal_file_dump(JournalFile *f) { Object *o; int r; uint64_t p; assert(f); assert(f->header); journal_file_print_header(f); p = le64toh(f->header->header_size); while (p != 0) { r = journal_file_move_to_object(f, OBJECT_UNUSED, p, &o); if (r < 0) goto fail; switch (o->object.type) { case OBJECT_UNUSED: printf("Type: OBJECT_UNUSED\n"); break; case OBJECT_DATA: printf("Type: OBJECT_DATA\n"); break; case OBJECT_FIELD: printf("Type: OBJECT_FIELD\n"); break; case OBJECT_ENTRY: printf("Type: OBJECT_ENTRY seqnum=%"PRIu64" monotonic=%"PRIu64" realtime=%"PRIu64"\n", le64toh(o->entry.seqnum), le64toh(o->entry.monotonic), le64toh(o->entry.realtime)); break; case OBJECT_FIELD_HASH_TABLE: printf("Type: OBJECT_FIELD_HASH_TABLE\n"); break; case OBJECT_DATA_HASH_TABLE: printf("Type: OBJECT_DATA_HASH_TABLE\n"); break; case OBJECT_ENTRY_ARRAY: printf("Type: OBJECT_ENTRY_ARRAY\n"); break; case OBJECT_TAG: printf("Type: OBJECT_TAG seqnum=%"PRIu64" epoch=%"PRIu64"\n", le64toh(o->tag.seqnum), le64toh(o->tag.epoch)); break; default: printf("Type: unknown (%i)\n", o->object.type); break; } if (o->object.flags & OBJECT_COMPRESSION_MASK) printf("Flags: %s\n", object_compressed_to_string(o->object.flags & OBJECT_COMPRESSION_MASK)); if (p == le64toh(f->header->tail_object_offset)) p = 0; else p = p + ALIGN64(le64toh(o->object.size)); } return; fail: log_error("File corrupt"); } static const char* format_timestamp_safe(char *buf, size_t l, usec_t t) { const char *x; x = format_timestamp(buf, l, t); if (x) return x; return " --- "; } void journal_file_print_header(JournalFile *f) { char a[33], b[33], c[33], d[33]; char x[FORMAT_TIMESTAMP_MAX], y[FORMAT_TIMESTAMP_MAX], z[FORMAT_TIMESTAMP_MAX]; struct stat st; char bytes[FORMAT_BYTES_MAX]; assert(f); assert(f->header); printf("File Path: %s\n" "File ID: %s\n" "Machine ID: %s\n" "Boot ID: %s\n" "Sequential Number ID: %s\n" "State: %s\n" "Compatible Flags:%s%s\n" "Incompatible Flags:%s%s%s\n" "Header size: %"PRIu64"\n" "Arena size: %"PRIu64"\n" "Data Hash Table Size: %"PRIu64"\n" "Field Hash Table Size: %"PRIu64"\n" "Rotate Suggested: %s\n" "Head Sequential Number: %"PRIu64" (%"PRIx64")\n" "Tail Sequential Number: %"PRIu64" (%"PRIx64")\n" "Head Realtime Timestamp: %s (%"PRIx64")\n" "Tail Realtime Timestamp: %s (%"PRIx64")\n" "Tail Monotonic Timestamp: %s (%"PRIx64")\n" "Objects: %"PRIu64"\n" "Entry Objects: %"PRIu64"\n", f->path, sd_id128_to_string(f->header->file_id, a), sd_id128_to_string(f->header->machine_id, b), sd_id128_to_string(f->header->boot_id, c), sd_id128_to_string(f->header->seqnum_id, d), f->header->state == STATE_OFFLINE ? "OFFLINE" : f->header->state == STATE_ONLINE ? "ONLINE" : f->header->state == STATE_ARCHIVED ? "ARCHIVED" : "UNKNOWN", JOURNAL_HEADER_SEALED(f->header) ? " SEALED" : "", (le32toh(f->header->compatible_flags) & ~HEADER_COMPATIBLE_ANY) ? " ???" : "", JOURNAL_HEADER_COMPRESSED_XZ(f->header) ? " COMPRESSED-XZ" : "", JOURNAL_HEADER_COMPRESSED_LZ4(f->header) ? " COMPRESSED-LZ4" : "", (le32toh(f->header->incompatible_flags) & ~HEADER_INCOMPATIBLE_ANY) ? " ???" : "", le64toh(f->header->header_size), le64toh(f->header->arena_size), le64toh(f->header->data_hash_table_size) / sizeof(HashItem), le64toh(f->header->field_hash_table_size) / sizeof(HashItem), yes_no(journal_file_rotate_suggested(f, 