/* SPDX-License-Identifier: LGPL-2.1+ */ #if HAVE_SELINUX #include #endif #include #include #include #include #include #include "sd-daemon.h" #include "sd-journal.h" #include "sd-messages.h" #include "acl-util.h" #include "alloc-util.h" #include "audit-util.h" #include "cgroup-util.h" #include "conf-parser.h" #include "dirent-util.h" #include "extract-word.h" #include "fd-util.h" #include "fileio.h" #include "format-util.h" #include "fs-util.h" #include "hashmap.h" #include "hostname-util.h" #include "id128-util.h" #include "io-util.h" #include "journal-authenticate.h" #include "journal-file.h" #include "journal-internal.h" #include "journal-vacuum.h" #include "journald-audit.h" #include "journald-context.h" #include "journald-kmsg.h" #include "journald-native.h" #include "journald-rate-limit.h" #include "journald-server.h" #include "journald-stream.h" #include "journald-syslog.h" #include "log.h" #include "missing_audit.h" #include "mkdir.h" #include "parse-util.h" #include "path-util.h" #include "proc-cmdline.h" #include "process-util.h" #include "rm-rf.h" #include "selinux-util.h" #include "signal-util.h" #include "socket-util.h" #include "stdio-util.h" #include "string-table.h" #include "string-util.h" #include "syslog-util.h" #include "user-util.h" #define USER_JOURNALS_MAX 1024 #define DEFAULT_SYNC_INTERVAL_USEC (5*USEC_PER_MINUTE) #define DEFAULT_RATE_LIMIT_INTERVAL (30*USEC_PER_SEC) #define DEFAULT_RATE_LIMIT_BURST 10000 #define DEFAULT_MAX_FILE_USEC USEC_PER_MONTH #define RECHECK_SPACE_USEC (30*USEC_PER_SEC) #define NOTIFY_SNDBUF_SIZE (8*1024*1024) /* The period to insert between posting changes for coalescing */ #define POST_CHANGE_TIMER_INTERVAL_USEC (250*USEC_PER_MSEC) /* Pick a good default that is likely to fit into AF_UNIX and AF_INET SOCK_DGRAM datagrams, and even leaves some room * for a bit of additional metadata. */ #define DEFAULT_LINE_MAX (48*1024) #define DEFERRED_CLOSES_MAX (4096) #define IDLE_TIMEOUT_USEC (30*USEC_PER_SEC) static int determine_path_usage( Server *s, const char *path, uint64_t *ret_used, uint64_t *ret_free) { _cleanup_closedir_ DIR *d = NULL; struct dirent *de; struct statvfs ss; assert(s); assert(path); assert(ret_used); assert(ret_free); d = opendir(path); if (!d) return log_full_errno(errno == ENOENT ? LOG_DEBUG : LOG_ERR, errno, "Failed to open %s: %m", path); if (fstatvfs(dirfd(d), &ss) < 0) return log_error_errno(errno, "Failed to fstatvfs(%s): %m", path); *ret_free = ss.f_bsize * ss.f_bavail; *ret_used = 0; FOREACH_DIRENT_ALL(de, d, break) { struct stat st; if (!endswith(de->d_name, ".journal") && !endswith(de->d_name, ".journal~")) continue; if (fstatat(dirfd(d), de->d_name, &st, AT_SYMLINK_NOFOLLOW) < 0) { log_debug_errno(errno, "Failed to stat %s/%s, ignoring: %m", path, de->d_name); continue; } if (!S_ISREG(st.st_mode)) continue; *ret_used += (uint64_t) st.st_blocks * 512UL; } return 0; } static void cache_space_invalidate(JournalStorageSpace *space) { zero(*space); } static int cache_space_refresh(Server *s, JournalStorage *storage) { JournalStorageSpace *space; JournalMetrics *metrics; uint64_t vfs_used, vfs_avail, avail; usec_t ts; int r; assert(s); metrics = &storage->metrics; space = &storage->space; ts = now(CLOCK_MONOTONIC); if (space->timestamp != 0 && space->timestamp + RECHECK_SPACE_USEC > ts) return 0; r = determine_path_usage(s, storage->path, &vfs_used, &vfs_avail); if (r < 0) return r; space->vfs_used = vfs_used; space->vfs_available = vfs_avail; avail = LESS_BY(vfs_avail, metrics->keep_free); space->limit = MIN(MAX(vfs_used + avail, metrics->min_use), metrics->max_use); space->available = LESS_BY(space->limit, vfs_used); space->timestamp = ts; return 1; } static void patch_min_use(JournalStorage *storage) { assert(storage); /* Let's bump the min_use limit to the current usage on disk. We do * this when starting up and first opening the journal files. This way * sudden spikes in disk usage will not cause journald to vacuum files * without bounds. Note that this means that only a restart of journald * will make it reset this value. */ storage->metrics.min_use = MAX(storage->metrics.min_use, storage->space.vfs_used); } static JournalStorage* server_current_storage(Server *s) { assert(s); return s->system_journal ? &s->system_storage : &s->runtime_storage; } static int determine_space(Server *s, uint64_t *available, uint64_t *limit) { JournalStorage *js; int r; assert(s); js = server_current_storage(s); r = cache_space_refresh(s, js); if (r >= 0) { if (available) *available = js->space.available; if (limit) *limit = js->space.limit; } return r; } void server_space_usage_message(Server *s, JournalStorage *storage) { char fb1[FORMAT_BYTES_MAX], fb2[FORMAT_BYTES_MAX], fb3[FORMAT_BYTES_MAX], fb4[FORMAT_BYTES_MAX], fb5[FORMAT_BYTES_MAX], fb6[FORMAT_BYTES_MAX]; JournalMetrics *metrics; assert(s); if (!storage) storage = server_current_storage(s); if (cache_space_refresh(s, storage) < 0) return; metrics = &storage->metrics; format_bytes(fb1, sizeof(fb1), storage->space.vfs_used); format_bytes(fb2, sizeof(fb2), metrics->max_use); format_bytes(fb3, sizeof(fb3), metrics->keep_free); format_bytes(fb4, sizeof(fb4), storage->space.vfs_available); format_bytes(fb5, sizeof(fb5), storage->space.limit); format_bytes(fb6, sizeof(fb6), storage->space.available); server_driver_message(s, 0, "MESSAGE_ID=" SD_MESSAGE_JOURNAL_USAGE_STR, LOG_MESSAGE("%s (%s) is %s, max %s, %s free.", storage->name, storage->path, fb1, fb5, fb6), "JOURNAL_NAME=%s", storage->name, "JOURNAL_PATH=%s", storage->path, "CURRENT_USE=%"PRIu64, storage->space.vfs_used, "CURRENT_USE_PRETTY=%s", fb1, "MAX_USE=%"PRIu64, metrics->max_use, "MAX_USE_PRETTY=%s", fb2, "DISK_KEEP_FREE=%"PRIu64, metrics->keep_free, "DISK_KEEP_FREE_PRETTY=%s", fb3, "DISK_AVAILABLE=%"PRIu64, storage->space.vfs_available, "DISK_AVAILABLE_PRETTY=%s", fb4, "LIMIT=%"PRIu64, storage->space.limit, "LIMIT_PRETTY=%s", fb5, "AVAILABLE=%"PRIu64, storage->space.available, "AVAILABLE_PRETTY=%s", fb6, NULL); } static bool uid_for_system_journal(uid_t uid) { /* Returns true if the specified UID shall get its data stored in the system journal*/ return uid_is_system(uid) || uid_is_dynamic(uid) || uid == UID_NOBODY; } static void server_add_acls(JournalFile *f, uid_t uid) { #if HAVE_ACL int r; #endif assert(f); #if HAVE_ACL if (uid_for_system_journal(uid)) return; r = add_acls_for_user(f->fd, uid); if (r < 0) log_warning_errno(r, "Failed to set ACL on %s, ignoring: %m", f->path); #endif } static int open_journal( Server *s, bool reliably, const char *fname, int flags, bool seal, JournalMetrics *metrics, JournalFile **ret) { _cleanup_(journal_file_closep) JournalFile *f = NULL; int r; assert(s); assert(fname); assert(ret); if (reliably) r = journal_file_open_reliably(fname, flags, 0640, s->compress.enabled, s->compress.threshold_bytes, seal, metrics, s->mmap, s->deferred_closes, NULL, &f); else r = journal_file_open(-1, fname, flags, 0640, s->compress.enabled, s->compress.threshold_bytes, seal, metrics, s->mmap, s->deferred_closes, NULL, &f); if (r < 0) return r; r = journal_file_enable_post_change_timer(f, s->event, POST_CHANGE_TIMER_INTERVAL_USEC); if (r < 0) return r; *ret = TAKE_PTR(f); return r; } static bool flushed_flag_is_set(Server *s) { const char *fn; assert(s); /* We don't support the "flushing" concept for namespace instances, we assume them to always have * access to /var */ if (s->namespace) return true; fn = strjoina(s->runtime_directory, "/flushed"); return access(fn, F_OK) >= 0; } static int system_journal_open(Server *s, bool flush_requested, bool relinquish_requested) { const char *fn; int r = 0; if (!s->system_journal && IN_SET(s->storage, STORAGE_PERSISTENT, STORAGE_AUTO) && (flush_requested || flushed_flag_is_set(s)) && !relinquish_requested) { /* If in auto mode: first try to create the machine path, but not the prefix. * * If in persistent mode: create /var/log/journal and the machine path */ if (s->storage == STORAGE_PERSISTENT) (void) mkdir_parents(s->system_storage.path, 0755); (void) mkdir(s->system_storage.path, 0755); fn = strjoina(s->system_storage.path, "/system.journal"); r = open_journal(s, true, fn, O_RDWR|O_CREAT, s->seal, &s->system_storage.metrics, &s->system_journal); if (r >= 0) { server_add_acls(s->system_journal, 0); (void) cache_space_refresh(s, &s->system_storage); patch_min_use(&s->system_storage); } else { if (!IN_SET(r, -ENOENT, -EROFS)) log_warning_errno(r, "Failed to open system journal: %m"); r = 0; } /* If the runtime journal is open, and we're post-flush, we're recovering from a failed * system journal rotate (ENOSPC) for which the runtime journal was