/* SPDX-License-Identifier: LGPL-2.1+ */ /*** This file is part of systemd. Copyright 2012 Lennart Poettering ***/ #include #include #include #include #include #include #include #include #include "sd-bus.h" #include "alloc-util.h" #include "bus-error.h" #include "bus-util.h" #include "cgroup-show.h" #include "cgroup-util.h" #include "fd-util.h" #include "fileio.h" #include "hashmap.h" #include "parse-util.h" #include "path-util.h" #include "process-util.h" #include "procfs-util.h" #include "stdio-util.h" #include "strv.h" #include "terminal-util.h" #include "unit-name.h" #include "util.h" #include "virt.h" typedef struct Group { char *path; bool n_tasks_valid:1; bool cpu_valid:1; bool memory_valid:1; bool io_valid:1; uint64_t n_tasks; unsigned cpu_iteration; nsec_t cpu_usage; nsec_t cpu_timestamp; double cpu_fraction; uint64_t memory; unsigned io_iteration; uint64_t io_input, io_output; nsec_t io_timestamp; uint64_t io_input_bps, io_output_bps; } Group; static unsigned arg_depth = 3; static unsigned arg_iterations = (unsigned) -1; static bool arg_batch = false; static bool arg_raw = false; static usec_t arg_delay = 1*USEC_PER_SEC; static char* arg_machine = NULL; static char* arg_root = NULL; static bool arg_recursive = true; static bool arg_recursive_unset = false; static enum { COUNT_PIDS, COUNT_USERSPACE_PROCESSES, COUNT_ALL_PROCESSES, } arg_count = COUNT_PIDS; static enum { ORDER_PATH, ORDER_TASKS, ORDER_CPU, ORDER_MEMORY, ORDER_IO, } arg_order = ORDER_CPU; static enum { CPU_PERCENT, CPU_TIME, } arg_cpu_type = CPU_PERCENT; static void group_free(Group *g) { assert(g); free(g->path); free(g); } static void group_hashmap_clear(Hashmap *h) { hashmap_clear_with_destructor(h, group_free); } static void group_hashmap_free(Hashmap *h) { group_hashmap_clear(h); hashmap_free(h); } static const char *maybe_format_bytes(char *buf, size_t l, bool is_valid, uint64_t t) { if (!is_valid) return "-"; if (arg_raw) { snprintf(buf, l, "%" PRIu64, t); return buf; } return format_bytes(buf, l, t); } static bool is_root_cgroup(const char *path) { /* Returns true if the specified path belongs to the root cgroup. The root cgroup is special on cgroupsv2 as it * carries only very few attributes in order not to export multiple truth about system state as most * information is available elsewhere in /proc anyway. We need to be able to deal with that, and need to get * our data from different sources in that case. * * There's one extra complication in all of this, though 😣: if the path to the cgroup indicates we are in the * root cgroup this might actually not be the case, because cgroup namespacing might be in effect * (CLONE_NEWCGROUP). Since there's no nice way to distuingish a real cgroup root from a fake namespaced one we * do an explicit container check here, under the assumption that CLONE_NEWCGROUP is generally used when * container managers are used too. * * Note that checking for a container environment is kinda ugly, since in theory people could use cgtop from * inside a container where cgroup namespacing is turned off to watch the host system. However, that's mostly a * theoretic usecase, and if people actually try all they'll lose is accounting for the top-level cgroup. Which * isn't too bad. */ if (detect_container() > 0) return false; return