/* SPDX-License-Identifier: LGPL-2.1+ */ #if HAVE_VALGRIND_MEMCHECK_H #include #endif #include #include #include #include #include #include #include #include #include #include #include "sd-id128.h" #include "alloc-util.h" #include "blkid-util.h" #include "blockdev-util.h" #include "btrfs-util.h" #include "conf-files.h" #include "conf-parser.h" #include "def.h" #include "efivars.h" #include "errno-util.h" #include "fd-util.h" #include "format-table.h" #include "format-util.h" #include "fs-util.h" #include "gpt.h" #include "id128-util.h" #include "list.h" #include "locale-util.h" #include "main-func.h" #include "parse-util.h" #include "path-util.h" #include "pretty-print.h" #include "proc-cmdline.h" #include "sort-util.h" #include "stat-util.h" #include "stdio-util.h" #include "string-util.h" #include "strv.h" #include "terminal-util.h" #include "utf8.h" /* Note: When growing and placing new partitions we always align to 4K sector size. It's how newer hard disks * are designed, and if everything is aligned to that performance is best. And for older hard disks with 512B * sector size devices were generally assumed to have an even number of sectors, hence at the worst we'll * waste 3K per partition, which is probably fine. */ static enum { EMPTY_REFUSE, /* refuse empty disks, never create a partition table */ EMPTY_ALLOW, /* allow empty disks, create partition table if necessary */ EMPTY_REQUIRE, /* require an empty disk, create a partition table */ EMPTY_FORCE, /* make disk empty, erase everything, create a partition table always */ } arg_empty = EMPTY_REFUSE; static bool arg_dry_run = true; static const char *arg_node = NULL; static char *arg_root = NULL; static char *arg_definitions = NULL; static bool arg_discard = true; static bool arg_can_factory_reset = false; static int arg_factory_reset = -1; static sd_id128_t arg_seed = SD_ID128_NULL; static bool arg_randomize = false; static int arg_pretty = -1; STATIC_DESTRUCTOR_REGISTER(arg_root, freep); STATIC_DESTRUCTOR_REGISTER(arg_definitions, freep); typedef struct Partition Partition; typedef struct FreeArea FreeArea; typedef struct Context Context; struct Partition { char *definition_path; sd_id128_t type_uuid; sd_id128_t current_uuid, new_uuid; char *current_label, *new_label; bool dropped; bool factory_reset; int32_t priority; uint32_t weight, padding_weight; uint64_t current_size, new_size; uint64_t size_min, size_max; uint64_t current_padding, new_padding; uint64_t padding_min, padding_max; uint64_t partno; uint64_t offset; struct fdisk_partition *current_partition; struct fdisk_partition *new_partition; FreeArea *padding_area; FreeArea *allocated_to_area; LIST_FIELDS(Partition, partitions); }; #define PARTITION_IS_FOREIGN(p) (!(p)->definition_path) #define PARTITION_EXISTS(p) (!!(p)->current_partition) struct FreeArea { Partition *after; uint64_t size; uint64_t allocated; }; struct Context { LIST_HEAD(Partition, partitions); size_t n_partitions; FreeArea **free_areas; size_t n_free_areas, n_allocated_free_areas; uint64_t start, end, total; struct fdisk_context *fdisk_context; sd_id128_t seed; }; static uint64_t round_down_size(uint64_t v, uint64_t p) { return (v / p) * p; } static uint64_t round_up_size(uint64_t v, uint64_t p) { v = DIV_ROUND_UP(v, p); if (v > UINT64_MAX / p) return UINT64_MAX; /* overflow */ return v * p; } static Partition *partition_new(void) { Partition *p; p = new(Partition, 1); if (!p) return NULL; *p = (Partition) { .weight = 1000, .padding_weight = 0, .current_size = UINT64_MAX, .new_size = UINT64_MAX, .size_min = UINT64_MAX, .size_max = UINT64_MAX, .current_padding = UINT64_MAX, .new_padding = UINT64_MAX, .padding_min = UINT64_MAX, .padding_max = UINT64_MAX, .partno = UINT64_MAX, .offset = UINT64_MAX, }; return p; } static Partition* partition_free(Partition *p) { if (!p) return