reopened. * * Perform an implicit flush to var, leaving the runtime journal closed, now that the system * journal is back. */ if (!flush_requested) (void) server_flush_to_var(s, true); } if (!s->runtime_journal && (s->storage != STORAGE_NONE)) { fn = strjoina(s->runtime_storage.path, "/system.journal"); if (s->system_journal && !relinquish_requested) { /* Try to open the runtime journal, but only * if it already exists, so that we can flush * it into the system journal */ r = open_journal(s, false, fn, O_RDWR, false, &s->runtime_storage.metrics, &s->runtime_journal); if (r < 0) { if (r != -ENOENT) log_warning_errno(r, "Failed to open runtime journal: %m"); r = 0; } } else { /* OK, we really need the runtime journal, so create it if necessary. */ (void) mkdir_parents(s->runtime_storage.path, 0755); (void) mkdir(s->runtime_storage.path, 0750); r = open_journal(s, true, fn, O_RDWR|O_CREAT, false, &s->runtime_storage.metrics, &s->runtime_journal); if (r < 0) return log_error_errno(r, "Failed to open runtime journal: %m"); } if (s->runtime_journal) { server_add_acls(s->runtime_journal, 0); (void) cache_space_refresh(s, &s->runtime_storage); patch_min_use(&s->runtime_storage); } } return r; } static JournalFile* find_journal(Server *s, uid_t uid) { _cleanup_free_ char *p = NULL; JournalFile *f; int r; assert(s); /* A rotate that fails to create the new journal (ENOSPC) leaves the rotated journal as NULL. Unless * we revisit opening, even after space is made available we'll continue to return NULL indefinitely. * * system_journal_open() is a noop if the journals are already open, so we can just call it here to * recover from failed rotates (or anything else that's left the journals as NULL). * * Fixes https://github.com/systemd/systemd/issues/3968 */ (void) system_journal_open(s, false, false); /* We split up user logs only on /var, not on /run. If the runtime file is open, we write to it * exclusively, in order to guarantee proper order as soon as we flush /run to /var and close the * runtime file. */ if (s->runtime_journal) return s->runtime_journal; if (uid_for_system_journal(uid)) return s->system_journal; f = ordered_hashmap_get(s->user_journals, UID_TO_PTR(uid)); if (f) return f; if (asprintf(&p, "%s/user-" UID_FMT ".journal", s->system_storage.path, uid) < 0) { log_oom(); return s->system_journal; } /* Too many open? Then let's close one (or more) */ while (ordered_hashmap_size(s->user_journals) >= USER_JOURNALS_MAX) { assert_se(f = ordered_hashmap_steal_first(s->user_journals)); (void) journal_file_close(f); } r = open_journal(s, true, p, O_RDWR|O_CREAT, s->seal, &s->system_storage.metrics, &f); if (r < 0) return s->system_journal; r = ordered_hashmap_put(s->user_journals, UID_TO_PTR(uid), f); if (r < 0) { (void) journal_file_close(f); return s->system_journal; } server_add_acls(f, uid); return f; } static int do_rotate( Server *s, JournalFile **f, const char* name, bool seal, uint32_t uid) { int r; assert(s); if (!*f) return -EINVAL; r = journal_file_rotate(f, s->compress.enabled, s->compress.threshold_bytes, seal, s->deferred_closes); if (r < 0) { if (*f) return log_error_errno(r, "Failed to rotate %s: %m", (*f)->path); else return log_error_errno(r, "Failed to create new %s journal: %m", name); } server_add_acls(*f, uid); return r; } static void server_process_deferred_closes(Server *s) { JournalFile *f; Iterator i; /* Perform any deferred closes which aren't still offlining. */ SET_FOREACH(f, s->deferred_closes, i) { if (journal_file_is_offlining(f)) continue; (void) set_remove(s->deferred_closes, f); (void) journal_file_close(f); } } static void server_vacuum_deferred_closes(Server *s) { assert(s); /* Make some room in the deferred closes list, so that it doesn't grow without bounds */ if (set_size(s->deferred_closes) < DEFERRED_CLOSES_MAX) return; /* Let's first remove all journal files that might already have completed closing */ server_process_deferred_closes(s); /* And now, let's close some more until we reach the limit again. */ while (set_size(s->deferred_closes) >= DEFERRED_CLOSES_MAX) { JournalFile *f; assert_se(f = set_steal_first(s->deferred_closes)); journal_file_close(f); } } static int vacuum_offline_user_journals(Server *s) { _cleanup_closedir_ DIR *d = NULL; int r; assert(s); d = opendir(s->system_storage.path); if (!d) { if (errno == ENOENT) return 0; return log_error_errno(errno, "Failed to open %s: %m", s->system_storage.path); } for (;;) { _cleanup_free_ char *u = NULL, *full = NULL; _cleanup_close_ int fd = -1; const char *a, *b; struct dirent *de; JournalFile *f; uid_t uid; errno = 0; de = readdir_no_dot(d); if (!de) { if (errno != 0) log_warning_errno(errno, "Failed to enumerate %s, ignoring: %m", s->system_storage.path); break; } a = startswith(de->d_name, "user-"); if (!a) continue; b = endswith(de->d_name, ".journal"); if (!b) continue; u = strndup(a, b-a); if (!u) return log_oom(); r = parse_uid(u, &uid); if (r < 0) { log_debug_errno(r, "Failed to parse UID from file name '%s', ignoring: %m", de->d_name); continue; } /* Already rotated in the above loop? i.e. is it an open user journal? */ if (ordered_hashmap_contains(s->user_journals, UID_TO_PTR(uid))) continue; full = path_join(s->system_storage.path, de->d_name); if (!full) return log_oom(); fd = openat(dirfd(d), de->d_name, O_RDWR|O_CLOEXEC|O_NOCTTY|O_NOFOLLOW|O_NONBLOCK); if (fd < 0) { log_full_errno(IN_SET(errno, ELOOP, ENOENT) ? LOG_DEBUG : LOG_WARNING, errno, "Failed to open journal file '%s' for rotation: %m", full); continue; } /* Make some room in the set of deferred close()s */ server_vacuum_deferred_closes(s); /* Open the file briefly, so that we can archive it */ r = journal_file_open(fd, full, O_RDWR, 0640, s->compress.enabled, s->compress.threshold_bytes, s->seal, &s->system_storage.metrics, s->mmap, s->deferred_closes, NULL, &f); if (r < 0) { log_warning_errno(r, "Failed to read journal file %s for rotation, trying to move it out of the way: %m", full); r = journal_file_dispose(dirfd(d), de->d_name); if (r < 0) log_warning_errno(r, "Failed to move %s out of the way, ignoring: %m", full); else log_debug("Successfully moved %s out of the way.", full); continue; } TAKE_FD(fd); /* Donated to journal_file_open() */ r = journal_file_archive(f); if (r < 0) log_debug_errno(r, "Failed to archive journal file '%s', ignoring: %m", full); f = journal_initiate_close(f, s->deferred_closes); } return 0; } void server_rotate(Server *s) { JournalFile *f; Iterator i; void *k; int r; log_debug("Rotating..."); /* First, rotate the system journal (either in its runtime flavour or in its runtime flavour) */ (void) do_rotate(s, &s->runtime_journal, "runtime", false, 0); (void) do_rotate(s, &s->system_journal, "system", s->seal, 0); /* Then, rotate all user journals we have open (keeping them open) */ ORDERED_HASHMAP_FOREACH_KEY(f, k, s->user_journals, i) { r = do_rotate(s, &f, "user", s->seal, PTR_TO_UID(k)); if (r >= 0) ordered_hashmap_replace(s->user_journals, k, f); else if (!f) /* Old file has been closed and deallocated */ ordered_hashmap_remove(s->user_journals, k); } /* Finally, also rotate all user journals we currently do not have open. (But do so only if we * actually have access to /var, i.e. are not in the log-to-runtime-journal mode). */ if (!s->runtime_journal) (void) vacuum_offline_user_journals(s); server_process_deferred_closes(s); } void server_sync(Server *s) { JournalFile *f; Iterator i; int r; if (s->system_journal) { r = journal_file_set_offline(s->system_journal, false); if (r < 0) log_warning_errno(r, "Failed to sync system journal, ignoring: %m"); } ORDERED_HASHMAP_FOREACH(f, s->user_journals, i) { r = journal_file_set_offline(f, false); if (r < 0) log_warning_errno(r, "Failed to sync user journal, ignoring: %m"); } if (s->sync_event_source) { r = sd_event_source_set_enabled(s->sync_event_source, SD_EVENT_OFF); if (r < 0) log_error_errno(r, "Failed to disable sync timer source: %m"); } s->sync_scheduled = false; } static void do_vacuum(Server *s, JournalStorage *storage, bool verbose) { int r; assert(s); assert(storage); (void) cache_space_refresh(s, storage); if (verbose) server_space_usage_message(s, storage); r = journal_directory_vacuum(storage->path, storage->space.limit, storage->metrics.n_max_files, s->max_retention_usec, &s->oldest_file_usec, verbose); if (r < 0 && r != -ENOENT) log_warning_errno(r, "Failed to vacuum %s, ignoring: %m", storage->path); cache_space_invalidate(&storage->space); } int server_vacuum(Server *s, bool verbose) { assert(s); log_debug("Vacuuming..."); s->oldest_file_usec = 0; if (s->system_journal) do_vacuum(s, &s->system_storage, verbose); if (s->runtime_journal) do_vacuum(s, &s->runtime_storage, verbose); return 0; } static void server_cache_machine_id(Server *s) { sd_id128_t id; int r; assert(s); r = sd_id128_get_machine(&id); if (r < 0) return; sd_id128_to_string(id, stpcpy(s->machine_id_field, "_MACHINE_ID=")); } static void server_cache_boot_id(Server *s) { sd_id128_t id; int r; assert(s); r = sd_id128_get_boot(&id); if (r < 0) return; sd_id128_to_string(id, stpcpy(s->boot_id_field, "_BOOT_ID=")); } static void server_cache_hostname(Server *s) { _cleanup_free_ char *t = NULL; char *x; assert(s); t = gethostname_malloc(); if (!t) return; x = strjoin("_HOSTNAME=", t); if (!x) return; free_and_replace(s->hostname_field, x); } static bool shall_try_append_again(JournalFile *f, int r) { switch(r) { case -E2BIG: /* Hit configured limit */ case -EFBIG: /* Hit fs limit */ case -EDQUOT: /* Quota limit hit */ case -ENOSPC: /* Disk full */ log_debug("%s: Allocation limit reached, rotating.", f->path); return true; case -EIO: /* I/O error of some kind (mmap) */ log_warning("%s: IO error, rotating.", f->path); return true; case -EHOSTDOWN: /* Other machine */ log_info("%s: Journal file from other machine, rotating.", f->path); return true; case -EBUSY: /* Unclean shutdown */ log_info("%s: Unclean shutdown, rotating.", f->path); return true; case -EPROTONOSUPPORT: /* Unsupported feature */ log_info("%s: Unsupported feature, rotating.", f->path); return true; case -EBADMSG: /* Corrupted */ case -ENODATA: /* Truncated */ case -ESHUTDOWN: /* Already archived */ log_warning("%s: Journal file corrupted, rotating.", f->path); return true; case -EIDRM: /* Journal file has been deleted */ log_warning("%s: Journal file has been deleted, rotating.", f->path); return true; case -ETXTBSY: /* Journal file is from the future */ log_warning("%s: Journal file is from the future, rotating.", f->path); return true; case -EAFNOSUPPORT: log_warning("%s: underlying file system does not support memory mapping or another required file system feature.", f->path); return false; default: return false; } } static void write_to_journal(Server *s, uid_t uid, struct iovec *iovec, size_t n, int priority) { bool vacuumed = false, rotate = false; struct dual_timestamp ts; JournalFile *f; int r; assert(s); assert(iovec); assert(n > 0); /* Get the closest, linearized time we have for this log event from the event loop. (Note that we do not use * the source time, and not even the time the event was originally seen, but instead simply the time we started * processing it, as we want strictly linear ordering in what we write out.) */ assert_se(sd_event_now(s->event, CLOCK_REALTIME, &ts.realtime) >= 0); assert_se(sd_event_now(s->event, CLOCK_MONOTONIC, &ts.monotonic) >= 0); if (ts.realtime < s->last_realtime_clock) { /* When the time jumps backwards, let's immediately rotate. Of course, this should not happen during * regular operation. However, when it does happen, then we should make sure that we start fresh files * to ensure that the entries in the journal files are strictly ordered by time, in order to ensure * bisection works correctly. */ log_debug("Time jumped backwards, rotating."); rotate = true; } else { f = find_journal(s, uid); if (!f) return; if (journal_file_rotate_suggested(f, s->max_file_usec)) { log_debug("%s: Journal header limits reached or header out-of-date, rotating.", f->path); rotate = true; } } if (rotate) { server_rotate(s); server_vacuum(s, false); vacuumed = true; f = find_journal(s, uid); if (!f) return; } s->last_realtime_clock = ts.realtime; r = journal_file_append_entry(f, &ts, NULL, iovec, n, &s->seqnum, NULL, NULL); if (r >= 0) { server_schedule_sync(s, priority); return; } if (vacuumed || !shall_try_append_again(f, r)) { log_error_errno(r, "Failed to write entry (%zu items, %zu bytes), ignoring: %m", n, IOVEC_TOTAL_SIZE(iovec, n)); return; } server_rotate(s); server_vacuum(s, false); f = find_journal(s, uid); if (!f) return; log_debug("Retrying write."); r = journal_file_append_entry(f, &ts, NULL, iovec, n, &s->seqnum, NULL, NULL); if (r < 0) log_error_errno(r, "Failed to write entry (%zu items, %zu bytes) despite vacuuming, ignoring: %m", n, IOVEC_TOTAL_SIZE(iovec, n)); else server_schedule_sync(s, priority); } #define IOVEC_ADD_NUMERIC_FIELD(iovec, n, value, type, isset, format, field) \ if (isset(value)) { \ char *k; \ k = newa(char, STRLEN(field "=") + DECIMAL_STR_MAX(type) + 1); \ sprintf(k, field "=" format, value); \ iovec[n++] = IOVEC_MAKE_STRING(k); \ } #define IOVEC_ADD_STRING_FIELD(iovec, n, value, field) \ if (!isempty(value)) { \ char *k; \ k = strjoina(field "=", value); \ iovec[n++] = IOVEC_MAKE_STRING(k); \ } #define IOVEC_ADD_ID128_FIELD(iovec, n, value, field) \ if (!sd_id128_is_null(value)) { \ char *k; \ k = newa(char, STRLEN(field "=") + SD_ID128_STRING_MAX); \ sd_id128_to_string(value, stpcpy(k, field "=")); \ iovec[n++] = IOVEC_MAKE_STRING(k); \ } #define IOVEC_ADD_SIZED_FIELD(iovec, n, value, value_size, field) \ if (value_size > 0) { \ char *k; \ k = newa(char, STRLEN(field "=") + value_size + 1); \ *((char*) mempcpy(stpcpy(k, field "="), value, value_size)) = 0; \ iovec[n++] = IOVEC_MAKE_STRING(k); \ } \ static void dispatch_message_real( Server *s, struct iovec *iovec, size_t n, size_t m, const ClientContext *c, const struct timeval *tv, int priority, pid_t object_pid) { char source_time[sizeof("_SOURCE_REALTIME_TIMESTAMP=") + DECIMAL_STR_MAX(usec_t)]; _cleanup_free_ char *cmdline1 = NULL, *cmdline2 = NULL; uid_t journal_uid; ClientContext *o; assert(s); assert(iovec); assert(n > 0); assert(n + N_IOVEC_META_FIELDS + (pid_is_valid(object_pid) ? N_IOVEC_OBJECT_FIELDS : 0) + client_context_extra_fields_n_iovec(c) <= m); if (c) { IOVEC_ADD_NUMERIC_FIELD(iovec, n, c->pid, pid_t, pid_is_valid, PID_FMT, "_PID"); IOVEC_ADD_NUMERIC_FIELD(iovec, n, c->uid, uid_t, uid_is_valid, UID_FMT, "_UID"); IOVEC_ADD_NUMERIC_FIELD(iovec, n, c->gid, gid_t, gid_is_valid, GID_FMT, "_GID"); IOVEC_ADD_STRING_FIELD(iovec, n, c->comm, "_COMM"); /* At most TASK_COMM_LENGTH (16 bytes) */ IOVEC_ADD_STRING_FIELD(iovec, n, c->exe, "_EXE"); /* A path, so at most PATH_MAX (4096 bytes) */ if (c->cmdline) /* At most _SC_ARG_MAX (2MB usually), which is too much to put on stack. * Let's use a heap allocation for this one. */ cmdline1 = set_iovec_string_field(iovec, &n, "_CMDLINE=", c->cmdline); IOVEC_ADD_STRING_FIELD(iovec, n, c->capeff, "_CAP_EFFECTIVE"); /* Read from /proc/.../status */ IOVEC_ADD_SIZED_FIELD(iovec, n, c->label, c->label_size, "_SELINUX_CONTEXT"); IOVEC_ADD_NUMERIC_FIELD(iovec, n, c->auditid, uint32_t, audit_session_is_valid, "%" PRIu32, "_AUDIT_SESSION"); IOVEC_ADD_NUMERIC_FIELD(iovec, n, c->loginuid, uid_t, uid_is_valid, UID_FMT, "_AUDIT_LOGINUID"); IOVEC_ADD_STRING_FIELD(iovec, n, c->cgroup, "_SYSTEMD_CGROUP"); /* A path */ IOVEC_ADD_STRING_FIELD(iovec, n, c->session, "_SYSTEMD_SESSION"); IOVEC_ADD_NUMERIC_FIELD(iovec, n, c->owner_uid, uid_t, uid_is_valid, UID_FMT, "_SYSTEMD_OWNER_UID"); IOVEC_ADD_STRING_FIELD(iovec, n, c->unit, "_SYSTEMD_UNIT"); /* Unit names are bounded by UNIT_NAME_MAX */ IOVEC_ADD_STRING_FIELD(iovec, n, c->user_unit, "_SYSTEMD_USER_UNIT"); IOVEC_ADD_STRING_FIELD(iovec, n, c->slice, "_SYSTEMD_SLICE"); IOVEC_ADD_STRING_FIELD(iovec, n, c->user_slice, "_SYSTEMD_USER_SLICE"); IOVEC_ADD_ID128_FIELD(iovec, n, c->invocation_id, "_SYSTEMD_INVOCATION_ID"); if (c->extra_fields_n_iovec > 0) { memcpy(iovec + n, c->extra_fields_iovec, c->extra_fields_n_iovec * sizeof(struct iovec)); n += c->extra_fields_n_iovec; } } assert(n <= m); if (pid_is_valid(object_pid) && client_context_get(s, object_pid, NULL, NULL, 0, NULL, &o) >= 0) { IOVEC_ADD_NUMERIC_FIELD(iovec, n, o->pid, pid_t, pid_is_valid, PID_FMT, "OBJECT_PID"); IOVEC_ADD_NUMERIC_FIELD(iovec, n, o->uid, uid_t, uid_is_valid, UID_FMT, "OBJECT_UID"); IOVEC_ADD_NUMERIC_FIELD(iovec, n, o->gid, gid_t, gid_is_valid, GID_FMT, "OBJECT_GID"); /* See above for size limits, only ->cmdline may be large, so use a heap allocation for it. */ IOVEC_ADD_STRING_FIELD(iovec, n, o->comm, "OBJECT_COMM"); IOVEC_ADD_STRING_FIELD(iovec, n, o->exe, "OBJECT_EXE"); if (o->cmdline) cmdline2 = set_iovec_string_field(iovec, &n, "OBJECT_CMDLINE=", o->cmdline); IOVEC_ADD_STRING_FIELD(iovec, n, o->capeff, "OBJECT_CAP_EFFECTIVE"); IOVEC_ADD_SIZED_FIELD(iovec, n, o->label, o->label_size, "OBJECT_SELINUX_CONTEXT"); IOVEC_ADD_NUMERIC_FIELD(iovec, n, o->auditid, uint32_t, audit_session_is_valid, "%" PRIu32, "OBJECT_AUDIT_SESSION"); IOVEC_ADD_NUMERIC_FIELD(iovec, n, o->loginuid, uid_t, uid_is_valid, UID_FMT, "OBJECT_AUDIT_LOGINUID"); IOVEC_ADD_STRING_FIELD(iovec, n, o->cgroup, "OBJECT_SYSTEMD_CGROUP"); IOVEC_ADD_STRING_FIELD(iovec, n, o->session, "OBJECT_SYSTEMD_SESSION"); IOVEC_ADD_NUMERIC_FIELD(iovec, n, o->owner_uid, uid_t, uid_is_valid, UID_FMT, "OBJECT_SYSTEMD_OWNER_UID"); IOVEC_ADD_STRING_FIELD(iovec, n, o->unit, "OBJECT_SYSTEMD_UNIT"); IOVEC_ADD_STRING_FIELD(iovec, n, o->user_unit, "OBJECT_SYSTEMD_USER_UNIT"); IOVEC_ADD_STRING_FIELD(iovec, n, o->slice, "OBJECT_SYSTEMD_SLICE"); IOVEC_ADD_STRING_FIELD(iovec, n, o->user_slice, "OBJECT_SYSTEMD_USER_SLICE"); IOVEC_ADD_ID128_FIELD(iovec, n, o->invocation_id, "OBJECT_SYSTEMD_INVOCATION_ID="); } assert(n <= m); if (tv) { sprintf(source_time, "_SOURCE_REALTIME_TIMESTAMP=" USEC_FMT, timeval_load(tv)); iovec[n++] = IOVEC_MAKE_STRING(source_time); } /* Note that strictly speaking storing the boot id here is * redundant since the entry includes this in-line * anyway. However, we need this indexed, too. */ if (!isempty(s->boot_id_field)) iovec[n++] = IOVEC_MAKE_STRING(s->boot_id_field); if (!isempty(s->machine_id_field)) iovec[n++] = IOVEC_MAKE_STRING(s->machine_id_field); if (!isempty(s->hostname_field)) iovec[n++] = IOVEC_MAKE_STRING(s->hostname_field); if (!isempty(s->namespace_field)) iovec[n++] = IOVEC_MAKE_STRING(s->namespace_field); assert(n <= m); if (s->split_mode == SPLIT_UID && c && uid_is_valid(c->uid)) /* Split up strictly by (non-root) UID */ journal_uid = c->uid; else if (s->split_mode == SPLIT_LOGIN && c && c->uid > 0 && uid_is_valid(c->owner_uid)) /* Split up by login UIDs. We do this only if the * realuid is not root, in order not to accidentally * leak privileged information to the user that is * logged by a privileged process that is part of an * unprivileged session. */ journal_uid = c->owner_uid; else journal_uid = 0; write_to_journal(s, journal_uid, iovec, n, priority); } void server_driver_message(Server *s, pid_t object_pid, const char *message_id, const char *format, ...) { struct iovec *iovec; size_t n = 0, k, m; va_list ap; int r; assert(s); assert(format); m = N_IOVEC_META_FIELDS + 5 + N_IOVEC_PAYLOAD_FIELDS + client_context_extra_fields_n_iovec(s->my_context) + N_IOVEC_OBJECT_FIELDS; iovec = newa(struct iovec, m); assert_cc(3 == LOG_FAC(LOG_DAEMON)); iovec[n++] = IOVEC_MAKE_STRING("SYSLOG_FACILITY=3"); iovec[n++] = IOVEC_MAKE_STRING("SYSLOG_IDENTIFIER=systemd-journald"); iovec[n++] = IOVEC_MAKE_STRING("_TRANSPORT=driver"); assert_cc(6 == LOG_INFO); iovec[n++] = IOVEC_MAKE_STRING("PRIORITY=6"); if (message_id) iovec[n++] = IOVEC_MAKE_STRING(message_id); k = n; va_start(ap, format); r = log_format_iovec(iovec, m, &n, false, 0, format, ap); /* Error handling below */ va_end(ap); if (r >= 0) dispatch_message_real(s, iovec, n, m, s->my_context, NULL, LOG_INFO, object_pid); while (k < n) free(iovec[k++].iov_base); if (r < 0) { /* We failed to format the message. Emit a warning instead. */ char buf[LINE_MAX]; xsprintf(buf, "MESSAGE=Entry printing failed: %s", strerror_safe(r)); n = 3; iovec[n++] = IOVEC_MAKE_STRING("PRIORITY=4"); iovec[n++] = IOVEC_MAKE_STRING(buf); dispatch_message_real(s, iovec, n, m, s->my_context, NULL, LOG_INFO, object_pid); } } void server_dispatch_message( Server *s, struct iovec *iovec, size_t n, size_t m, ClientContext *c, const struct timeval *tv, int priority, pid_t object_pid) { uint64_t available = 0; int rl; assert(s); assert(iovec || n == 0); if (n == 0) return; if (LOG_PRI(priority) > s->max_level_store) return; /* Stop early in case the information will not be stored * in a journal. */ if (s->storage == STORAGE_NONE) return; if (c && c->unit) { (void) determine_space(s, &available, NULL); rl = journal_ratelimit_test(s->ratelimit, c->unit, c->log_ratelimit_interval, c->log_ratelimit_burst, priority & LOG_PRIMASK, available); if (rl == 0) return; /* Write a suppression message if we suppressed something */ if (rl > 1) server_driver_message(s, c->pid, "MESSAGE_ID=" SD_MESSAGE_JOURNAL_DROPPED_STR, LOG_MESSAGE("Suppressed %i messages from %s", rl - 1, c->unit), "N_DROPPED=%i", rl - 1, NULL); } dispatch_message_real(s, iovec, n, m, c, tv, priority, object_pid); } int server_flush_to_var(Server *s, bool require_flag_file) { char ts[FORMAT_TIMESPAN_MAX]; sd_journal *j = NULL; const char *fn; unsigned n = 0; usec_t start; int r, k; assert(s); if (!IN_SET(s->storage, STORAGE_AUTO, STORAGE_PERSISTENT)) return 0; if (s->namespace) /* Flushing concept does not exist for namespace instances */ return 0; if (!s->runtime_journal) /* Nothing to flush? */ return 0; if (require_flag_file && !flushed_flag_is_set(s)) return 0; (void) system_journal_open(s, true, false); if (!s->system_journal) return 0; log_debug("Flushing to %s...", s->system_storage.path); start = now(CLOCK_MONOTONIC); r = sd_journal_open(&j, SD_JOURNAL_RUNTIME_ONLY); if (r < 0) return log_error_errno(r, "Failed to read runtime journal: %m"); sd_journal_set_data_threshold(j, 0); SD_JOURNAL_FOREACH(j) { Object *o = NULL; JournalFile *f; f = j->current_file; assert(f && f->current_offset > 0); n++; r = journal_file_move_to_object(f, OBJECT_ENTRY, f->current_offset, &o); if (r < 0) { log_error_errno(r, "Can't read entry: %m"); goto finish; } r = journal_file_copy_entry(f, s->system_journal, o, f->current_offset); if (r >= 0) continue; if (!shall_try_append_again(s->system_journal, r)) { log_error_errno(r, "Can't write entry: %m"); goto finish; } server_rotate(s); server_vacuum(s, false); if (!s->system_journal) { log_notice("Didn't flush runtime journal since rotation of system journal wasn't successful."); r = -EIO; goto finish; } log_debug("Retrying write."); r = journal_file_copy_entry(f, s->system_journal, o, f->current_offset); if (r < 0) { log_error_errno(r, "Can't write entry: %m"); goto finish; } } r = 0; finish: if (s->system_journal) journal_file_post_change(s->system_journal); s->runtime_journal = journal_file_close(s->runtime_journal); if (r >= 0) (void) rm_rf(s->runtime_storage.path, REMOVE_ROOT); sd_journal_close(j); server_driver_message(s, 0, NULL, LOG_MESSAGE("Time spent on flushing to %s is %s for %u entries.", s->system_storage.path, format_timespan(ts, sizeof(ts), now(CLOCK_MONOTONIC) - start, 0), n), NULL); fn = strjoina(s->runtime_directory, "/flushed"); k = touch(fn); if (k < 0) log_warning_errno(k, "Failed to touch %s, ignoring: %m", fn); server_refresh_idle_timer(s); return r; } static int server_relinquish_var(Server *s) { const char *fn; assert(s); if (s->storage == STORAGE_NONE) return 0; if (s->namespace) /* Concept does not exist for namespaced instances */ return -EOPNOTSUPP; if (s->runtime_journal && !s->system_journal) return 0; log_debug("Relinquishing %s...", s->system_storage.path); (void) system_journal_open(s, false, true); s->system_journal = journal_file_close(s->system_journal); ordered_hashmap_clear_with_destructor(s->user_journals, journal_file_close); set_clear_with_destructor(s->deferred_closes, journal_file_close); fn = strjoina(s->runtime_directory, "/flushed"); if (unlink(fn) < 0 && errno != ENOENT) log_warning_errno(errno, "Failed to unlink %s, ignoring: %m", fn); server_refresh_idle_timer(s); return 0; } int server_process_datagram( sd_event_source *es, int fd, uint32_t revents, void *userdata) { Server *s = userdata; struct ucred *ucred = NULL; struct timeval *tv = NULL; struct cmsghdr *cmsg; char *label = NULL; size_t label_len = 0, m; struct iovec iovec; ssize_t n; int *fds = NULL, v = 0; size_t n_fds = 0; /* We use NAME_MAX space for the SELinux label here. The kernel currently enforces no limit, but * according to suggestions from the SELinux people this will change and it will probably be * identical to NAME_MAX. For now we use that, but this should be updated one day when the final * limit is known. */ CMSG_BUFFER_TYPE(CMSG_SPACE(sizeof(struct ucred)) + CMSG_SPACE(sizeof(struct timeval)) + CMSG_SPACE(sizeof(int)) + /* fd */ CMSG_SPACE(NAME_MAX) /* selinux label */) control; union sockaddr_union sa = {}; struct msghdr msghdr = { .msg_iov = &iovec, .msg_iovlen = 1, .msg_control = &control, .msg_controllen = sizeof(control), .msg_name = &sa, .msg_namelen = sizeof(sa), }; assert(s); assert(fd == s->native_fd || fd == s->syslog_fd || fd == s->audit_fd); if (revents != EPOLLIN) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Got invalid event from epoll for datagram fd: %" PRIx32, revents); /* Try to get the right size, if we can. (Not all sockets support SIOCINQ, hence we just try, but don't rely on * it.) */ (void) ioctl(fd, SIOCINQ, &v); /* Fix it up, if it is too small. We use the same fixed value as auditd here. Awful! */ m = PAGE_ALIGN(MAX3((size_t) v + 1, (size_t) LINE_MAX, ALIGN(sizeof(struct nlmsghdr)) + ALIGN((size_t) MAX_AUDIT_MESSAGE_LENGTH)) + 1); if (!GREEDY_REALLOC(s->buffer, s->buffer_size, m)) return log_oom(); iovec = IOVEC_MAKE(s->buffer, s->buffer_size - 1); /* Leave room for trailing NUL we add later */ n = recvmsg_safe(fd, &msghdr, MSG_DONTWAIT|MSG_CMSG_CLOEXEC); if (IN_SET(n, -EINTR, -EAGAIN)) return 0; if (n == -EXFULL) { log_warning("Got message with truncated control data (too many fds sent?), ignoring."); return 0; } if (n < 0) return log_error_errno(n, "recvmsg() failed: %m"); CMSG_FOREACH(cmsg, &msghdr) if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_CREDENTIALS && cmsg->cmsg_len == CMSG_LEN(sizeof(struct ucred))) { assert(!ucred); ucred = (struct ucred*) CMSG_DATA(cmsg); } else if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_SECURITY) { assert(!label); label = (char*) CMSG_DATA(cmsg); label_len = cmsg->cmsg_len - CMSG_LEN(0); } else if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SO_TIMESTAMP && cmsg->cmsg_len == CMSG_LEN(sizeof(struct timeval))) { assert(!tv); tv = (struct timeval*) CMSG_DATA(cmsg); } else if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { assert(!fds); fds = (int*) CMSG_DATA(cmsg); n_fds = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(int); } /* And a trailing NUL, just in case */ s->buffer[n] = 0; if (fd == s->syslog_fd) { if (n > 0 && n_fds == 0) server_process_syslog_message(s, s->buffer, n, ucred, tv, label, label_len); else if (n_fds > 0) log_warning("Got file descriptors via syslog socket. Ignoring."); } else if (fd == s->native_fd) { if (n > 0 && n_fds == 0) server_process_native_message(s, s->buffer, n, ucred, tv, label, label_len); else if (n == 0 && n_fds == 1) server_process_native_file(s, fds[0], ucred, tv, label, label_len); else if (n_fds > 0) log_warning("Got too many file descriptors via native socket. Ignoring."); } else { assert(fd == s->audit_fd); if (n > 0 && n_fds == 0) server_process_audit_message(s, s->buffer, n, ucred, &sa, msghdr.msg_namelen); else if (n_fds > 0) log_warning("Got file descriptors via audit socket. Ignoring."); } close_many(fds, n_fds); server_refresh_idle_timer(s); return 0; } static void server_full_flush(Server *s) { assert(s); (void) server_flush_to_var(s, false); server_sync(s); server_vacuum(s, false); server_space_usage_message(s, NULL); server_refresh_idle_timer(s); } static int dispatch_sigusr1(sd_event_source *es, const struct signalfd_siginfo *si, void *userdata) { Server *s = userdata; assert(s); if (s->namespace) { log_error("Received SIGUSR1 signal from PID " PID_FMT ", but flushing runtime journals not supported for namespaced instances.", si->ssi_pid); return 0; } log_info("Received SIGUSR1 signal from PID " PID_FMT ", as request to flush runtime journal.", si->ssi_pid); server_full_flush(s); return 0; } static void server_full_rotate(Server *s) { const char *fn; int r; assert(s); server_rotate(s); server_vacuum(s, true); if (s->system_journal) patch_min_use(&s->system_storage); if (s->runtime_journal) patch_min_use(&s->runtime_storage); /* Let clients know when the most recent rotation happened. */ fn = strjoina(s->runtime_directory, "/rotated"); r = write_timestamp_file_atomic(fn, now(CLOCK_MONOTONIC)); if (r < 0) log_warning_errno(r, "Failed to write %s, ignoring: %m", fn); } static int dispatch_sigusr2(sd_event_source *es, const struct signalfd_siginfo *si, void *userdata) { Server *s = userdata; assert(s); log_info("Received SIGUSR2 signal from PID " PID_FMT ", as request to rotate journal.", si->ssi_pid); server_full_rotate(s); return 0; } static int dispatch_sigterm(sd_event_source *es, const struct signalfd_siginfo *si, void *userdata) { Server *s = userdata; assert(s); log_received_signal(LOG_INFO, si); sd_event_exit(s->event, 0); return 0; } static void server_full_sync(Server *s) { const char *fn; int r; assert(s); server_sync(s); /* Let clients know when the most recent sync happened. */ fn = strjoina(s->runtime_directory, "/synced"); r = write_timestamp_file_atomic(fn, now(CLOCK_MONOTONIC)); if (r < 0) log_warning_errno(r, "Failed to write %s, ignoring: %m", fn); return; } static int dispatch_sigrtmin1(sd_event_source *es, const struct signalfd_siginfo *si, void *userdata) { Server *s = userdata; assert(s); log_debug("Received SIGRTMIN1 signal from PID " PID_FMT ", as request to sync.", si->ssi_pid ); server_full_sync(s); return 0; } static int setup_signals(Server *s) { int r; assert(s); assert_se(sigprocmask_many(SIG_SETMASK, NULL, SIGINT, SIGTERM, SIGUSR1, SIGUSR2, SIGRTMIN+1, -1) >= 0); r = sd_event_add_signal(s->event, &s->sigusr1_event_source, SIGUSR1, dispatch_sigusr1, s); if (r < 0) return r; r = sd_event_add_signal(s->event, &s->sigusr2_event_source, SIGUSR2, dispatch_sigusr2, s); if (r < 0) return r; r = sd_event_add_signal(s->event, &s->sigterm_event_source, SIGTERM, dispatch_sigterm, s); if (r < 0) return r; /* Let's process SIGTERM late, so that we flush all queued messages to disk before we exit */ r = sd_event_source_set_priority(s->sigterm_event_source, SD_EVENT_PRIORITY_NORMAL+20); if (r < 0) return r; /* When journald is invoked on the terminal (when debugging), it's useful if C-c is handled * equivalent to SIGTERM. */ r = sd_event_add_signal(s->event, &s->sigint_event_source, SIGINT, dispatch_sigterm, s); if (r < 0) return r; r = sd_event_source_set_priority(s->sigint_event_source, SD_EVENT_PRIORITY_NORMAL+20); if (r < 0) return r; /* SIGRTMIN+1 causes an immediate sync. We process this very late, so that everything else queued at * this point is really written to disk. Clients can watch /run/systemd/journal/synced with inotify * until its mtime changes to see when a sync happened. */ r = sd_event_add_signal(s->event, &s->sigrtmin1_event_source, SIGRTMIN+1, dispatch_sigrtmin1, s); if (r < 0) return r; r = sd_event_source_set_priority(s->sigrtmin1_event_source, SD_EVENT_PRIORITY_NORMAL+15); if (r < 0) return r; return 0; } static int parse_proc_cmdline_item(const char *key, const char *value, void *data) { Server *s = data; int r; assert(s); if (proc_cmdline_key_streq(key, "systemd.journald.forward_to_syslog")) { r = value ? parse_boolean(value) : true; if (r < 0) log_warning("Failed to parse forward to syslog switch \"%s\". Ignoring.", value); else s->forward_to_syslog = r; } else if (proc_cmdline_key_streq(key, "systemd.journald.forward_to_kmsg")) { r = value ? parse_boolean(value) : true; if (r < 0) log_warning("Failed to parse forward to kmsg switch \"%s\". Ignoring.", value); else s->forward_to_kmsg = r; } else if (proc_cmdline_key_streq(key, "systemd.journald.forward_to_console")) { r = value ? parse_boolean(value) : true; if (r < 0) log_warning("Failed to parse forward to console switch \"%s\". Ignoring.", value); else s->forward_to_console = r; } else if (proc_cmdline_key_streq(key, "systemd.journald.forward_to_wall")) { r = value ? parse_boolean(value) : true; if (r < 0) log_warning("Failed to parse forward to wall switch \"%s\". Ignoring.", value); else s->forward_to_wall = r; } else if (proc_cmdline_key_streq(key, "systemd.journald.max_level_console")) { if (proc_cmdline_value_missing(key, value)) return 0; r = log_level_from_string(value); if (r < 0) log_warning("Failed to parse max level console value \"%s\". Ignoring.", value); else s->max_level_console = r; } else if (proc_cmdline_key_streq(key, "systemd.journald.max_level_store")) { if (proc_cmdline_value_missing(key, value)) return 0; r = log_level_from_string(value); if (r < 0) log_warning("Failed to parse max level store value \"%s\". Ignoring.", value); else s->max_level_store = r; } else if (proc_cmdline_key_streq(key, "systemd.journald.max_level_syslog")) { if (proc_cmdline_value_missing(key, value)) return 0; r = log_level_from_string(value); if (r < 0) log_warning("Failed to parse max level syslog value \"%s\". Ignoring.", value); else s->max_level_syslog = r; } else if (proc_cmdline_key_streq(key, "systemd.journald.max_level_kmsg")) { if (proc_cmdline_value_missing(key, value)) return 0; r = log_level_from_string(value); if (r < 0) log_warning("Failed to parse max level kmsg value \"%s\". Ignoring.", value); else s->max_level_kmsg = r; } else if (proc_cmdline_key_streq(key, "systemd.journald.max_level_wall")) { if (proc_cmdline_value_missing(key, value)) return 0; r = log_level_from_string(value); if (r < 0) log_warning("Failed to parse max level wall value \"%s\". Ignoring.", value); else s->max_level_wall = r; } else if (startswith(key, "systemd.journald")) log_warning("Unknown journald kernel command line option \"%s\". Ignoring.", key); /* do not warn about state here, since probably systemd already did */ return 0; } static int server_parse_config_file(Server *s) { int r; assert(s); if (s->namespace) { const char *namespaced; /* If we are running in namespace mode, load the namespace specific configuration file, and nothing else */ namespaced = strjoina(PKGSYSCONFDIR "/journald@", s->namespace, ".conf"); r = config_parse(NULL, namespaced, NULL, "Journal\0", config_item_perf_lookup, journald_gperf_lookup, CONFIG_PARSE_WARN, s, NULL); if (r < 0) return r; return 0; } return config_parse_many_nulstr( PKGSYSCONFDIR "/journald.conf", CONF_PATHS_NULSTR("systemd/journald.conf.d"), "Journal\0", config_item_perf_lookup, journald_gperf_lookup, CONFIG_PARSE_WARN, s, NULL); } static int server_dispatch_sync(sd_event_source *es, usec_t t, void *userdata) { Server *s = userdata; assert(s); server_sync(s); return 0; } int server_schedule_sync(Server *s, int priority) { int r; assert(s); if (priority <= LOG_CRIT) { /* Immediately sync to disk when this is of priority CRIT, ALERT, EMERG */ server_sync(s); return 0; } if (s->sync_scheduled) return 0; if (s->sync_interval_usec > 0) { if (!s->sync_event_source) { r = sd_event_add_time_relative( s->event, &s->sync_event_source, CLOCK_MONOTONIC, s->sync_interval_usec, 0, server_dispatch_sync, s); if (r < 0) return r; r = sd_event_source_set_priority(s->sync_event_source, SD_EVENT_PRIORITY_IMPORTANT); } else { r = sd_event_source_set_time_relative(s->sync_event_source, s->sync_interval_usec); if (r < 0) return r; r = sd_event_source_set_enabled(s->sync_event_source, SD_EVENT_ONESHOT); } if (r < 0) return r; s->sync_scheduled = true; } return 0; } static int dispatch_hostname_change(sd_event_source *es, int fd, uint32_t revents, void *userdata) { Server *s = userdata; assert(s); server_cache_hostname(s); return 0; } static int server_open_hostname(Server *s) { int r; assert(s); s->hostname_fd = open("/proc/sys/kernel/hostname", O_RDONLY|O_CLOEXEC|O_NONBLOCK|O_NOCTTY); if (s->hostname_fd < 0) return log_error_errno(errno, "Failed to open /proc/sys/kernel/hostname: %m"); r = sd_event_add_io(s->event, &s->hostname_event_source, s->hostname_fd, 0, dispatch_hostname_change, s); if (r < 0) { /* kernels prior to 3.2 don't support polling this file. Ignore * the failure. */ if (r == -EPERM) { log_warning_errno(r, "Failed to register hostname fd in event loop, ignoring: %m"); s->hostname_fd = safe_close(s->hostname_fd); return 0; } return log_error_errno(r, "Failed to register hostname fd in event loop: %m"); } r = sd_event_source_set_priority(s->hostname_event_source, SD_EVENT_PRIORITY_IMPORTANT-10); if (r < 0) return log_error_errno(r, "Failed to adjust priority of hostname event source: %m"); return 0; } static int dispatch_notify_event(sd_event_source *es, int fd, uint32_t revents, void *userdata) { Server *s = userdata; int r; assert(s); assert(s->notify_event_source == es); assert(s->notify_fd == fd); /* The $NOTIFY_SOCKET is writable again, now send exactly one * message on it. Either it's the watchdog event, the initial * READY=1 event or an stdout stream event. If there's nothing * to write anymore, turn our event source off. The next time * there's something to send it will be turned on again. */ if (!s->sent_notify_ready) { static const char p[] = "READY=1\n" "STATUS=Processing requests..."; ssize_t l; l = send(s->notify_fd, p, strlen(p), MSG_DONTWAIT); if (l < 0) { if (errno == EAGAIN) return 0; return log_error_errno(errno, "Failed to send READY=1 notification message: %m"); } s->sent_notify_ready = true; log_debug("Sent READY=1 notification."); } else if (s->send_watchdog) { static const char p[] = "WATCHDOG=1"; ssize_t l; l = send(s->notify_fd, p, strlen(p), MSG_DONTWAIT); if (l < 0) { if (errno == EAGAIN) return 0; return log_error_errno(errno, "Failed to send WATCHDOG=1 notification message: %m"); } s->send_watchdog = false; log_debug("Sent WATCHDOG=1 notification."); } else if (s->stdout_streams_notify_queue) /* Dispatch one stream notification event */ stdout_stream_send_notify(s->stdout_streams_notify_queue); /* Leave us enabled if there's still more to do. */ if (s->send_watchdog || s->stdout_streams_notify_queue) return 0; /* There was nothing to do anymore, let's turn ourselves off. */ r = sd_event_source_set_enabled(es, SD_EVENT_OFF); if (r < 0) return log_error_errno(r, "Failed to turn off notify event source: %m"); return 0; } static int dispatch_watchdog(sd_event_source *es, uint64_t usec, void *userdata) { Server *s = userdata; int r; assert(s); s->send_watchdog = true; r = sd_event_source_set_enabled(s->notify_event_source, SD_EVENT_ON); if (r < 0) log_warning_errno(r, "Failed to turn on notify event source: %m"); r = sd_event_source_set_time(s->watchdog_event_source, usec + s->watchdog_usec / 2); if (r < 0) return log_error_errno(r, "Failed to restart watchdog event source: %m"); r = sd_event_source_set_enabled(s->watchdog_event_source, SD_EVENT_ON); if (r < 0) return log_error_errno(r, "Failed to enable watchdog event source: %m"); return 0; } static int server_connect_notify(Server *s) { union sockaddr_union sa; socklen_t sa_len; const char *e; int r; assert(s); assert(s->notify_fd < 0); assert(!s->notify_event_source); /* * So here's the problem: we'd like to send notification messages to PID 1, but we cannot do that via * sd_notify(), since that's synchronous, and we might end up blocking on it. Specifically: given * that PID 1 might block on dbus-daemon during IPC, and dbus-daemon is logging to us, and might * hence block on us, we might end up in a deadlock if we block on sending PID 1 notification * messages — by generating a full blocking circle. To avoid this, let's create a non-blocking * socket, and connect it to the notification socket, and then wait for POLLOUT before we send * anything. This should efficiently avoid any deadlocks, as we'll never block on PID 1, hence PID 1 * can safely block on dbus-daemon which can safely block on us again. * * Don't think that this issue is real? It is, see: https://github.com/systemd/systemd/issues/1505 */ e = getenv("NOTIFY_SOCKET"); if (!e) return 0; r = sockaddr_un_set_path(&sa.un, e); if (r < 0) return log_error_errno(r, "NOTIFY_SOCKET set to invalid value '%s': %m", e); sa_len = r; s->notify_fd = socket(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0); if (s->notify_fd < 0) return log_error_errno(errno, "Failed to create notify socket: %m"); (void) fd_inc_sndbuf(s->notify_fd, NOTIFY_SNDBUF_SIZE); r = connect(s->notify_fd, &sa.sa, sa_len); if (r < 0) return log_error_errno(errno, "Failed to connect to notify socket: %m"); r = sd_event_add_io(s->event, &s->notify_event_source, s->notify_fd, EPOLLOUT, dispatch_notify_event, s); if (r < 0) return log_error_errno(r, "Failed to watch notification socket: %m"); if (sd_watchdog_enabled(false, &s->watchdog_usec) > 0) { s->send_watchdog = true; r = sd_event_add_time_relative(s->event, &s->watchdog_event_source, CLOCK_MONOTONIC, s->watchdog_usec/2, s->watchdog_usec/4, dispatch_watchdog, s); if (r < 0) return log_error_errno(r, "Failed to add watchdog time event: %m"); } /* This should fire pretty soon, which we'll use to send the READY=1 event. */ return 0; } static int synchronize_second_half(sd_event_source *event_source, void *userdata) { Varlink *link = userdata; Server *s; int r; assert(link); assert_se(s = varlink_get_userdata(link)); /* This is the "second half" of the Synchronize() varlink method. This function is called as deferred * event source at a low priority to ensure the synchronization completes after all queued log * messages are processed. */ server_full_sync(s); /* Let's get rid of the event source now, by marking it as non-floating again. It then has no ref * anymore and is immediately destroyed after we return from this function, i.e. from this event * source handler at the end. */ r = sd_event_source_set_floating(event_source, false); if (r < 0) return log_error_errno(r, "Failed to mark event source as non-floating: %m"); return varlink_reply(link, NULL); } static void synchronize_destroy(void *userdata) { varlink_unref(userdata); } static int vl_method_synchronize(Varlink *link, JsonVariant *parameters, VarlinkMethodFlags flags, void *userdata) { _cleanup_(sd_event_source_unrefp) sd_event_source *event_source = NULL; Server *s = userdata; int r; assert(link); assert(s); if (json_variant_elements(parameters) > 0) return varlink_error_invalid_parameter(link, parameters); log_info("Received client request to rotate journal."); /* We don't do the main work now, but instead enqueue a deferred event loop job which will do * it. That job is scheduled at low priority, so that we return from this method call only after all * queued but not processed log messages are written to disk, so