empty_or_root(path); } static int process( const char *controller, const char *path, Hashmap *a, Hashmap *b, unsigned iteration, Group **ret) { Group *g; int r, all_unified; assert(controller); assert(path); assert(a); all_unified = cg_all_unified(); if (all_unified < 0) return all_unified; g = hashmap_get(a, path); if (!g) { g = hashmap_get(b, path); if (!g) { g = new0(Group, 1); if (!g) return -ENOMEM; g->path = strdup(path); if (!g->path) { group_free(g); return -ENOMEM; } r = hashmap_put(a, g->path, g); if (r < 0) { group_free(g); return r; } } else { r = hashmap_move_one(a, b, path); if (r < 0) return r; g->cpu_valid = g->memory_valid = g->io_valid = g->n_tasks_valid = false; } } if (streq(controller, SYSTEMD_CGROUP_CONTROLLER) && IN_SET(arg_count, COUNT_ALL_PROCESSES, COUNT_USERSPACE_PROCESSES)) { _cleanup_fclose_ FILE *f = NULL; pid_t pid; r = cg_enumerate_processes(controller, path, &f); if (r == -ENOENT) return 0; if (r < 0) return r; g->n_tasks = 0; while (cg_read_pid(f, &pid) > 0) { if (arg_count == COUNT_USERSPACE_PROCESSES && is_kernel_thread(pid) > 0) continue; g->n_tasks++; } if (g->n_tasks > 0) g->n_tasks_valid = true; } else if (streq(controller, "pids") && arg_count == COUNT_PIDS) { if (is_root_cgroup(path)) { r = procfs_tasks_get_current(&g->n_tasks); if (r < 0) return r; } else { _cleanup_free_ char *p = NULL, *v = NULL; r = cg_get_path(controller, path, "pids.current", &p); if (r < 0) return r; r = read_one_line_file(p, &v); if (r == -ENOENT) return 0; if (r < 0) return r; r = safe_atou64(v, &g->n_tasks); if (r < 0) return r; } if (g->n_tasks > 0) g->n_tasks_valid = true; } else if (STR_IN_SET(controller, "cpu", "cpuacct")) { _cleanup_free_ char *p = NULL, *v = NULL; uint64_t new_usage; nsec_t timestamp; if (is_root_cgroup(path)) { r = procfs_cpu_get_usage(&new_usage); if (r < 0) return r; } else if (all_unified) { _cleanup_free_ char *val = NULL; if (!streq(controller, "cpu")) return 0; r = cg_get_keyed_attribute("cpu", path, "cpu.stat", STRV_MAKE("usage_usec"), &val); if (IN_SET(r, -ENOENT, -ENXIO)) return 0; if (r < 0) return r; r = safe_atou64(val, &new_usage); if (r < 0) return r; new_usage *= NSEC_PER_USEC; } else { if (!streq(controller, "cpuacct")) return 0; r = cg_get_path(controller, path, "cpuacct.usage", &p); if (r < 0) return r; r = read_one_line_file(p, &v); if (r == -ENOENT) return 0; if (r < 0) return r; r = safe_atou64(v, &new_usage); if (r < 0) return r; } timestamp = now_nsec(CLOCK_MONOTONIC); if (g->cpu_iteration == iteration - 1 && (nsec_t) new_usage > g->cpu_usage) { nsec_t x, y; x = timestamp - g->cpu_timestamp; if (x < 1) x = 1; y = (nsec_t) new_usage - g->cpu_usage; g->cpu_fraction = (double) y / (double) x; g->cpu_valid = true; } g->cpu_usage = (nsec_t) new_usage; g->cpu_timestamp = timestamp; g->cpu_iteration = iteration; } else if (streq(controller, "memory")) { if (is_root_cgroup(path)) { r = procfs_memory_get_current(&g->memory); if (r < 0) return r; } else { _cleanup_free_ char *p = NULL, *v = NULL; if (all_unified) r = cg_get_path(controller, path, "memory.current", &p); else r = cg_get_path(controller, path, "memory.usage_in_bytes", &p); if (r < 0) return r; r = read_one_line_file(p, &v); if (r == -ENOENT) return 0; if (r < 0) return r; r = safe_atou64(v, &g->memory); if (r < 0) return r; } if (g->memory > 