NULL; free(p->current_label); free(p->new_label); free(p->definition_path); if (p->current_partition) fdisk_unref_partition(p->current_partition); if (p->new_partition) fdisk_unref_partition(p->new_partition); return mfree(p); } static Partition* partition_unlink_and_free(Context *context, Partition *p) { if (!p) return NULL; LIST_REMOVE(partitions, context->partitions, p); assert(context->n_partitions > 0); context->n_partitions--; return partition_free(p); } DEFINE_TRIVIAL_CLEANUP_FUNC(Partition*, partition_free); static Context *context_new(sd_id128_t seed) { Context *context; context = new(Context, 1); if (!context) return NULL; *context = (Context) { .start = UINT64_MAX, .end = UINT64_MAX, .total = UINT64_MAX, .seed = seed, }; return context; } static void context_free_free_areas(Context *context) { assert(context); for (size_t i = 0; i < context->n_free_areas; i++) free(context->free_areas[i]); context->free_areas = mfree(context->free_areas); context->n_free_areas = 0; context->n_allocated_free_areas = 0; } static Context *context_free(Context *context) { if (!context) return NULL; while (context->partitions) partition_unlink_and_free(context, context->partitions); assert(context->n_partitions == 0); context_free_free_areas(context); if (context->fdisk_context) fdisk_unref_context(context->fdisk_context); return mfree(context); } DEFINE_TRIVIAL_CLEANUP_FUNC(Context*, context_free); static int context_add_free_area( Context *context, uint64_t size, Partition *after) { FreeArea *a; assert(context); assert(!after || !after->padding_area); if (!GREEDY_REALLOC(context->free_areas, context->n_allocated_free_areas, context->n_free_areas + 1)) return -ENOMEM; a = new(FreeArea, 1); if (!a) return -ENOMEM; *a = (FreeArea) { .size = size, .after = after, }; context->free_areas[context->n_free_areas++] = a; if (after) after->padding_area = a; return 0; } static bool context_drop_one_priority(Context *context) { int32_t priority = 0; Partition *p; bool exists = false; LIST_FOREACH(partitions, p, context->partitions) { if (p->dropped) continue; if (p->priority < priority) continue; if (p->priority == priority) { exists = exists || PARTITION_EXISTS(p); continue; } priority = p->priority; exists = PARTITION_EXISTS(p); } /* Refuse to drop partitions with 0 or negative priorities or partitions of priorities that have at * least one existing priority */ if (priority <= 0 || exists) return false; LIST_FOREACH(partitions, p, context->partitions) { if (p->priority < priority) continue; if (p->dropped) continue; p->dropped = true; log_info("Can't fit partition %s of priority %" PRIi32 ", dropping.", p->definition_path, p->priority); } return true; } static uint64_t partition_min_size(const Partition *p) { uint64_t sz; /* Calculate the disk space we really need at minimum for this partition. If the partition already * exists the current size is what we really need. If it doesn't exist yet refuse to allocate less * than 4K. */ if (PARTITION_IS_FOREIGN(p)) { /* Don't allow changing size of partitions not managed by us */ assert(p->current_size != UINT64_MAX); return p->current_size; } sz = p->current_size != UINT64_MAX ? p->current_size : 4096; if (p->size_min != UINT64_MAX) return MAX(p->size_min, sz); return sz; } static uint64_t partition_max_size(const Partition *p) { /* Calculate how large the partition may become at max. This is generally the configured maximum * size, except when it already exists and is larger than that. In that case it's the existing size, * since we never want to shrink partitions. */ if (PARTITION_IS_FOREIGN(p)) { /* Don't allow changing size of partitions not managed by us */ assert(p->current_size != UINT64_MAX); return p->current_size; } if (p->current_size != UINT64_MAX) return MAX(p->current_size, p->size_max); return p->size_max; } static uint64_t