/*-*- Mode: C; c-basic-offset: 8 -*-*/ #include #include #include #include #include #include #include "set.h" #include "name.h" #include "macro.h" #include "strv.h" #include "load-fragment.h" #include "load-dropin.h" #include "log.h" const NameVTable * const name_vtable[_NAME_TYPE_MAX] = { [NAME_SERVICE] = &service_vtable, [NAME_TIMER] = &timer_vtable, [NAME_SOCKET] = &socket_vtable, [NAME_TARGET] = &target_vtable, [NAME_DEVICE] = &device_vtable, [NAME_MOUNT] = &mount_vtable, [NAME_AUTOMOUNT] = &automount_vtable, [NAME_SNAPSHOT] = &snapshot_vtable }; NameType name_type_from_string(const char *n) { NameType t; assert(n); for (t = 0; t < _NAME_TYPE_MAX; t++) if (endswith(n, name_vtable[t]->suffix)) return t; return _NAME_TYPE_INVALID; } #define VALID_CHARS \ "0123456789" \ "abcdefghijklmnopqrstuvwxyz" \ "ABCDEFGHIJKLMNOPQRSTUVWXYZ" \ "-_" bool name_is_valid(const char *n) { NameType t; const char *e, *i; assert(n); if (strlen(n) >= NAME_MAX) return false; t = name_type_from_string(n); if (t < 0 || t >= _NAME_TYPE_MAX) return false; if (!(e = strrchr(n, '.'))) return false; for (i = n; i < e; i++) if (!strchr(VALID_CHARS, *i)) return false; return true; } Name *name_new(Manager *m) { Name *n; assert(m); if (!(n = new0(Name, 1))) return NULL; if (!(n->meta.names = set_new(string_hash_func, string_compare_func))) { free(n); return NULL; } n->meta.manager = m; n->meta.type = _NAME_TYPE_INVALID; /* We don't link the name here, that is left for name_link() */ return n; } int name_add_name(Name *n, const char *text) { NameType t; char *s; int r; assert(n); assert(text); if ((t = name_type_from_string(text)) == _NAME_TYPE_INVALID) return -EINVAL; if (n->meta.type != _NAME_TYPE_INVALID && t != n->meta.type) return -EINVAL; if (!(s = strdup(text))) return -ENOMEM; if ((r = set_put(n->meta.names, s)) < 0) { free(s); return r; } n->meta.type = t; if (!n->meta.id) n->meta.id = s; return 0; } /* FIXME: Does not rollback on failure! */ int name_link_names(Name *n, bool replace) { char *t; Iterator i; int r; assert(n); if (!n->meta.linked) return 0; /* Link all names that aren't linked yet. */ SET_FOREACH(t, n->meta.names, i) if (replace) { if ((r = hashmap_replace(n->meta.manager->names, t, n)) < 0) return r; } else { if ((r = hashmap_put(n->meta.manager->names, t, n)) < 0) return r; } return 0; } int name_link(Name *n) { int r; assert(n); assert(!set_isempty(n->meta.names)); assert(!n->meta.linked); if ((r = name_sanitize(n)) < 0) return r; n->meta.linked = true; if ((r = name_link_names(n, false)) < 0) { char *t; Iterator i; /* Rollback the registered names */ SET_FOREACH(t, n->meta.names, i) hashmap_remove_value(n->meta.manager->names, t, n); n->meta.linked = false; return r; } if (n->meta.load_state == NAME_STUB) { LIST_PREPEND(Meta, load_queue, n->meta.manager->load_queue, &n->meta); n->meta.in_load_queue = true; } return 0; } static void bidi_set_free(Name *name, Set *s) { Iterator i; Name *other; assert(name); /* Frees the set and makes sure we are dropped from the * inverse pointers */ if (name->meta.linked) { SET_FOREACH(other, s, i) { NameDependency d; for (d = 0; d < _NAME_DEPENDENCY_MAX; d++) set_remove(other->meta.dependencies[d], name); } } set_free(s); } void name_free(Name *name) { NameDependency d; char *t; assert(name); /* Detach from next 'bigger' objects */ if (name->meta.linked) { char *t; Iterator i; SET_FOREACH(t, name->meta.names, i) hashmap_remove_value(name->meta.manager->names, t, name); if (name->meta.in_load_queue) LIST_REMOVE(Meta, load_queue, name->meta.manager->load_queue, &name->meta); } if (name->meta.load_state == NAME_LOADED) if (NAME_VTABLE(name)->done) NAME_VTABLE(name)->done(name); /* Free data and next 'smaller' objects */ if (name->meta.job) job_free(name->meta.job); for (d = 0; d < _NAME_DEPENDENCY_MAX; d++) bidi_set_free(name, name->meta.dependencies[d]); free(name->meta.description); while ((t = set_steal_first(name->meta.names))) free(t); set_free(name->meta.names); free(name); } NameActiveState name_active_state(Name *name) { assert(name); if (name->meta.load_state != NAME_LOADED) return NAME_INACTIVE; return NAME_VTABLE(name)->active_state(name); } static int ensure_merge(Set **s, Set *other) { if (!other) return 0; if (*s) return set_merge(*s, other); if (!(*s = set_copy(other))) return -ENOMEM; return 0; } /* FIXME: Does not rollback on failure! */ int name_merge(Name *name, Name *other) { int r; NameDependency d; assert(name); assert(other); assert(name->meta.manager == other->meta.manager); /* This merges 'other' into 'name'. FIXME: This does not * rollback on failure. */ if (name->meta.type != other->meta.type) return -EINVAL; if (other->meta.load_state != NAME_STUB) return -EINVAL; /* Merge names */ if ((r = ensure_merge(&name->meta.names, other->meta.names)) < 0) return r; /* Merge dependencies */ for (d = 0; d < _NAME_DEPENDENCY_MAX; d++) /* fixme, the inverse mapping is missing */ if ((r = ensure_merge(&name->meta.dependencies[d], other->meta.dependencies[d])) < 0) return r; /* Hookup new deps and names */ if (name->meta.linked) { if ((r = name_sanitize(name)) < 0) return r; if ((r = name_link_names(name, true)) < 0) return r; } return 0; } int name_sanitize(Name *n) { NameDependency d; assert(n); /* Remove loops */ for (d = 0; d < _NAME_DEPENDENCY_MAX; d++) set_remove(n->meta.dependencies[d], n); return 0; } const char* name_id(Name *n) { assert(n); if (n->meta.id) return n->meta.id; return set_first(n->meta.names); } const char *name_description(Name *n) { assert(n); if (n->meta.description) return n->meta.description; return name_id(n); } void name_dump(Name *n, FILE *f, const char *prefix) { static const char* const load_state_table[_NAME_LOAD_STATE_MAX] = { [NAME_STUB] = "stub", [NAME_LOADED] = "loaded", [NAME_FAILED] = "failed" }; static const char* const active_state_table[_NAME_ACTIVE_STATE_MAX] = { [NAME_ACTIVE] = "active", [NAME_INACTIVE] = "inactive", [NAME_ACTIVATING] = "activating", [NAME_DEACTIVATING] = "deactivating" }; static const char* const dependency_table[_NAME_DEPENDENCY_MAX] = { [NAME_REQUIRES] = "Requires", [NAME_SOFT_REQUIRES] = "SoftRequires", [NAME_WANTS] = "Wants", [NAME_REQUISITE] = "Requisite", [NAME_SOFT_REQUISITE] = "SoftRequisite", [NAME_REQUIRED_BY] = "RequiredBy", [NAME_SOFT_REQUIRED_BY] = "SoftRequiredBy", [NAME_WANTED_BY] = "WantedBy", [NAME_CONFLICTS] = "Conflicts", [NAME_BEFORE] = "Before", [NAME_AFTER] = "After", }; char *t; NameDependency d; Iterator i; char *prefix2; assert(n); if (!prefix) prefix = ""; prefix2 = strappend(prefix, "\t"); if (!prefix2) prefix2 = ""; fprintf(f, "%s→ Name %s:\n" "%s\tDescription: %s\n" "%s\tName Load State: %s\n" "%s\tName Active State: %s\n", prefix, name_id(n), prefix, name_description(n), prefix, load_state_table[n->meta.load_state], prefix, active_state_table[name_active_state(n)]); SET_FOREACH(t, n->meta.names, i) fprintf(f, "%s\tName: %s\n", prefix, t); for (d = 0; d < _NAME_DEPENDENCY_MAX; d++) { Name *other; if (set_isempty(n->meta.dependencies[d])) continue; SET_FOREACH(other, n->meta.dependencies[d], i) fprintf(f, "%s\t%s: %s\n", prefix, dependency_table[d], name_id(other)); } if (NAME_VTABLE(n)->dump) NAME_VTABLE(n)->dump(n, f, prefix2); if (n->meta.job) job_dump(n->meta.job, f, prefix2); free(prefix2); } static