0) g->memory_valid = true; } else if ((streq(controller, "io") && all_unified) || (streq(controller, "blkio") && !all_unified)) { _cleanup_fclose_ FILE *f = NULL; _cleanup_free_ char *p = NULL; uint64_t wr = 0, rd = 0; nsec_t timestamp; r = cg_get_path(controller, path, all_unified ? "io.stat" : "blkio.io_service_bytes", &p); if (r < 0) return r; f = fopen(p, "re"); if (!f) { if (errno == ENOENT) return 0; return -errno; } for (;;) { char line[LINE_MAX], *l; uint64_t k, *q; if (!fgets(line, sizeof(line), f)) break; /* Trim and skip the device */ l = strstrip(line); l += strcspn(l, WHITESPACE); l += strspn(l, WHITESPACE); if (all_unified) { while (!isempty(l)) { if (sscanf(l, "rbytes=%" SCNu64, &k)) rd += k; else if (sscanf(l, "wbytes=%" SCNu64, &k)) wr += k; l += strcspn(l, WHITESPACE); l += strspn(l, WHITESPACE); } } else { if (first_word(l, "Read")) { l += 4; q = &rd; } else if (first_word(l, "Write")) { l += 5; q = ≀ } else continue; l += strspn(l, WHITESPACE); r = safe_atou64(l, &k); if (r < 0) continue; *q += k; } } timestamp = now_nsec(CLOCK_MONOTONIC); if (g->io_iteration == iteration - 1) { uint64_t x, yr, yw; x = (uint64_t) (timestamp - g->io_timestamp); if (x < 1) x = 1; if (rd > g->io_input) yr = rd - g->io_input; else yr = 0; if (wr > g->io_output) yw = wr - g->io_output; else yw = 0; if (yr > 0 || yw > 0) { g->io_input_bps = (yr * 1000000000ULL) / x; g->io_output_bps = (yw * 1000000000ULL) / x; g->io_valid = true; } } g->io_input = rd; g->io_output = wr; g->io_timestamp = timestamp; g->io_iteration = iteration; } if (ret) *ret = g; return 0; } static int refresh_one( const char *controller, const char *path, Hashmap *a, Hashmap *b, unsigned iteration, unsigned depth, Group **ret) { _cleanup_closedir_ DIR *d = NULL; Group *ours = NULL; int r; assert(controller); assert(path); assert(a); if (depth > arg_depth) return 0; r = process(controller, path, a, b, iteration, &ours); if (r < 0) return r; r = cg_enumerate_subgroups(controller, path, &d); if (r == -ENOENT) return 0; if (r < 0) return r; for (;;) { _cleanup_free_ char *fn = NULL, *p = NULL; Group *child = NULL; r = cg_read_subgroup(d, &fn); if (r < 0) return r; if (r == 0) break; p = strjoin(path, "/", fn); if (!p) return -ENOMEM; path_kill_slashes(p); r = refresh_one(controller, p, a, b, iteration, depth + 1, &child); if (r < 0) return r; if (arg_recursive && IN_SET(arg_count, COUNT_ALL_PROCESSES, COUNT_USERSPACE_PROCESSES) && child && child->n_tasks_valid && streq(controller, SYSTEMD_CGROUP_CONTROLLER)) { /* Recursively sum up processes */ if (ours->n_tasks_valid) ours->n_tasks += child->n_tasks; else { ours->n_tasks = child->n_tasks; ours->n_tasks_valid = true; } } } if (ret) *ret = ours; return 1; } static int refresh(const char *root, Hashmap *a, Hashmap *b, unsigned iteration) { int r; assert(a); r = refresh_one(SYSTEMD_CGROUP_CONTROLLER, root, a, b, iteration, 0, NULL); if (r < 0) return r; r = refresh_one("cpu", root, a, b, iteration, 0, NULL); if (r < 0) return r; r = refresh_one("cpuacct", root, a, b, iteration, 0, NULL); if (r < 0) return r; r = refresh_one("memory", root, a, b, iteration, 0, NULL); if (r < 0) return r; r = refresh_one("io", root, a, b, iteration, 0, NULL); if (r < 0) return r; r = refresh_one("blkio", root, a, b, iteration, 0, NULL); if (r < 0) return