that this method call returning can * be used as nice synchronization point. */ r = sd_event_add_defer(s->event, &event_source, synchronize_second_half, link); if (r < 0) return log_error_errno(r, "Failed to allocate defer event source: %m"); r = sd_event_source_set_destroy_callback(event_source, synchronize_destroy); if (r < 0) return log_error_errno(r, "Failed to set event source destroy callback: %m"); varlink_ref(link); /* The varlink object is now left to the destroy callback to unref */ r = sd_event_source_set_priority(event_source, SD_EVENT_PRIORITY_NORMAL+15); if (r < 0) return log_error_errno(r, "Failed to set defer event source priority: %m"); /* Give up ownership of this event source. It will now be destroyed along with event loop itself, * unless it destroys itself earlier. */ r = sd_event_source_set_floating(event_source, true); if (r < 0) return log_error_errno(r, "Failed to mark event source as floating: %m"); (void) sd_event_source_set_description(event_source, "deferred-sync"); return 0; } static int vl_method_rotate(Varlink *link, JsonVariant *parameters, VarlinkMethodFlags flags, void *userdata) { Server *s = userdata; assert(link); assert(s); if (json_variant_elements(parameters) > 0) return varlink_error_invalid_parameter(link, parameters); log_info("Received client request to rotate journal."); server_full_rotate(s); return varlink_reply(link, NULL); } static int vl_method_flush_to_var(Varlink *link, JsonVariant *parameters, VarlinkMethodFlags flags, void *userdata) { Server *s = userdata; assert(link); assert(s); if (json_variant_elements(parameters) > 0) return varlink_error_invalid_parameter(link, parameters); if (s->namespace) return varlink_error(link, "io.systemd.Journal.NotSupportedByNamespaces", NULL); log_info("Received client request to flush runtime journal."); server_full_flush(s); return varlink_reply(link, NULL); } static int vl_method_relinquish_var(Varlink *link, JsonVariant *parameters, VarlinkMethodFlags flags, void *userdata) { Server *s = userdata; assert(link); assert(s); if (json_variant_elements(parameters) > 0) return varlink_error_invalid_parameter(link, parameters); if (s->namespace) return varlink_error(link, "io.systemd.Journal.NotSupportedByNamespaces", NULL); log_info("Received client request to relinquish %s access.", s->system_storage.path); server_relinquish_var(s); return varlink_reply(link, NULL); } static int vl_connect(VarlinkServer *server, Varlink *link, void *userdata) { Server *s = userdata; assert(server); assert(link); assert(s); (void) server_start_or_stop_idle_timer(s); /* maybe we are no longer idle */ return 0; } static void vl_disconnect(VarlinkServer *server, Varlink *link, void *userdata) { Server *s = userdata; assert(server); assert(link); assert(s); (void) server_start_or_stop_idle_timer(s); /* maybe we are idle now */ } static int server_open_varlink(Server *s, const char *socket, int fd) { int r; assert(s); r = varlink_server_new(&s->varlink_server, VARLINK_SERVER_ROOT_ONLY); if (r < 0) return r; varlink_server_set_userdata(s->varlink_server, s); r = varlink_server_bind_method_many( s->varlink_server, "io.systemd.Journal.Synchronize", vl_method_synchronize, "io.systemd.Journal.Rotate", vl_method_rotate, "io.systemd.Journal.FlushToVar", vl_method_flush_to_var, "io.systemd.Journal.RelinquishVar", vl_method_relinquish_var); if (r < 0) return r; r = varlink_server_bind_connect(s->varlink_server, vl_connect); if (r < 0) return r; r = varlink_server_bind_disconnect(s->varlink_server, vl_disconnect); if (r < 0) return r; if (fd < 0) r = varlink_server_listen_address(s->varlink_server, socket, 0600); else r = varlink_server_listen_fd(s->varlink_server, fd); if (r < 0) return r; r = varlink_server_attach_event(s->varlink_server, s->event, SD_EVENT_PRIORITY_NORMAL); if (r < 0) return r; return 0; } static bool server_is_idle(Server *s) { assert(s); /* The server for the main namespace is never idle */ if (!s->namespace) return false; /* If a retention maximum is set larger than the idle time we need to be running to enforce it, hence * turn off the idle logic. */ if (s->max_retention_usec > IDLE_TIMEOUT_USEC) return false; /* We aren't idle if we have a varlink client */ if (varlink_server_current_connections(s->varlink_server) > 0) return false; /* If we have stdout streams we aren't idle */ if (s->n_stdout_streams > 0) return false; return true; } static int server_idle_handler(sd_event_source *source, uint64_t usec, void *userdata) { Server *s = userdata; assert(source); assert(s); log_debug("Server is idle, exiting."); sd_event_exit(s->event, 0); return 0; } int server_start_or_stop_idle_timer(Server *s) { _cleanup_(sd_event_source_unrefp) sd_event_source *source = NULL; int r; assert(s); if (!server_is_idle(s)) { s->idle_event_source = sd_event_source_disable_unref(s->idle_event_source); return 0; } if (s->idle_event_source) return 1; r = sd_event_add_time_relative(s->event, &source, CLOCK_MONOTONIC, IDLE_TIMEOUT_USEC, 0, server_idle_handler, s); if (r < 0) return log_error_errno(r, "Failed to allocate idle timer: %m"); r = sd_event_source_set_priority(source, SD_EVENT_PRIORITY_IDLE); if (r < 0) return log_error_errno(r, "Failed to set idle timer priority: %m"); (void) sd_event_source_set_description(source, "idle-timer"); s->idle_event_source = TAKE_PTR(source); return 1; } int server_refresh_idle_timer(Server *s) { int r; assert(s); if (!s->idle_event_source) return 0; r = sd_event_source_set_time_relative(s->idle_event_source, IDLE_TIMEOUT_USEC); if (r < 0) return log_error_errno(r, "Failed to refresh idle timer: %m"); return 1; } static int set_namespace(Server *s, const char *namespace) { assert(s); if (!namespace) return 0; if (!log_namespace_name_valid(namespace)) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Specified namespace name not valid, refusing: %s", namespace); s->namespace = strdup(namespace); if (!s->namespace) return log_oom(); s->namespace_field = strjoin("_NAMESPACE=", namespace); if (!s->namespace_field) return log_oom(); return 1; } int server_init(Server *s, const char *namespace) { const char *native_socket, *syslog_socket, *stdout_socket, *varlink_socket, *e; _cleanup_fdset_free_ FDSet *fds = NULL; int n, r, fd, varlink_fd = -1; bool no_sockets; assert(s); *s = (Server) { .syslog_fd = -1, .native_fd = -1, .stdout_fd = -1, .dev_kmsg_fd = -1, .audit_fd = -1, .hostname_fd = -1, .notify_fd = -1, .compress.enabled = true, .compress.threshold_bytes = (uint64_t) -1, .seal = true, .set_audit = true, .watchdog_usec = USEC_INFINITY, .sync_interval_usec = DEFAULT_SYNC_INTERVAL_USEC, .sync_scheduled = false, .ratelimit_interval = DEFAULT_RATE_LIMIT_INTERVAL, .ratelimit_burst = DEFAULT_RATE_LIMIT_BURST, .forward_to_wall = true, .max_file_usec = DEFAULT_MAX_FILE_USEC, .max_level_store = LOG_DEBUG, .max_level_syslog = LOG_DEBUG, .max_level_kmsg = LOG_NOTICE, .max_level_console = LOG_INFO, .max_level_wall = LOG_EMERG, .line_max = DEFAULT_LINE_MAX, .runtime_storage.name = "Runtime Journal", .system_storage.name = "System Journal", }; r = set_namespace(s, namespace); if (r < 0) return r; /* By default, only read from /dev/kmsg if are the main namespace */ s->read_kmsg = !s->namespace; s->storage = s->namespace ? STORAGE_PERSISTENT : STORAGE_AUTO; journal_reset_metrics(&s->system_storage.metrics); journal_reset_metrics(&s->runtime_storage.metrics); server_parse_config_file(s); if (!s->namespace) { /* Parse kernel command line, but only if we are not a namespace instance */ r = proc_cmdline_parse(parse_proc_cmdline_item, s, PROC_CMDLINE_STRIP_RD_PREFIX); if (r < 0) log_warning_errno(r, "Failed to parse kernel command line, ignoring: %m"); } if (!!s->ratelimit_interval != !!s->ratelimit_burst) { /* One set to 0 and the other not? */ log_debug("Setting both rate limit interval and burst from "USEC_FMT",%u to 0,0", s->ratelimit_interval, s->ratelimit_burst); s->ratelimit_interval = s->ratelimit_burst = 0; } e = getenv("RUNTIME_DIRECTORY"); if (e) s->runtime_directory = strdup(e); else if (s->namespace) s->runtime_directory = strjoin("/run/systemd/journal.", s->namespace); else s->runtime_directory = strdup("/run/systemd/journal"); if (!s->runtime_directory) return log_oom(); (void) mkdir_p(s->runtime_directory, 0755); s->user_journals = ordered_hashmap_new(NULL); if (!s->user_journals) return log_oom(); s->mmap = mmap_cache_new(); if (!s->mmap) return log_oom(); s->deferred_closes = set_new(NULL); if (!s->deferred_closes) return log_oom(); r = sd_event_default(&s->event); if (r < 0) return log_error_errno(r, "Failed to create event loop: %m"); n = sd_listen_fds(true); if (n < 0) return