0)), le64toh(f->header->head_entry_seqnum), le64toh(f->header->head_entry_seqnum), le64toh(f->header->tail_entry_seqnum), le64toh(f->header->tail_entry_seqnum), format_timestamp_safe(x, sizeof(x), le64toh(f->header->head_entry_realtime)), le64toh(f->header->head_entry_realtime), format_timestamp_safe(y, sizeof(y), le64toh(f->header->tail_entry_realtime)), le64toh(f->header->tail_entry_realtime), format_timespan(z, sizeof(z), le64toh(f->header->tail_entry_monotonic), USEC_PER_MSEC), le64toh(f->header->tail_entry_monotonic), le64toh(f->header->n_objects), le64toh(f->header->n_entries)); if (JOURNAL_HEADER_CONTAINS(f->header, n_data)) printf("Data Objects: %"PRIu64"\n" "Data Hash Table Fill: %.1f%%\n", le64toh(f->header->n_data), 100.0 * (double) le64toh(f->header->n_data) / ((double) (le64toh(f->header->data_hash_table_size) / sizeof(HashItem)))); if (JOURNAL_HEADER_CONTAINS(f->header, n_fields)) printf("Field Objects: %"PRIu64"\n" "Field Hash Table Fill: %.1f%%\n", le64toh(f->header->n_fields), 100.0 * (double) le64toh(f->header->n_fields) / ((double) (le64toh(f->header->field_hash_table_size) / sizeof(HashItem)))); if (JOURNAL_HEADER_CONTAINS(f->header, n_tags)) printf("Tag Objects: %"PRIu64"\n", le64toh(f->header->n_tags)); if (JOURNAL_HEADER_CONTAINS(f->header, n_entry_arrays)) printf("Entry Array Objects: %"PRIu64"\n", le64toh(f->header->n_entry_arrays)); if (fstat(f->fd, &st) >= 0) printf("Disk usage: %s\n", format_bytes(bytes, sizeof(bytes), (uint64_t) st.st_blocks * 512ULL)); } static int journal_file_warn_btrfs(JournalFile *f) { unsigned attrs; int r; assert(f); /* Before we write anything, check if the COW logic is turned * off on btrfs. Given our write pattern that is quite * unfriendly to COW file systems this should greatly improve * performance on COW file systems, such as btrfs, at the * expense of data integrity features (which shouldn't be too * bad, given that we do our own checksumming). */ r = btrfs_is_filesystem(f->fd); if (r < 0) return log_warning_errno(r, "Failed to determine if journal is on btrfs: %m"); if (!r) return 0; r = read_attr_fd(f->fd, &attrs); if (r < 0) return log_warning_errno(r, "Failed to read file attributes: %m"); if (attrs & FS_NOCOW_FL) { log_debug("Detected btrfs file system with copy-on-write disabled, all is good."); return 0; } log_notice("Creating journal file %s on a btrfs file system, and copy-on-write is enabled. " "This is likely to slow down journal access substantially, please consider turning " "off the copy-on-write file attribute on the journal directory, using chattr +C.", f->path); return 1; } int journal_file_open( int fd, const char *fname, int flags, mode_t mode, bool compress, uint64_t compress_threshold_bytes, bool seal, JournalMetrics *metrics, MMapCache *mmap_cache, Set *deferred_closes, JournalFile *template, JournalFile **ret) { bool newly_created = false; JournalFile *f; void *h; int r; char bytes[FORMAT_BYTES_MAX]; assert(ret); assert(fd >= 0 || fname); if (!IN_SET((flags & O_ACCMODE), O_RDONLY, O_RDWR)) return -EINVAL; if (fname && (flags & O_CREAT) && !endswith(fname, ".journal")) return -EINVAL; f = new(JournalFile, 1); if (!f) return -ENOMEM; *f = (JournalFile) { .fd = fd, .mode = mode, .flags = flags, .prot = prot_from_flags(flags), .writable = (flags & O_ACCMODE) != O_RDONLY, #if HAVE_LZ4 .compress_lz4 = compress, #elif HAVE_XZ .compress_xz = compress, #endif .compress_threshold_bytes = compress_threshold_bytes == (uint64_t) -1 ? DEFAULT_COMPRESS_THRESHOLD : MAX(MIN_COMPRESS_THRESHOLD, compress_threshold_bytes), #if HAVE_GCRYPT .seal = seal, #endif }; log_debug("Journal effective settings seal=%s compress=%s compress_threshold_bytes=%s", yes_no(f->seal), yes_no(JOURNAL_FILE_COMPRESS(f)), format_bytes(bytes, sizeof(bytes), f->compress_threshold_bytes)); if (mmap_cache) f->mmap = mmap_cache_ref(mmap_cache); else { f->mmap = mmap_cache_new(); if (!f->mmap) { r = -ENOMEM; goto fail; } } if (fname) { f->path = strdup(fname); if (!f->path) { r = -ENOMEM; goto fail; } } else { assert(fd >= 0); /* If we don't know the path, fill in something explanatory and vaguely useful */ if (asprintf(&f->path, "/proc/self/%i", fd) < 0) { r = -ENOMEM; goto fail; } } f->chain_cache = ordered_hashmap_new(&uint64_hash_ops); if (!f->chain_cache) { r = -ENOMEM; goto fail; } if (f->fd < 0) { /* We pass O_NONBLOCK here, so that in case somebody pointed us to some character device node or FIFO * or so, we likely fail quickly than block for long. For regular files O_NONBLOCK has no effect, hence * it doesn't hurt in that case. */ f->fd = open(f->path, f->flags|O_CLOEXEC|O_NONBLOCK, f->mode); if (f->fd < 0) { r = -errno; goto fail; } /* fds we opened here by us should also be closed by us. */ f->close_fd = true; r = fd_nonblock(f->fd, false); if (r < 0) goto fail; } f->cache_fd = mmap_cache_add_fd(f->mmap, f->fd); if (!f->cache_fd) { r = -ENOMEM; goto fail; } r = journal_file_fstat(f); if (r < 0) goto fail; if (f->last_stat.st_size == 0 && f->writable) { (void) journal_file_warn_btrfs(f); /* Let's attach the creation time to the journal file, so that the vacuuming code knows the age of this * file even if the file might end up corrupted one day... Ideally we'd just use the creation time many * file systems maintain for each file, but the API to query this is very new, hence let's emulate this * via extended attributes. If extended attributes are not supported we'll just skip this, and rely * solely on mtime/atime/ctime of the file. */ (void) fd_setcrtime(f->fd, 0); #if HAVE_GCRYPT /* Try to load the FSPRG state, and if we can't, then * just don't do sealing */ if (f->seal) { r = journal_file_fss_load(f); if (r < 0) f->seal = false; } #endif r = journal_file_init_header(f, template); if (r < 0) goto fail; r = journal_file_fstat(f); if (r < 0) goto fail; newly_created = true; } if (f->last_stat.st_size < (off_t) HEADER_SIZE_MIN) { r = -ENODATA; goto fail; } r = mmap_cache_get(f->mmap, f->cache_fd, f->prot, CONTEXT_HEADER, true, 0, PAGE_ALIGN(sizeof(Header)), &f->last_stat, &h, NULL); if (r < 0) goto fail; f->header = h; if (!newly_created) { set_clear_with_destructor(deferred_closes, journal_file_close); r = journal_file_verify_header(f); if (r < 0) goto fail; } #if HAVE_GCRYPT if (!newly_created && f->writable) { r = journal_file_fss_load(f); if (r < 0) goto fail; } #endif if (f->writable) { if (metrics) { journal_default_metrics(metrics, f->fd); f->metrics = *metrics; } else if (template) f->metrics = template->metrics; r = journal_file_refresh_header(f); if (r < 0) goto fail; } #if HAVE_GCRYPT r = journal_file_hmac_setup(f); if (r < 0) goto fail; #endif if (newly_created) { r = journal_file_setup_field_hash_table(f); if (r < 0) goto fail; r = journal_file_setup_data_hash_table(f); if (r < 0) goto fail; #if HAVE_GCRYPT r = journal_file_append_first_tag(f); if (r < 0) goto fail; #endif } if (mmap_cache_got_sigbus(f->mmap, f->cache_fd)) { r = -EIO; goto fail; } if (template && template->post_change_timer) { r = journal_file_enable_post_change_timer( f, sd_event_source_get_event(template->post_change_timer), template->post_change_timer_period); if (r < 0) goto fail; } /* The file is opened now successfully, thus we take possession of any passed in fd. */ f->close_fd = true; *ret = f; return 0; fail: if (f->cache_fd && mmap_cache_got_sigbus(f->mmap, f->cache_fd)) r = -EIO; (void) journal_file_close(f); return r; } int journal_file_archive(JournalFile *f) { _cleanup_free_ char *p = NULL; assert(f); if (!f->writable) return -EINVAL; /* Is this a journal file that was passed to us as fd? If so, we synthesized a path name for it, and we refuse * rotation, since we don't know the actual path, and couldn't rename the file hence. */ if (path_startswith(f->path, "/proc/self/fd")) return -EINVAL; if (!endswith(f->path, ".journal")) return -EINVAL; if (asprintf(&p, "%.*s@" SD_ID128_FORMAT_STR "-%016"PRIx64"-%016"PRIx64".journal", (int) strlen(f->path) - 8, f->path, SD_ID128_FORMAT_VAL(f->header->seqnum_id), le64toh(f->header->head_entry_seqnum), le64toh(f->header->head_entry_realtime)) < 0) return -ENOMEM; /* Try to rename the file to the archived version. If the file already was deleted, we'll get ENOENT, let's * ignore that case. */ if (rename(f->path, p) < 0 && errno != ENOENT) return -errno; /* Sync the rename to disk */ (void) fsync_directory_of_file(f->fd); /* Set as archive so offlining commits w/state=STATE_ARCHIVED. Previously we would set old_file->header->state * to STATE_ARCHIVED directly here, but journal_file_set_offline() short-circuits when state != STATE_ONLINE, * which would result in the rotated journal never getting fsync() called before closing. Now we simply queue * the archive state by setting an archive bit, leaving the state as STATE_ONLINE so proper offlining * occurs. */ f->archive = true; /* Currently, btrfs is not very good with out write patterns and fragments heavily. Let's defrag our journal * files when we archive them */ f->defrag_on_close = true; return 0; } JournalFile* journal_initiate_close( JournalFile *f, Set *deferred_closes) { int r; assert(f); if (deferred_closes) { r = set_put(deferred_closes, f); if (r < 0) log_debug_errno(r, "Failed to add file to deferred close set, closing immediately."); else { (void) journal_file_set_offline(f, false); return NULL; } } return journal_file_close(f); } int journal_file_rotate( JournalFile **f, bool compress, uint64_t compress_threshold_bytes, bool seal, Set *deferred_closes) { JournalFile *new_file = NULL; int r; assert(f); assert(*f); r = journal_file_archive(*f); if (r < 0) return r; r = journal_file_open( -1, (*f)->path, (*f)->flags, (*f)->mode, compress, compress_threshold_bytes, seal, NULL, /* metrics */ (*f)->mmap, deferred_closes, *f, /* template */ &new_file); journal_initiate_close(*f, deferred_closes); *f = new_file; return r; } int journal_file_dispose(int dir_fd, const char *fname) { _cleanup_free_ char *p = NULL; _cleanup_close_ int fd = -1; assert(fname); /* Renames a journal file to *.journal~, i.e. to mark it as corruped or otherwise uncleanly shutdown. Note that * this is done without looking into the file or changing any of its contents. The idea is that this is called * whenever something is suspicious and we want to move the file away and make clear that it is not accessed * for writing anymore. */ if (!endswith(fname, ".journal")) return -EINVAL; if (asprintf(&p, "%.