r; r = refresh_one("pids", root, a, b, iteration, 0, NULL); if (r < 0) return r; return 0; } static const char *empty_to_slash(const char *p) { return isempty(p) ? "/" : p; } static int group_compare(const void*a, const void *b) { const Group *x = *(Group**)a, *y = *(Group**)b; if (arg_order != ORDER_TASKS || arg_recursive) { /* Let's make sure that the parent is always before * the child. Except when ordering by tasks and * recursive summing is off, since that is actually * not accumulative for all children. */ if (path_startswith(empty_to_slash(y->path), empty_to_slash(x->path))) return -1; if (path_startswith(empty_to_slash(x->path), empty_to_slash(y->path))) return 1; } switch (arg_order) { case ORDER_PATH: break; case ORDER_CPU: if (arg_cpu_type == CPU_PERCENT) { if (x->cpu_valid && y->cpu_valid) { if (x->cpu_fraction > y->cpu_fraction) return -1; else if (x->cpu_fraction < y->cpu_fraction) return 1; } else if (x->cpu_valid) return -1; else if (y->cpu_valid) return 1; } else { if (x->cpu_usage > y->cpu_usage) return -1; else if (x->cpu_usage < y->cpu_usage) return 1; } break; case ORDER_TASKS: if (x->n_tasks_valid && y->n_tasks_valid) { if (x->n_tasks > y->n_tasks) return -1; else if (x->n_tasks < y->n_tasks) return 1; } else if (x->n_tasks_valid) return -1; else if (y->n_tasks_valid) return 1; break; case ORDER_MEMORY: if (x->memory_valid && y->memory_valid) { if (x->memory > y->memory) return -1; else if (x->memory < y->memory) return 1; } else if (x->memory_valid) return -1; else if (y->memory_valid) return 1; break; case ORDER_IO: if (x->io_valid && y->io_valid) { if (x->io_input_bps + x->io_output_bps > y->io_input_bps + y->io_output_bps) return -1; else if (x->io_input_bps + x->io_output_bps < y->io_input_bps + y->io_output_bps) return 1; } else if (x->io_valid) return -1; else if (y->io_valid) return 1; } return path_compare(x->path, y->path); } static void display(Hashmap *a) { Iterator i; Group *g; Group **array; signed path_columns; unsigned rows, n = 0, j, maxtcpu = 0, maxtpath = 3; /* 3 for ellipsize() to work properly */ char buffer[MAX3(21, FORMAT_BYTES_MAX, FORMAT_TIMESPAN_MAX)]; assert(a); if (!terminal_is_dumb()) fputs(ANSI_HOME_CLEAR, stdout); array = alloca(sizeof(Group*) * hashmap_size(a)); HASHMAP_FOREACH(g, a, i) if (g->n_tasks_valid || g->cpu_valid || g->memory_valid || g->io_valid) array[n++] = g; qsort_safe(array, n, sizeof(Group*), group_compare); /* Find the longest names in one run */ for (j = 0; j < n; j++) { unsigned cputlen, pathtlen; format_timespan(buffer, sizeof(buffer), (usec_t) (array[j]->cpu_usage / NSEC_PER_USEC), 0); cputlen = strlen(buffer); maxtcpu = MAX(maxtcpu, cputlen); pathtlen = strlen(array[j]->path); maxtpath = MAX(maxtpath, pathtlen); } if (arg_cpu_type == CPU_PERCENT) xsprintf(buffer, "%6s", "%CPU"); else xsprintf(buffer, "%*s", maxtcpu, "CPU Time"); rows = lines(); if (rows <= 10) rows = 10; if (on_tty()) { const char *on, *off; path_columns = columns() - 36 - strlen(buffer); if (path_columns < 10) path_columns = 10; on = ansi_highlight_underline(); off = ansi_underline(); printf("%s%s%-*s%s %s%7s%s %s%s%s %s%8s%s %s%8s%s %s%8s%s%s\n", ansi_underline(), arg_order == ORDER_PATH ? on : "", path_columns, "Control Group", arg_order == ORDER_PATH ? off : "", arg_order == ORDER_TASKS ? on : "", arg_count == COUNT_PIDS ? "Tasks" : arg_count == COUNT_USERSPACE_PROCESSES ? "Procs" : "Proc+", arg_order == ORDER_TASKS ? off : "", arg_order == ORDER_CPU ? on : "", buffer, arg_order == ORDER_CPU ? off : "", arg_order == ORDER_MEMORY ? on : "", "Memory", arg_order == ORDER_MEMORY ? off : "", arg_order == ORDER_IO ? on : "", "Input/s", arg_order == ORDER_IO ? off : "", arg_order == ORDER_IO ? on : "", "Output/s", arg_order == ORDER_IO ? off : "", ansi_normal()); } else path_columns = maxtpath; for (j = 0; j < n; j++) { _cleanup_free_ char *ellipsized = NULL; const char *path; if (on_tty() && j + 6 > rows) break; g = array[j]; path = empty_to_slash(g->path); ellipsized = ellipsize(path, path_columns, 33); printf("%-*s", path_columns, ellipsized ?: path); if (g->n_tasks_valid) printf(" %7" PRIu64, g->n_tasks); else fputs(" -", stdout); if (arg_cpu_type == CPU_PERCENT) { if (g->cpu_valid) printf(" %6.1f", g->cpu_fraction*100); else fputs(" -", stdout); } else printf(" %*s", maxtcpu, format_timespan(buffer, sizeof(buffer), (usec_t) (g->cpu_usage / NSEC_PER_USEC), 0)); printf(" %8s", maybe_format_bytes(buffer, sizeof(buffer), g->memory_valid, g->memory)); printf(" %8s", maybe_format_bytes(buffer, sizeof(buffer), g->io_valid, g->io_input_bps)); printf(" %8s", maybe_format_bytes(buffer, sizeof(buffer), g->io_valid, g->io_output_bps)); putchar('\n'); } } static void help(void) { printf("%s [OPTIONS...] [CGROUP]\n\n" "Show top control groups by their resource usage.\n\n" " -h --help Show this help\n" " --version Show package version\n" " -p --order=path Order by path\n" " -t --order=tasks Order by number of tasks/processes\n" " -c --order=cpu Order by CPU load (default)\n" " -m --order=memory Order by memory load\n" " -i --order=io Order by IO load\n" " -r --raw Provide raw (not human-readable) numbers\n" " --cpu=percentage Show CPU usage as percentage (default)\n" " --cpu=time Show CPU usage as time\n" " -P Count userspace processes instead of tasks (excl. kernel)\n" " -k Count all processes instead of tasks (incl. kernel)\n" " --recursive=BOOL Sum up process count recursively\n" " -d --delay=DELAY Delay between updates\n" " -n --iterations=N Run for N iterations before exiting\n" " -1 Shortcut for --iterations=1\n" " -b --batch Run in batch mode, accepting no input\n" " --depth=DEPTH Maximum traversal depth (default: %u)\n" " -M --machine= Show container\n" , program_invocation_short_name, arg_depth); } static int parse_argv(int argc, char *argv[]) { enum { ARG_VERSION = 0x100, ARG_DEPTH, ARG_CPU_TYPE, ARG_ORDER, ARG_RECURSIVE, }; static const struct option options[] = { { "help", no_argument, NULL, 'h' }, { "version", no_argument, NULL, ARG_VERSION }, { "delay", required_argument, NULL, 'd' }, { "iterations", required_argument, NULL, 'n' }, { "batch", no_argument, NULL, 'b' }, { "raw", no_argument, NULL, 'r' }, { "depth", required_argument, NULL, ARG_DEPTH }, { "cpu", optional_argument, NULL, ARG_CPU_TYPE }, { "order", required_argument, NULL, ARG_ORDER }, { "recursive", required_argument, NULL, ARG_RECURSIVE }, { "machine", required_argument, NULL, 'M' }, {} }; int c, r; assert(argc >= 1); assert(argv); while ((c = getopt_long(argc, argv, "hptcmin:brd:kPM:1", options, NULL)) >= 0) switch (c) { case 'h': help(); return 0; case ARG_VERSION: return