int verify_type(Name *name) { char *n; Iterator i; assert(name); /* Checks that all aliases of this name have the same and valid type */ SET_FOREACH(n, name->meta.names, i) { NameType t; if ((t = name_type_from_string(n)) == _NAME_TYPE_INVALID) return -EINVAL; if (name->meta.type == _NAME_TYPE_INVALID) { name->meta.type = t; continue; } if (name->meta.type != t) return -EINVAL; } if (name->meta.type == _NAME_TYPE_INVALID) return -EINVAL; return 0; } /* Common implementation for multiple backends */ int name_load_fragment_and_dropin(Name *n) { int r; assert(n); /* Load a .socket file */ if ((r = name_load_fragment(n)) < 0) return r; /* Load drop-in directory data */ if ((r = name_load_dropin(n)) < 0) return r; return 0; } int name_load(Name *name) { int r; assert(name); if (name->meta.in_load_queue) { LIST_REMOVE(Meta, load_queue, name->meta.manager->load_queue, &name->meta); name->meta.in_load_queue = false; } if (name->meta.load_state != NAME_STUB) return 0; if ((r = verify_type(name)) < 0) return r; if (NAME_VTABLE(name)->init) if ((r = NAME_VTABLE(name)->init(name)) < 0) goto fail; if ((r = name_sanitize(name)) < 0) goto fail_undo_init; if ((r = name_link_names(name, false)) < 0) goto fail_undo_init; name->meta.load_state = NAME_LOADED; return 0; fail_undo_init: if (NAME_VTABLE(name)->done) NAME_VTABLE(name)->done(name); fail: name->meta.load_state = NAME_FAILED; return r; } /* Errors: * -EBADR: This name type does not support starting. * -EALREADY: Name is already started. * -EAGAIN: An operation is already in progress. Retry later. */ int name_start(Name *n) { NameActiveState state; assert(n); if (!NAME_VTABLE(n)->start) return -EBADR; state = name_active_state(n); if (NAME_IS_ACTIVE_OR_RELOADING(state)) return -EALREADY; /* We don't suppress calls to ->start() here when we are * already starting, to allow this request to be used as a * "hurry up" call, for example when the name is in some "auto * restart" state where it waits for a holdoff timer to elapse * before it will start again. */ return NAME_VTABLE(n)->start(n); } bool name_type_can_start(NameType t) { assert(t >= 0 && t < _NAME_TYPE_MAX); return !!name_vtable[t]->start; } /* Errors: * -EBADR: This name type does not support stopping. * -EALREADY: Name is already stopped. * -EAGAIN: An operation is already in progress. Retry later. */ int name_stop(Name *n) { NameActiveState state; assert(n); if (!NAME_VTABLE(n)->stop) return -EBADR; state = name_active_state(n); if (state == NAME_INACTIVE) return -EALREADY; if (state == NAME_DEACTIVATING) return 0; return NAME_VTABLE(n)->stop(n); } /* Errors: * -EBADR: This name type does not support reloading. * -ENOEXEC: Name is not started. * -EAGAIN: An operation is already in progress. Retry later. */ int name_reload(Name *n) { NameActiveState state; assert(n); if (!name_can_reload(n)) return -EBADR; state = name_active_state(n); if (name_active_state(n) == NAME_ACTIVE_RELOADING) return -EALREADY; if (name_active_state(n) != NAME_ACTIVE) return -ENOEXEC; return NAME_VTABLE(n)->reload(n); } bool name_type_can_reload(NameType t) { assert(t >= 0 && t < _NAME_TYPE_MAX); return !!name_vtable[t]->reload; } bool name_can_reload(Name *n) { assert(n); if (!name_type_can_reload(n->meta.type)) return false; if (!NAME_VTABLE(n)->can_reload) return true; return NAME_VTABLE(n)->can_reload(n); } static void retroactively_start_dependencies(Name *n) { Iterator i; Name *other; assert(n); assert(NAME_IS_ACTIVE_OR_ACTIVATING(name_active_state(n))); SET_FOREACH(other, n->meta.dependencies[NAME_REQUIRES], i) if (!NAME_IS_ACTIVE_OR_ACTIVATING(name_active_state(other))) manager_add_job(n->meta.manager, JOB_START, other, JOB_REPLACE, true, NULL); SET_FOREACH(other, n->meta.dependencies[NAME_SOFT_REQUIRES], i) if (!NAME_IS_ACTIVE_OR_ACTIVATING(name_active_state(other))) manager_add_job(n->meta.manager, JOB_START, other, JOB_FAIL, false, NULL); SET_FOREACH(other, n->meta.dependencies[NAME_REQUISITE], i) if (!NAME_IS_ACTIVE_OR_ACTIVATING(name_active_state(other))) manager_add_job(n->meta.manager, JOB_START, other, JOB_REPLACE, true, NULL); SET_FOREACH(other, n->meta.dependencies[NAME_WANTS], i) if (!NAME_IS_ACTIVE_OR_ACTIVATING(name_active_state(other))) manager_add_job(n->meta.manager, JOB_START, other, JOB_FAIL, false, NULL); SET_FOREACH(other, n->meta.dependencies[NAME_CONFLICTS], i) if (!NAME_IS_ACTIVE_OR_ACTIVATING(name_active_state(other))) manager_add_job(n->meta.manager, JOB_STOP, other, JOB_REPLACE, true, NULL); } static void retroactively_stop_dependencies(Name *n) { Iterator i; Name *other; assert(n); assert(NAME_IS_INACTIVE_OR_DEACTIVATING(name_active_state(n))); SET_FOREACH(other, n->meta.dependencies[NAME_REQUIRED_BY], i) if (!NAME_IS_INACTIVE_OR_DEACTIVATING(name_active_state(other))) manager_add_job(n->meta.manager, JOB_STOP, other, JOB_REPLACE, true, NULL); } void name_notify(Name *n, NameActiveState os, NameActiveState ns) { assert(n); assert(os < _NAME_ACTIVE_STATE_MAX); assert(ns < _NAME_ACTIVE_STATE_MAX); assert(!(os == NAME_ACTIVE && ns == NAME_ACTIVATING)); assert(!(os == NAME_INACTIVE && ns == NAME_DEACTIVATING)); if (os == ns) return; if (!NAME_IS_ACTIVE_OR_RELOADING(os) && NAME_IS_ACTIVE_OR_RELOADING(ns)) n->meta.active_enter_timestamp = now(CLOCK_REALTIME); else if (NAME_IS_ACTIVE_OR_RELOADING(os) && !NAME_IS_ACTIVE_OR_RELOADING(ns)) n->meta.active_exit_timestamp = now(CLOCK_REALTIME); if (n->meta.job) { if (n->meta.job->state == JOB_WAITING) /* So we reached a different state for this * job. Let's see if we can run it now if it * failed previously due to EAGAIN. */ job_schedule_run(n->meta.job); else { assert(n->meta.job->state == JOB_RUNNING); /* Let's check of this state change * constitutes a finished job, or maybe * cotradicts a running job and hence needs to * invalidate jobs. */ switch (n->meta.job->type) { case JOB_START: case JOB_VERIFY_ACTIVE: if (NAME_IS_ACTIVE_OR_RELOADING(ns)) { job_finish_and_invalidate(n->meta.job, true); return; } else if (ns == NAME_ACTIVATING) return; else job_finish_and_invalidate(n->meta.job, false); break; case JOB_RELOAD: case JOB_RELOAD_OR_START: if (ns == NAME_ACTIVE) { job_finish_and_invalidate(n->meta.job, true); return; } else if (ns == NAME_ACTIVATING || ns == NAME_ACTIVE_RELOADING) return; else job_finish_and_invalidate(n->meta.job, false); break; case JOB_STOP: case JOB_RESTART: case JOB_TRY_RESTART: if (ns == NAME_INACTIVE) { job_finish_and_invalidate(n->meta.job, true); return; } else if (ns == NAME_DEACTIVATING) return; else job_finish_and_invalidate(n->meta.job, false); break; default: assert_not_reached("Job type unknown"); } } } /* If this state change happened without being requested by a * job, then let's retroactively start or stop dependencies */ if (NAME_IS_INACTIVE_OR_DEACTIVATING(os) && NAME_IS_ACTIVE_OR_ACTIVATING(ns)) retroactively_start_dependencies(n); else if (NAME_IS_ACTIVE_OR_ACTIVATING(os) && NAME_IS_INACTIVE_OR_DEACTIVATING(ns)) retroactively_stop_dependencies(n); } int name_watch_fd(Name *n, int fd, uint32_t events) { struct epoll_event ev; assert(n); assert(fd >= 0); zero(ev); ev.data.fd = fd; ev.data.ptr = n; ev.data.u32 = MANAGER_FD; ev.events = events; if (epoll_ctl(n->meta.manager->epoll_fd, EPOLL_CTL_ADD, fd, &ev) >= 0) return 0; if (errno == EEXIST) if (epoll_ctl(n->meta.manager->epoll_fd, EPOLL_CTL_MOD, fd, &ev) >= 0) return 0; return -errno; } void name_unwatch_fd(Name *n, int fd) { assert(n); assert(fd >= 0); assert_se(epoll_ctl(n->meta.manager->epoll_fd, EPOLL_CTL_DEL, fd, NULL) >= 0 || errno == ENOENT); } int name_watch_pid(Name *n, pid_t pid) { assert(n); assert(pid >= 1); return hashmap_put(n->meta.manager->watch_pids, UINT32_TO_PTR(pid), n); } void name_unwatch_pid(Name *n, pid_t pid) { assert(n); assert(pid >= 1); hashmap_remove(n->meta.manager->watch_pids, UINT32_TO_PTR(pid)); } int name_watch_timer(Name *n, usec_t delay, int *id) { struct epoll_event ev; int fd; struct itimerspec its; int flags; bool ours; assert(n); assert(id); /* This will try to reuse the old timer if there is one */ if (*id >= 0) { ours = false; fd = *id; } else { ours = true; if ((fd = timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK|TFD_CLOEXEC)) < 0) return -errno; } zero(its); if (delay <= 0) { /* Set absolute time in the past, but not 0, since we * don't want to disarm the timer */ its.it_value.tv_sec = 0; its.it_value.tv_nsec = 1; flags = TFD_TIMER_ABSTIME; } else { timespec_store(&its.it_value, delay); flags = 0; } /* This will also flush the elapse counter */ if (timerfd_settime(fd, flags, &its, NULL) < 0) goto fail; zero(ev); ev.data.fd = fd; ev.data.ptr = n; ev.data.u32 = MANAGER_TIMER; ev.events = POLLIN; if (epoll_ctl(n->meta.manager->epoll_fd, EPOLL_CTL_ADD, fd, &ev) < 0) goto fail; *id = fd; return 0; fail: if (ours) assert_se(close_nointr(fd) == 0); return -errno; } void name_unwatch_timer(Name *n, int *id) { assert(n); assert(id); if (*id >= 0) { assert_se(epoll_ctl(n->meta.manager->epoll_fd, EPOLL_CTL_DEL, *id, NULL) >= 0); assert_se(close_nointr(*id) == 0); *id = -1; } } char *name_change_suffix(const char *t, const char *suffix) { char *e, *n; size_t a, b; assert(t); assert(name_is_valid(t)); assert(suffix); assert_se(e = strrchr(t, '.')); a = e - t; b = strlen(suffix); if (!(n = new(char, a + b + 1))) return NULL; memcpy(n, t, a); memcpy(n+a, suffix, b+1); return n; } bool name_job_is_applicable(Name *n, JobType j) { assert(n); assert(j >= 0 && j < _JOB_TYPE_MAX); switch (j) { case JOB_VERIFY_ACTIVE: case JOB_START: return true; case JOB_STOP: case JOB_RESTART: case JOB_TRY_RESTART: return name_can_start(n); case JOB_RELOAD: return name_can_reload(n); case JOB_RELOAD_OR_START: return name_can_reload(n) && name_can_start(n); default: assert_not_reached("Invalid job type"); } } int name_add_dependency(Name *n, NameDependency d, Name *other) { static const NameDependency inverse_table[_NAME_DEPENDENCY_MAX] = { [NAME_REQUIRES] = NAME_REQUIRED_BY, [NAME_SOFT_REQUIRES] = NAME_SOFT_REQUIRED_BY, [NAME_WANTS] = NAME_WANTED_BY, [NAME_REQUISITE] = NAME_REQUIRED_BY, [NAME_SOFT_REQUISITE] = NAME_SOFT_REQUIRED_BY, [NAME_REQUIRED_BY] = _NAME_DEPENDENCY_INVALID, [NAME_SOFT_REQUIRED_BY] = _NAME_DEPENDENCY_INVALID, [NAME_WANTED_BY] = _NAME_DEPENDENCY_INVALID, [NAME_CONFLICTS] = NAME_CONFLICTS, [NAME_BEFORE] = NAME_AFTER, [NAME_AFTER] = NAME_BEFORE }; int r; assert(n); assert(d >= 0 && d < _NAME_DEPENDENCY_MAX); assert(inverse_table[d] != _NAME_DEPENDENCY_INVALID); assert(other); if ((r = set_ensure_allocated(&n->meta.dependencies[d], trivial_hash_func, trivial_compare_func)) < 0) return r; if ((r = set_ensure_allocated(&other->meta.dependencies[inverse_table[d]], trivial_hash_func, trivial_compare_func)) < 0) return r; if ((r = set_put(n->meta.dependencies[d], other)) < 0) return r; if ((r = set_put(other->meta.dependencies[inverse_table[d]], n)) < 0) { set_remove(n->meta.dependencies[d], other); return r; } return 0; }