partition_min_size_with_padding(const Partition *p) { uint64_t sz; /* Calculate the disk space we need for this partition plus any free space coming after it. This * takes user configured padding into account as well as any additional whitespace needed to align * the next partition to 4K again. */ sz = partition_min_size(p); if (p->padding_min != UINT64_MAX) sz += p->padding_min; if (PARTITION_EXISTS(p)) { /* If the partition wasn't aligned, add extra space so that any we might add will be aligned */ assert(p->offset != UINT64_MAX); return round_up_size(p->offset + sz, 4096) - p->offset; } /* If this is a new partition we'll place it aligned, hence we just need to round up the required size here */ return round_up_size(sz, 4096); } static uint64_t free_area_available(const FreeArea *a) { assert(a); /* Determines how much of this free area is not allocated yet */ assert(a->size >= a->allocated); return a->size - a->allocated; } static uint64_t free_area_available_for_new_partitions(const FreeArea *a) { uint64_t avail; /* Similar to free_area_available(), but takes into account that the required size and padding of the * preceeding partition is honoured. */ avail = free_area_available(a); if (a->after) { uint64_t need, space; need = partition_min_size_with_padding(a->after); assert(a->after->offset != UINT64_MAX); assert(a->after->current_size != UINT64_MAX); space = round_up_size(a->after->offset + a->after->current_size, 4096) - a->after->offset + avail; if (need >= space) return 0; return space - need; } return avail; } static int free_area_compare(FreeArea *const *a, FreeArea *const*b) { return CMP(free_area_available_for_new_partitions(*a), free_area_available_for_new_partitions(*b)); } static uint64_t charge_size(uint64_t total, uint64_t amount) { uint64_t rounded; assert(amount <= total); /* Subtract the specified amount from total, rounding up to multiple of 4K if there's room */ rounded = round_up_size(amount, 4096); if (rounded >= total) return 0; return total - rounded; } static uint64_t charge_weight(uint64_t total, uint64_t amount) { assert(amount <= total); return total - amount; } static bool context_allocate_partitions(Context *context) { Partition *p; assert(context); /* A simple first-fit algorithm, assuming the array of free areas is sorted by size in decreasing * order. */ LIST_FOREACH(partitions, p, context->partitions) { bool fits = false; uint64_t required; FreeArea *a = NULL; /* Skip partitions we already dropped or that already exist */ if (p->dropped || PARTITION_EXISTS(p)) continue; /* Sort by size */ typesafe_qsort(context->free_areas, context->n_free_areas, free_area_compare); /* How much do we need to fit? */ required = partition_min_size_with_padding(p); assert(required % 4096 == 0); for (size_t i = 0; i < context->n_free_areas; i++) { a = context->free_areas[i]; if (free_area_available_for_new_partitions(a) >= required) { fits = true; break; } } if (!fits) return false; /* 😢 Oh no! We can't fit this partition into any free area! */ /* Assign the partition to this free area */ p->allocated_to_area = a; /* Budget the minimal partition size */ a->allocated += required; } return true; } static int context_sum_weights(Context *context, FreeArea *a, uint64_t *ret) { uint64_t weight_sum = 0; Partition *p; assert(context); assert(a); assert(ret); /* Determine the sum of the weights of all partitions placed in or before the specified free area */ LIST_FOREACH(partitions, p, context->partitions) { if (p->padding_area != a && p->allocated_to_area != a) continue; if (p->weight > UINT64_MAX - weight_sum) goto overflow_sum; weight_sum += p->weight; if (p->padding_weight > UINT64_MAX - weight_sum) goto overflow_sum; weight_sum += p->padding_weight; } *ret = weight_sum; return 0; overflow_sum: return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Combined