log_error_errno(n, "Failed to read listening file descriptors from environment: %m"); native_socket = strjoina(s->runtime_directory, "/socket"); stdout_socket = strjoina(s->runtime_directory, "/stdout"); syslog_socket = strjoina(s->runtime_directory, "/dev-log"); varlink_socket = strjoina(s->runtime_directory, "/io.systemd.journal"); for (fd = SD_LISTEN_FDS_START; fd < SD_LISTEN_FDS_START + n; fd++) { if (sd_is_socket_unix(fd, SOCK_DGRAM, -1, native_socket, 0) > 0) { if (s->native_fd >= 0) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Too many native sockets passed."); s->native_fd = fd; } else if (sd_is_socket_unix(fd, SOCK_STREAM, 1, stdout_socket, 0) > 0) { if (s->stdout_fd >= 0) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Too many stdout sockets passed."); s->stdout_fd = fd; } else if (sd_is_socket_unix(fd, SOCK_DGRAM, -1, syslog_socket, 0) > 0) { if (s->syslog_fd >= 0) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Too many /dev/log sockets passed."); s->syslog_fd = fd; } else if (sd_is_socket_unix(fd, SOCK_STREAM, 1, varlink_socket, 0) > 0) { if (varlink_fd >= 0) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Too many varlink sockets passed."); varlink_fd = fd; } else if (sd_is_socket(fd, AF_NETLINK, SOCK_RAW, -1) > 0) { if (s->audit_fd >= 0) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Too many audit sockets passed."); s->audit_fd = fd; } else { if (!fds) { fds = fdset_new(); if (!fds) return log_oom(); } r = fdset_put(fds, fd); if (r < 0) return log_oom(); } } /* Try to restore streams, but don't bother if this fails */ (void) server_restore_streams(s, fds); if (fdset_size(fds) > 0) { log_warning("%u unknown file descriptors passed, closing.", fdset_size(fds)); fds = fdset_free(fds); } no_sockets = s->native_fd < 0 && s->stdout_fd < 0 && s->syslog_fd < 0 && s->audit_fd < 0 && varlink_fd < 0; /* always open stdout, syslog, native, and kmsg sockets */ /* systemd-journald.socket: /run/systemd/journal/stdout */ r = server_open_stdout_socket(s, stdout_socket); if (r < 0) return r; /* systemd-journald-dev-log.socket: /run/systemd/journal/dev-log */ r = server_open_syslog_socket(s, syslog_socket); if (r < 0) return r; /* systemd-journald.socket: /run/systemd/journal/socket */ r = server_open_native_socket(s, native_socket); if (r < 0) return r; /* /dev/kmsg */ r = server_open_dev_kmsg(s); if (r < 0) return r; /* Unless we got *some* sockets and not audit, open audit socket */ if (s->audit_fd >= 0 || no_sockets) { r = server_open_audit(s); if (r < 0) return r; } r = server_open_varlink(s, varlink_socket, varlink_fd); if (r < 0) return r; r = server_open_kernel_seqnum(s); if (r < 0) return r; r = server_open_hostname(s); if (r < 0) return r; r = setup_signals(s); if (r < 0) return r; s->ratelimit = journal_ratelimit_new(); if (!s->ratelimit) return log_oom(); r = cg_get_root_path(&s->cgroup_root); if (r < 0) return log_error_errno(r, "Failed to acquire cgroup root path: %m"); server_cache_hostname(s); server_cache_boot_id(s); server_cache_machine_id(s); if (s->namespace) s->runtime_storage.path = strjoin("/run/log/journal/", SERVER_MACHINE_ID(s), ".", s->namespace); else s->runtime_storage.path = strjoin("/run/log/journal/", SERVER_MACHINE_ID(s)); if (!s->runtime_storage.path) return log_oom(); e = getenv("LOGS_DIRECTORY"); if (e) s->system_storage.path = strdup(e); else if (s->namespace) s->system_storage.path = strjoin("/var/log/journal/", SERVER_MACHINE_ID(s), ".", s->namespace); else s->system_storage.path = strjoin("/var/log/journal/", SERVER_MACHINE_ID(s)); if (!s->system_storage.path) return log_oom(); (void) server_connect_notify(s); (void) client_context_acquire_default(s); r = system_journal_open(s, false, false); if (r < 0) return r; server_start_or_stop_idle_timer(s); return 0; } void server_maybe_append_tags(Server *s) { #if HAVE_GCRYPT JournalFile *f; Iterator i; usec_t n; n = now(CLOCK_REALTIME); if (s->system_journal) journal_file_maybe_append_tag(s->system_journal, n); ORDERED_HASHMAP_FOREACH(f, s->user_journals, i) journal_file_maybe_append_tag(f, n); #endif } void server_done(Server *s) { assert(s); free(s->namespace); free(s->namespace_field); set_free_with_destructor(s->deferred_closes, journal_file_close); while (s->stdout_streams) stdout_stream_free(s->stdout_streams); client_context_flush_all(s); (void) journal_file_close(s->system_journal); (void) journal_file_close(s->runtime_journal); ordered_hashmap_free_with_destructor(s->user_journals, journal_file_close); varlink_server_unref(s->varlink_server); sd_event_source_unref(s->syslog_event_source); sd_event_source_unref(s->native_event_source); sd_event_source_unref(s->stdout_event_source); sd_event_source_unref(s->dev_kmsg_event_source); sd_event_source_unref(s->audit_event_source); sd_event_source_unref(s->sync_event_source); sd_event_source_unref(s->sigusr1_event_source); sd_event_source_unref(s->sigusr2_event_source); sd_event_source_unref(s->sigterm_event_source); sd_event_source_unref(s->sigint_event_source); sd_event_source_unref(s->sigrtmin1_event_source); sd_event_source_unref(s->hostname_event_source); sd_event_source_unref(s->notify_event_source); sd_event_source_unref(s->watchdog_event_source); sd_event_source_unref(s->idle_event_source); sd_event_unref(s->event); safe_close(s->syslog_fd); safe_close(s->native_fd); safe_close(s->stdout_fd); safe_close(s->dev_kmsg_fd); safe_close(s->audit_fd); safe_close(s->hostname_fd); safe_close(s->notify_fd); if (s->ratelimit) journal_ratelimit_free(s->ratelimit); if (s->kernel_seqnum) munmap(s->kernel_seqnum, sizeof(uint64_t)); free(s->buffer); free(s->tty_path); free(s->cgroup_root); free(s->hostname_field); free(s->runtime_storage.path); free(s->system_storage.path); free(s->runtime_directory); mmap_cache_unref(s->mmap); } static const char* const storage_table[_STORAGE_MAX] = { [STORAGE_AUTO] = "auto", [STORAGE_VOLATILE] = "volatile", [STORAGE_PERSISTENT] = "persistent", [STORAGE_NONE] = "none" }; DEFINE_STRING_TABLE_LOOKUP(storage, Storage); DEFINE_CONFIG_PARSE_ENUM(config_parse_storage, storage, Storage, "Failed to parse storage setting"); static const char* const split_mode_table[_SPLIT_MAX] = { [SPLIT_LOGIN] = "login", [SPLIT_UID] = "uid", [SPLIT_NONE] = "none", }; DEFINE_STRING_TABLE_LOOKUP(split_mode, SplitMode); DEFINE_CONFIG_PARSE_ENUM(config_parse_split_mode, split_mode, SplitMode, "Failed to parse split mode setting"); int config_parse_line_max( const char* unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { size_t *sz = data; int r; assert(filename); assert(lvalue); assert(rvalue); assert(data); if (isempty(rvalue)) /* Empty assignment means default */ *sz = DEFAULT_LINE_MAX; else { uint64_t v; r = parse_size(rvalue, 1024, &v); if (r < 0) { log_syntax(unit, LOG_ERR, filename, line, r, "Failed to parse LineMax= value, ignoring: %s", rvalue); return 0; } if (v < 79) { /* Why specify 79 here as minimum line length? Simply, because the most common traditional * terminal size is 80ch, and it might make sense to break one character before the natural * line break would occur on that. */ log_syntax(unit, LOG_WARNING, filename, line, 0, "LineMax= too small, clamping to 79: %s", rvalue); *sz = 79; } else if (v > (uint64_t) (SSIZE_MAX-1)) { /* So, why specify SSIZE_MAX-1 here? Because that's one below the largest size value read() * can return, and we need one extra byte for the trailing NUL byte. Of course IRL such large * memory allocations will fail anyway, hence this limit is mostly theoretical anyway, as we'll * fail much earlier anyway. */ log_syntax(unit, LOG_WARNING, filename, line, 0, "LineMax= too large, clamping to %" PRIu64 ": %s", (uint64_t) (SSIZE_MAX-1), rvalue); *sz = SSIZE_MAX-1; } else *sz = (size_t) v; } return 0; } int config_parse_compress( const char* unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { JournalCompressOptions* compress = data; int r; if (isempty(rvalue)) { compress->enabled = true; compress->threshold_bytes = (uint64_t) -1; } else if (streq(rvalue, "1")) { log_syntax(unit, LOG_WARNING, filename, line, 0, "Compress= ambiguously specified as 1, enabling compression with default threshold"); compress->enabled = true; } else if (streq(rvalue, "0")) { log_syntax(unit, LOG_WARNING, filename, line, 0, "Compress= ambiguously specified as 0, disabling compression"); compress->enabled = false; } else { r = parse_boolean(rvalue); if (r < 0) { r = parse_size(rvalue, 1024, &compress->threshold_bytes); if (r < 0) log_syntax(unit, LOG_ERR, filename, line, r, "Failed to parse Compress= value, ignoring: %s", rvalue); else compress->enabled = true; } else compress->enabled = r; } return 0; }