version(); case ARG_CPU_TYPE: if (optarg) { if (streq(optarg, "time")) arg_cpu_type = CPU_TIME; else if (streq(optarg, "percentage")) arg_cpu_type = CPU_PERCENT; else { log_error("Unknown argument to --cpu=: %s", optarg); return -EINVAL; } } else arg_cpu_type = CPU_TIME; break; case ARG_DEPTH: r = safe_atou(optarg, &arg_depth); if (r < 0) return log_error_errno(r, "Failed to parse depth parameter: %s", optarg); break; case 'd': r = parse_sec(optarg, &arg_delay); if (r < 0 || arg_delay <= 0) { log_error("Failed to parse delay parameter: %s", optarg); return -EINVAL; } break; case 'n': r = safe_atou(optarg, &arg_iterations); if (r < 0) return log_error_errno(r, "Failed to parse iterations parameter: %s", optarg); break; case '1': arg_iterations = 1; break; case 'b': arg_batch = true; break; case 'r': arg_raw = true; break; case 'p': arg_order = ORDER_PATH; break; case 't': arg_order = ORDER_TASKS; break; case 'c': arg_order = ORDER_CPU; break; case 'm': arg_order = ORDER_MEMORY; break; case 'i': arg_order = ORDER_IO; break; case ARG_ORDER: if (streq(optarg, "path")) arg_order = ORDER_PATH; else if (streq(optarg, "tasks")) arg_order = ORDER_TASKS; else if (streq(optarg, "cpu")) arg_order = ORDER_CPU; else if (streq(optarg, "memory")) arg_order = ORDER_MEMORY; else if (streq(optarg, "io")) arg_order = ORDER_IO; else { log_error("Invalid argument to --order=: %s", optarg); return -EINVAL; } break; case 'k': arg_count = COUNT_ALL_PROCESSES; break; case 'P': arg_count = COUNT_USERSPACE_PROCESSES; break; case ARG_RECURSIVE: r = parse_boolean(optarg); if (r < 0) return log_error_errno(r, "Failed to parse --recursive= argument: %s", optarg); arg_recursive = r; arg_recursive_unset = r == 0; break; case 'M': arg_machine = optarg; break; case '?': return -EINVAL; default: assert_not_reached("Unhandled option"); } if (optind == argc - 1) arg_root = argv[optind]; else if (optind < argc) { log_error("Too many arguments."); return -EINVAL; } return 1; } static const char* counting_what(void) { if (arg_count == COUNT_PIDS) return "tasks"; else if (arg_count == COUNT_ALL_PROCESSES) return "all processes (incl. kernel)"; else return "userspace processes (excl. kernel)"; } int main(int argc, char *argv[]) { int r; Hashmap *a = NULL, *b = NULL; unsigned iteration = 0; usec_t last_refresh = 0; bool quit = false, immediate_refresh = false; _cleanup_free_ char *root = NULL; CGroupMask mask; log_parse_environment(); log_open(); r = parse_argv(argc, argv); if (r <= 0) goto finish; r = cg_mask_supported(&mask); if (r < 0) { log_error_errno(r, "Failed to determine supported controllers: %m"); goto finish; } arg_count = (mask & CGROUP_MASK_PIDS) ? COUNT_PIDS : COUNT_USERSPACE_PROCESSES; if (arg_recursive_unset && arg_count == COUNT_PIDS) { log_error("Non-recursive counting is only supported when counting processes, not tasks. Use -P or -k."); return -EINVAL; } r = show_cgroup_get_path_and_warn(arg_machine, arg_root, &root); if (r < 0) { log_error_errno(r, "Failed to get root control group path: %m"); goto finish; } else log_debug("Cgroup path: %s", root); a = hashmap_new(&path_hash_ops); b = hashmap_new(&path_hash_ops); if (!a || !b) { r = log_oom(); goto finish; } signal(SIGWINCH, columns_lines_cache_reset); if (arg_iterations == (unsigned) -1) arg_iterations = on_tty() ? 