*s@%016" PRIx64 "-%016" PRIx64 ".journal~", (int) strlen(fname) - 8, fname, now(CLOCK_REALTIME), random_u64()) < 0) return -ENOMEM; if (renameat(dir_fd, fname, dir_fd, p) < 0) return -errno; /* btrfs doesn't cope well with our write pattern and fragments heavily. Let's defrag all files we rotate */ fd = openat(dir_fd, p, O_RDONLY|O_CLOEXEC|O_NOCTTY|O_NOFOLLOW); if (fd < 0) log_debug_errno(errno, "Failed to open file for defragmentation/FS_NOCOW_FL, ignoring: %m"); else { (void) chattr_fd(fd, 0, FS_NOCOW_FL, NULL); (void) btrfs_defrag_fd(fd); } return 0; } int journal_file_open_reliably( const char *fname, int flags, mode_t mode, bool compress, uint64_t compress_threshold_bytes, bool seal, JournalMetrics *metrics, MMapCache *mmap_cache, Set *deferred_closes, JournalFile *template, JournalFile **ret) { int r; r = journal_file_open(-1, fname, flags, mode, compress, compress_threshold_bytes, seal, metrics, mmap_cache, deferred_closes, template, ret); if (!IN_SET(r, -EBADMSG, /* Corrupted */ -ENODATA, /* Truncated */ -EHOSTDOWN, /* Other machine */ -EPROTONOSUPPORT, /* Incompatible feature */ -EBUSY, /* Unclean shutdown */ -ESHUTDOWN, /* Already archived */ -EIO, /* IO error, including SIGBUS on mmap */ -EIDRM, /* File has been deleted */ -ETXTBSY)) /* File is from the future */ return r; if ((flags & O_ACCMODE) == O_RDONLY) return r; if (!(flags & O_CREAT)) return r; if (!endswith(fname, ".journal")) return r; /* The file is corrupted. Rotate it away and try it again (but only once) */ log_warning_errno(r, "File %s corrupted or uncleanly shut down, renaming and replacing.", fname); r = journal_file_dispose(AT_FDCWD, fname); if (r < 0) return r; return journal_file_open(-1, fname, flags, mode, compress, compress_threshold_bytes, seal, metrics, mmap_cache, deferred_closes, template, ret); } int journal_file_copy_entry(JournalFile *from, JournalFile *to, Object *o, uint64_t p) { uint64_t i, n; uint64_t q, xor_hash = 0; int r; EntryItem *items; dual_timestamp ts; const sd_id128_t *boot_id; assert(from); assert(to); assert(o); assert(p); if (!to->writable) return -EPERM; ts.monotonic = le64toh(o->entry.monotonic); ts.realtime = le64toh(o->entry.realtime); boot_id = &o->entry.boot_id; n = journal_file_entry_n_items(o); /* alloca() can't take 0, hence let's allocate at least one */ items = newa(EntryItem, MAX(1u, n)); for (i = 0; i < n; i++) { uint64_t l, h; le64_t le_hash; size_t t; void *data; Object *u; q = le64toh(o->entry.items[i].object_offset); le_hash = o->entry.items[i].hash; r = journal_file_move_to_object(from, OBJECT_DATA, q, &o); if (r < 0) return r; if (le_hash != o->data.hash) return -EBADMSG; l = le64toh(o->object.size) - offsetof(Object, data.payload); t = (size_t) l; /* We hit the limit on 32bit machines */ if ((uint64_t) t != l) return -E2BIG; if (o->object.flags & OBJECT_COMPRESSION_MASK) { #if HAVE_XZ || HAVE_LZ4 size_t rsize = 0; r = decompress_blob(o->object.flags & OBJECT_COMPRESSION_MASK, o->data.payload, l, &from->compress_buffer, &from->compress_buffer_size, &rsize, 0); if (r < 0) return r; data = from->compress_buffer; l = rsize; #else return -EPROTONOSUPPORT; #endif } else data = o->data.payload; r = journal_file_append_data(to, data, l, &u, &h); if (r < 0) return r; xor_hash ^= le64toh(u->data.hash); items[i].object_offset = htole64(h); items[i].hash = u->data.hash; r = journal_file_move_to_object(from, OBJECT_ENTRY, p, &o); if (r < 0) return r; } r = journal_file_append_entry_internal(to, &ts, boot_id, xor_hash, items, n, NULL, NULL, NULL); if (mmap_cache_got_sigbus(to->mmap, to->cache_fd)) return -EIO; return r; } void journal_reset_metrics(JournalMetrics *m) { assert(m); /* Set everything to "pick automatic values". */ *m = (JournalMetrics) { .min_use = (uint64_t) -1, .max_use = (uint64_t) -1, .min_size = (uint64_t) -1, .max_size = (uint64_t) -1, .keep_free = (uint64_t) -1, .n_max_files = (uint64_t) -1, }; } void journal_default_metrics(JournalMetrics *m, int fd) { char a[FORMAT_BYTES_MAX], b[FORMAT_BYTES_MAX], c[FORMAT_BYTES_MAX], d[FORMAT_BYTES_MAX], e[FORMAT_BYTES_MAX]; struct statvfs ss; uint64_t fs_size; assert(m); assert(fd >= 0); if (fstatvfs(fd, &ss) >= 0) fs_size = ss.f_frsize * ss.f_blocks; else { log_debug_errno(errno, "Failed to determine disk size: %m"); fs_size = 0; } if (m->max_use == (uint64_t) -1) { if (fs_size > 0) { m->max_use = PAGE_ALIGN(fs_size / 10); /* 10% of file system size */ if (m->max_use > DEFAULT_MAX_USE_UPPER) m->max_use = DEFAULT_MAX_USE_UPPER; if (m->max_use < DEFAULT_MAX_USE_LOWER) m->max_use = DEFAULT_MAX_USE_LOWER; } else m->max_use = DEFAULT_MAX_USE_LOWER; } else { m->max_use = PAGE_ALIGN(m->max_use); if (m->max_use != 0 && m->max_use < JOURNAL_FILE_SIZE_MIN*2) m->max_use = JOURNAL_FILE_SIZE_MIN*2; } if (m->min_use == (uint64_t) -1) m->min_use = DEFAULT_MIN_USE; if (m->min_use > m->max_use) m->min_use = m->max_use; if (m->max_size == (uint64_t) -1) { m->max_size = PAGE_ALIGN(m->max_use / 8); /* 8 chunks */ if (m->max_size > DEFAULT_MAX_SIZE_UPPER) m->max_size = DEFAULT_MAX_SIZE_UPPER; } else m->max_size = PAGE_ALIGN(m->max_size); if (m->max_size != 0) { if (m->max_size < JOURNAL_FILE_SIZE_MIN) m->max_size = JOURNAL_FILE_SIZE_MIN; if (m->max_use != 0 && m->max_size*2 > m->max_use) m->max_use = m->max_size*2; } if (m->min_size == (uint64_t) -1) m->min_size = JOURNAL_FILE_SIZE_MIN; else { m->min_size = PAGE_ALIGN(m->min_size); if (m->min_size < JOURNAL_FILE_SIZE_MIN) m->min_size = JOURNAL_FILE_SIZE_MIN; if (m->max_size != 0 && m->min_size > m->max_size) m->max_size = m->min_size; } if (m->keep_free == (uint64_t) -1) { if (fs_size > 0) { m->keep_free = PAGE_ALIGN(fs_size * 3 / 20); /* 15% of file system size */ if (m->keep_free > DEFAULT_KEEP_FREE_UPPER) m->keep_free = DEFAULT_KEEP_FREE_UPPER; } else m->keep_free = DEFAULT_KEEP_FREE; } if (m->n_max_files == (uint64_t) -1) m->n_max_files = DEFAULT_N_MAX_FILES; log_debug("Fixed min_use=%s max_use=%s max_size=%s min_size=%s keep_free=%s n_max_files=%" PRIu64, format_bytes(a, sizeof(a), m->min_use), format_bytes(b, sizeof(b), m->max_use), format_bytes(c, sizeof(c), m->max_size), format_bytes(d, sizeof(d), m->min_size), format_bytes(e, sizeof(e), m->keep_free), m->n_max_files); } int