0 : 1; while (!quit) { Hashmap *c; usec_t t; char key; char h[FORMAT_TIMESPAN_MAX]; t = now(CLOCK_MONOTONIC); if (t >= last_refresh + arg_delay || immediate_refresh) { r = refresh(root, a, b, iteration++); if (r < 0) { log_error_errno(r, "Failed to refresh: %m"); goto finish; } group_hashmap_clear(b); c = a; a = b; b = c; last_refresh = t; immediate_refresh = false; } display(b); if (arg_iterations && iteration >= arg_iterations) break; if (!on_tty()) /* non-TTY: Empty newline as delimiter between polls */ fputs("\n", stdout); fflush(stdout); if (arg_batch) (void) usleep(last_refresh + arg_delay - t); else { r = read_one_char(stdin, &key, last_refresh + arg_delay - t, NULL); if (r == -ETIMEDOUT) continue; if (r < 0) { log_error_errno(r, "Couldn't read key: %m"); goto finish; } } if (on_tty()) { /* TTY: Clear any user keystroke */ fputs("\r \r", stdout); fflush(stdout); } if (arg_batch) continue; switch (key) { case ' ': immediate_refresh = true; break; case 'q': quit = true; break; case 'p': arg_order = ORDER_PATH; break; case 't': arg_order = ORDER_TASKS; break; case 'c': arg_order = ORDER_CPU; break; case 'm': arg_order = ORDER_MEMORY; break; case 'i': arg_order = ORDER_IO; break; case '%': arg_cpu_type = arg_cpu_type == CPU_TIME ? CPU_PERCENT : CPU_TIME; break; case 'k': arg_count = arg_count != COUNT_ALL_PROCESSES ? COUNT_ALL_PROCESSES : COUNT_PIDS; fprintf(stdout, "\nCounting: %s.", counting_what()); fflush(stdout); sleep(1); break; case 'P': arg_count = arg_count != COUNT_USERSPACE_PROCESSES ? COUNT_USERSPACE_PROCESSES : COUNT_PIDS; fprintf(stdout, "\nCounting: %s.", counting_what()); fflush(stdout); sleep(1); break; case 'r': if (arg_count == COUNT_PIDS) fprintf(stdout, "\n\aCannot toggle recursive counting, not available in task counting mode."); else { arg_recursive = !arg_recursive; fprintf(stdout, "\nRecursive process counting: %s", yes_no(arg_recursive)); } fflush(stdout); sleep(1); break; case '+': if (arg_delay < USEC_PER_SEC) arg_delay += USEC_PER_MSEC*250; else arg_delay += USEC_PER_SEC; fprintf(stdout, "\nIncreased delay to %s.", format_timespan(h, sizeof(h), arg_delay, 0)); fflush(stdout); sleep(1); break; case '-': if (arg_delay <= USEC_PER_MSEC*500) arg_delay = USEC_PER_MSEC*250; else if (arg_delay < USEC_PER_MSEC*1250) arg_delay -= USEC_PER_MSEC*250; else arg_delay -= USEC_PER_SEC; fprintf(stdout, "\nDecreased delay to %s.", format_timespan(h, sizeof(h), arg_delay, 0)); fflush(stdout); sleep(1); break; case '?': case 'h': #define ON ANSI_HIGHLIGHT #define OFF ANSI_NORMAL fprintf(stdout, "\t<" ON "p" OFF "> By path; <" ON "t" OFF "> By tasks/procs; <" ON "c" OFF "> By CPU; <" ON "m" OFF "> By memory; <" ON "i" OFF "> By I/O\n" "\t<" ON "+" OFF "> Inc. delay; <" ON "-" OFF "> Dec. delay; <" ON "%%" OFF "> Toggle time; <" ON "SPACE" OFF "> Refresh\n" "\t<" ON "P" OFF "> Toggle count userspace processes; <" ON "k" OFF "> Toggle count all processes\n" "\t<" ON "r" OFF "> Count processes recursively; <" ON "q" OFF "> Quit"); fflush(stdout); sleep(3); break; default: if (key < ' ') fprintf(stdout, "\nUnknown key '\\x%x'. Ignoring.", key); else fprintf(stdout, "\nUnknown key '%c'. Ignoring.", key); fflush(stdout); sleep(1); break; } } r = 0; finish: group_hashmap_free(a); group_hashmap_free(b); return r < 0 ? EXIT_FAILURE : EXIT_SUCCESS; }