journal_file_get_cutoff_realtime_usec(JournalFile *f, usec_t *from, usec_t *to) { assert(f); assert(f->header); assert(from || to); if (from) { if (f->header->head_entry_realtime == 0) return -ENOENT; *from = le64toh(f->header->head_entry_realtime); } if (to) { if (f->header->tail_entry_realtime == 0) return -ENOENT; *to = le64toh(f->header->tail_entry_realtime); } return 1; } int journal_file_get_cutoff_monotonic_usec(JournalFile *f, sd_id128_t boot_id, usec_t *from, usec_t *to) { Object *o; uint64_t p; int r; assert(f); assert(from || to); r = find_data_object_by_boot_id(f, boot_id, &o, &p); if (r <= 0) return r; if (le64toh(o->data.n_entries) <= 0) return 0; if (from) { r = journal_file_move_to_object(f, OBJECT_ENTRY, le64toh(o->data.entry_offset), &o); if (r < 0) return r; *from = le64toh(o->entry.monotonic); } if (to) { r = journal_file_move_to_object(f, OBJECT_DATA, p, &o); if (r < 0) return r; r = generic_array_get_plus_one(f, le64toh(o->data.entry_offset), le64toh(o->data.entry_array_offset), le64toh(o->data.n_entries)-1, &o, NULL); if (r <= 0) return r; *to = le64toh(o->entry.monotonic); } return 1; } bool journal_file_rotate_suggested(JournalFile *f, usec_t max_file_usec) { assert(f); assert(f->header); /* If we gained new header fields we gained new features, * hence suggest a rotation */ if (le64toh(f->header->header_size) < sizeof(Header)) { log_debug("%s uses an outdated header, suggesting rotation.", f->path); return true; } /* Let's check if the hash tables grew over a certain fill * level (75%, borrowing this value from Java's hash table * implementation), and if so suggest a rotation. To calculate * the fill level we need the n_data field, which only exists * in newer versions. */ if (JOURNAL_HEADER_CONTAINS(f->header, n_data)) if (le64toh(f->header->n_data) * 4ULL > (le64toh(f->header->data_hash_table_size) / sizeof(HashItem)) * 3ULL) { log_debug("Data hash table of %s has a fill level at %.1f (%"PRIu64" of %"PRIu64" items, %llu file size, %"PRIu64" bytes per hash table item), suggesting rotation.", f->path, 100.0 * (double) le64toh(f->header->n_data) / ((double) (le64toh(f->header->data_hash_table_size) / sizeof(HashItem))), le64toh(f->header->n_data), le64toh(f->header->data_hash_table_size) / sizeof(HashItem), (unsigned long long) f->last_stat.st_size, f->last_stat.st_size / le64toh(f->header->n_data)); return true; } if (JOURNAL_HEADER_CONTAINS(f->header, n_fields)) if (le64toh(f->header->n_fields) * 4ULL > (le64toh(f->header->field_hash_table_size) / sizeof(HashItem)) * 3ULL) { log_debug("Field hash table of %s has a fill level at %.1f (%"PRIu64" of %"PRIu64" items), suggesting rotation.", f->path, 100.0 * (double) le64toh(f->header->n_fields) / ((double) (le64toh(f->header->field_hash_table_size) / sizeof(HashItem))), le64toh(f->header->n_fields), le64toh(f->header->field_hash_table_size) / sizeof(HashItem)); return true; } /* Are the data objects properly indexed by field objects? */ if (JOURNAL_HEADER_CONTAINS(f->header, n_data) && JOURNAL_HEADER_CONTAINS(f->header, n_fields) && le64toh(f->header->n_data) > 0 && le64toh(f->header->n_fields) == 0) return true; if (max_file_usec > 0) { usec_t t, h; h = le64toh(f->header->head_entry_realtime); t = now(CLOCK_REALTIME); if (h > 0 && t > h + max_file_usec) return true; } return false; }