weight of partition exceeds unsigned 64bit range, refusing."); } static int scale_by_weight(uint64_t value, uint64_t weight, uint64_t weight_sum, uint64_t *ret) { assert(weight_sum >= weight); assert(ret); if (weight == 0) { *ret = 0; return 0; } if (value > UINT64_MAX / weight) return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Scaling by weight of partition exceeds unsigned 64bit range, refusing."); *ret = value * weight / weight_sum; return 0; } typedef enum GrowPartitionPhase { /* The first phase: we charge partitions which need more (according to constraints) than their weight-based share. */ PHASE_OVERCHARGE, /* The second phase: we charge partitions which need less (according to constraints) than their weight-based share. */ PHASE_UNDERCHARGE, /* The third phase: we distribute what remains among the remaining partitions, according to the weights */ PHASE_DISTRIBUTE, } GrowPartitionPhase; static int context_grow_partitions_phase( Context *context, FreeArea *a, GrowPartitionPhase phase, uint64_t *span, uint64_t *weight_sum) { Partition *p; int r; assert(context); assert(a); /* Now let's look at the intended weights and adjust them taking the minimum space assignments into * account. i.e. if a partition has a small weight but a high minimum space value set it should not * get any additional room from the left-overs. Similar, if two partitions have the same weight they * should get the same space if possible, even if one has a smaller minimum size than the other. */ LIST_FOREACH(partitions, p, context->partitions) { /* Look only at partitions associated with this free area, i.e. immediately * preceeding it, or allocated into it */ if (p->allocated_to_area != a && p->padding_area != a) continue; if (p->new_size == UINT64_MAX) { bool charge = false, try_again = false; uint64_t share, rsz, xsz; /* Calculate how much this space this partition needs if everyone would get * the weight based share */ r = scale_by_weight(*span, p->weight, *weight_sum, &share); if (r < 0) return r; rsz = partition_min_size(p); xsz = partition_max_size(p); if (phase == PHASE_OVERCHARGE && rsz > share) { /* This partition needs more than its calculated share. Let's assign * it that, and take this partition out of all calculations and start * again. */ p->new_size = rsz; charge = try_again = true; } else if (phase == PHASE_UNDERCHARGE && xsz != UINT64_MAX && xsz < share) { /* This partition accepts less than its calculated * share. Let's assign it that, and take this partition out * of all calculations and start again. */ p->new_size = xsz; charge = try_again = true; } else if (phase == PHASE_DISTRIBUTE) { /* This partition can accept its calculated share. Let's * assign it. There's no need to restart things here since * assigning this shouldn't impact the shares of the other * partitions. */ if (PARTITION_IS_FOREIGN(p)) /* Never change of foreign partitions (i.e. those we don't manage) */ p->new_size = p->current_size; else p->new_size = MAX(round_down_size(share, 4096), rsz); charge = true; } if (charge) { *span = charge_size(*span, p->new_size); *weight_sum = charge_weight(*weight_sum, p->weight); } if (try_again) return 0; /* try again */ } if (p->new_padding == UINT64_MAX) { bool charge = false, try_again = false; uint64_t share; r = scale_by_weight(*span, p->padding_weight, *weight_sum, &share); if (r < 0) return r; if (phase == PHASE_OVERCHARGE && p->padding_min != UINT64_MAX && p->padding_min > share) { p->new_padding = p->padding_min; charge = try_again = true; } else if (phase == PHASE_UNDERCHARGE && p->padding_max != UINT64_MAX && p->padding_max < share) { p->new_padding = p->padding_max; charge = try_again = true; } else if (phase == PHASE_DISTRIBUTE) { p->new_padding = round_down_size(share, 4096); if (p->padding_min != UINT64_MAX && p->new_padding < p->padding_min) p->new_padding = p->padding_min; charge = true; } if (charge) { *span = charge_size(*span, p->new_padding); *weight_sum = charge_weight(*weight_sum, p->padding_weight); } if (try_again) return 0; /* try again */ } } return 1; /* done */ } static int context_grow_partitions_on_free_area(Context *context, FreeArea *a) { uint64_t weight_sum = 0, span; int r; assert(context); assert(a); r = context_sum_weights(context, a, &weight_sum); if (r < 0) return r; /* Let's calculate the total area covered by this free area and the partition before it */ span = a->size; if (a->after) { assert(a->after->offset != UINT64_MAX); assert(a->after->current_size != UINT64_MAX); span += round_up_size(a->after->offset + a->after->current_size, 4096) - a->after->offset; } GrowPartitionPhase phase = PHASE_OVERCHARGE; for (;;) { r = context_grow_partitions_phase(context, a, phase, &span, &weight_sum); if (r < 0) return r; if (r == 0) /* not done yet, re-run this phase */ continue; if (phase == PHASE_OVERCHARGE) phase = PHASE_UNDERCHARGE; else if (phase == PHASE_UNDERCHARGE) phase = PHASE_DISTRIBUTE; else if (phase == PHASE_DISTRIBUTE) break; } /* We still have space left over? Donate to preceeding partition if we have one */ if (span > 0 && a->after && !PARTITION_IS_FOREIGN(a->after)) { uint64_t m, xsz; assert(a->after->new_size != UINT64_MAX); m = a->after->new_size + span; xsz = partition_max_size(a->after); if (xsz != UINT64_MAX && m > xsz) m = xsz; span = charge_size(span, m - a->after->new_size); a->after->new_size = m; } /* What? Even still some space left (maybe because there was no preceeding partition, or it had a * size limit), then let's donate it to whoever wants it. */ if (span > 0) { Partition *p; LIST_FOREACH(partitions, p, context->partitions) { uint64_t m, xsz; if (p->allocated_to_area != a) continue; if (PARTITION_IS_FOREIGN(p)) continue; assert(p->new_size != UINT64_MAX); m = p->new_size + span; xsz = partition_max_size(a->after); if (xsz != UINT64_MAX && m > xsz) m = xsz; span = charge_size(span, m - p->new_size); p->new_size = m; if (span == 0) break; } } /* Yuck, still noone? Then make it padding */ if (span > 0 && a->after) { assert(a->after->new_padding != UINT64_MAX); a->after->new_padding += span; } return 0; } static int context_grow_partitions(Context *context) { Partition *p; int r; assert(context); for (size_t i = 0; i < context->n_free_areas; i++) { r = context_grow_partitions_on_free_area(context, context->free_areas[i]); if (r < 0) return r; } /* All existing partitions that have no free space after them can't change size */ LIST_FOREACH(partitions, p, context->partitions) { if (p->dropped) continue; if (!PARTITION_EXISTS(p) || p->padding_area) { /* The algorithm above must have initialized this already */ assert(p->new_size != UINT64_MAX); continue; } assert(p->new_size == UINT64_MAX); p->new_size = p->current_size; assert(p->new_padding == UINT64_MAX); p->new_padding = p->current_padding; } return 0; } static void context_place_partitions(Context *context) { uint64_t partno = 0; Partition *p; assert(context); /* Determine next partition number to assign */ LIST_FOREACH(partitions, p, context->partitions) { if (!PARTITION_EXISTS(p)) continue; assert(p->partno != UINT64_MAX); if (p->partno >= partno) partno = p->partno + 1; } for (size_t i = 0; i < context->n_free_areas; i++) { FreeArea *a = context->free_areas[i]; uint64_t start, left; if (a->after) { assert(a->after->offset != UINT64_MAX); assert(a->after->new_size != UINT64_MAX); assert(a->after->new_padding != UINT64_MAX); start = a->after->offset + a->after->new_size + a->after->new_padding; } else start = context->start; start = round_up_size(start, 4096); left = a->size; LIST_FOREACH(partitions, p, context->partitions) { if (p->allocated_to_area != a) continue; p->offset = start; p->partno = partno++; assert(left >= p->new_size); start += p->new_size; left -= p->new_size; assert(left >= p->new_padding); start += p->new_padding; left -= p->new_padding; } } } typedef struct GptPartitionType { sd_id128_t uuid; const char *name; } GptPartitionType; static const GptPartitionType gpt_partition_type_table[] = { { GPT_ROOT_X86, "root-x86" }, { GPT_ROOT_X86_VERITY, "root-x86-verity" }, { GPT_ROOT_X86_64, "root-x86-64" }, { GPT_ROOT_X86_64_VERITY, "root-x86-64-verity" }, { GPT_ROOT_ARM, "root-arm" }, { GPT_ROOT_ARM_VERITY, "root-arm-verity" }, { GPT_ROOT_ARM_64, "root-arm64" }, { GPT_ROOT_ARM_64_VERITY, "root-arm64-verity" }, { GPT_ROOT_IA64, "root-ia64" }, { GPT_ROOT_IA64_VERITY, "root-ia64-verity" }, #ifdef GPT_ROOT_NATIVE { GPT_ROOT_NATIVE, "root" }, { GPT_ROOT_NATIVE_VERITY, "root-verity" }, #endif #ifdef GPT_ROOT_SECONDARY { GPT_ROOT_SECONDARY, "root-secondary" }, { GPT_ROOT_SECONDARY_VERITY, "root-secondary-verity" }, #endif { GPT_ESP, "esp" }, { GPT_XBOOTLDR, "xbootldr" }, { GPT_SWAP, "swap" }, { GPT_HOME, "home" }, { GPT_SRV, "srv" }, { GPT_VAR, "var" }, { GPT_TMP, "tmp" }, { GPT_LINUX_GENERIC, "linux-generic", }, }; static const char *gpt_partition_type_uuid_to_string(sd_id128_t id) { for (size_t i = 0; i < ELEMENTSOF(gpt_partition_type_table); i++) if (sd_id128_equal(id, gpt_partition_type_table[i].uuid)) return gpt_partition_type_table[i].name; return NULL; } static const char *gpt_partition_type_uuid_to_string_harder( sd_id128_t id, char buffer[static ID128_UUID_STRING_MAX]) { const char *s; assert(buffer); s = gpt_partition_type_uuid_to_string(id); if (s) return s; return id128_to_uuid_string(id, buffer); } static int gpt_partition_type_uuid_from_string(const char *s, sd_id128_t *ret) { assert(s); assert(ret); for (size_t i = 0; i < ELEMENTSOF(gpt_partition_type_table); i++) if (streq(s, gpt_partition_type_table[i].name)) { *ret = gpt_partition_type_table[i].uuid; return 0; } return sd_id128_from_string(s, ret); } static int config_parse_type( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { sd_id128_t *type_uuid = data; int r; assert(rvalue); assert(type_uuid); r = gpt_partition_type_uuid_from_string(rvalue, type_uuid); if (r < 0) return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to parse partition type: %s", rvalue); return 0; } static int config_parse_label( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { _cleanup_free_ char16_t *recoded = NULL; char **label = data; int r; assert(rvalue); assert(label); if (!utf8_is_valid(rvalue)) { log_syntax(unit, LOG_WARNING, filename, line, 0, "Partition label not valid UTF-8, ignoring: %s", rvalue); return 0; } recoded = utf8_to_utf16(rvalue, strlen(rvalue)); if (!recoded) return log_oom(); if (char16_strlen(recoded) > 36) { log_syntax(unit, LOG_WARNING, filename, line, 0, "Partition label too long for GPT table, ignoring: %s", rvalue); return 0; } r = free_and_strdup(label, rvalue); if (r < 0) return log_oom(); return 0; } static int config_parse_weight( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { uint32_t *priority = data, v; int r; assert(rvalue); assert(priority); r = safe_atou32(rvalue, &v); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to parse weight value, ignoring: %s", rvalue); return 0; } if (v > 1000U*1000U) { log_syntax(unit, LOG_WARNING, filename, line, r, "Weight needs to be in range 0…10000000, ignoring: %" PRIu32, v); return 0; } *priority = v; return 0; } static int config_parse_size4096( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { uint64_t *sz = data, parsed; int r; assert(rvalue); assert(data); r = parse_size(rvalue, 1024, &parsed); if (r < 0) return log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to parse size value: %s", rvalue); if (ltype > 0) *sz = round_up_size(parsed, 4096); else if (ltype < 0) *sz = round_down_size(parsed, 4096); else *sz = parsed; if (*sz != parsed) log_syntax(unit, LOG_NOTICE, filename, line, r, "Rounded %s= size %" PRIu64 " → %" PRIu64 ", a multiple of 4096.", lvalue, parsed, *sz); return 0; } static int partition_read_definition(Partition *p, const char *path) { ConfigTableItem table[] = { { "Partition", "Type", config_parse_type, 0, &p->type_uuid }, { "Partition", "Label", config_parse_label, 0, &p->new_label }, { "Partition", "Priority", config_parse_int32, 0, &p->priority }, { "Partition", "Weight", config_parse_weight, 0, &p->weight }, { "Partition", "PaddingWeight", config_parse_weight, 0, &p->padding_weight }, { "Partition", "SizeMinBytes", config_parse_size4096, 1, &p->size_min }, { "Partition", "SizeMaxBytes", config_parse_size4096, -1, &p->size_max }, { "Partition", "PaddingMinBytes", config_parse_size4096, 1, &p->padding_min }, { "Partition", "PaddingMaxBytes", config_parse_size4096, -1, &p->padding_max }, { "Partition", "FactoryReset", config_parse_bool, 0, &p->factory_reset }, {} }; int r; r = config_parse(NULL, path, NULL, "Partition\0", config_item_table_lookup, table, CONFIG_PARSE_WARN, p); if (r < 0) return r; if (p->size_min != UINT64_MAX && p->size_max != UINT64_MAX && p->size_min > p->size_max) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "SizeMinBytes= larger than SizeMaxBytes=, refusing."); if (p->padding_min != UINT64_MAX && p->padding_max != UINT64_MAX && p->padding_min > p->padding_max) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "PaddingMinBytes= larger than PaddingMaxBytes=, refusing."); if (sd_id128_is_null(p->type_uuid)) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "Type= not defined, refusing."); return 0; } static int context_read_definitions( Context *context, const char *directory, const char *root) { _cleanup_strv_free_ char **files = NULL; Partition *last = NULL; char **f; int r; assert(context); if (directory) r = conf_files_list_strv(&files, ".conf", NULL, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, (const char**) STRV_MAKE(directory)); else r = conf_files_list_strv(&files, ".conf", root, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, (const char**) CONF_PATHS_STRV("repart.d")); if (r < 0) return log_error_errno(r, "Failed to enumerate *.conf files: %m"); STRV_FOREACH(f, files) { _cleanup_(partition_freep) Partition *p = NULL; p = partition_new(); if (!p) return log_oom(); p->definition_path = strdup(*f); if (!p->definition_path) return log_oom(); r = partition_read_definition(p, *f); if (r < 0) return r; LIST_INSERT_AFTER(partitions, context->partitions, last, p); last = TAKE_PTR(p); context->n_partitions++; } return 0; } DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_context*, fdisk_unref_context); DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_partition*, fdisk_unref_partition); DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_parttype*, fdisk_unref_parttype); DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_table*, fdisk_unref_table); static int determine_current_padding( struct fdisk_context *c, struct fdisk_table *t, struct fdisk_partition *p, uint64_t *ret) { size_t n_partitions; uint64_t offset, next = UINT64_MAX; assert(c); assert(t); assert(p); if (!fdisk_partition_has_end(p)) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition has no end!"); offset = fdisk_partition_get_end(p); assert(offset < UINT64_MAX / 512); offset *= 512; n_partitions = fdisk_table_get_nents(t); for (size_t i = 0; i < n_partitions; i++) { struct fdisk_partition *q; uint64_t start; q = fdisk_table_get_partition(t, i); if (!q) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m"); if (fdisk_partition_is_used(q) <= 0) continue; if (!fdisk_partition_has_start(q)) continue; start = fdisk_partition_get_start(q); assert(start < UINT64_MAX / 512); start *= 512; if (start >= offset && (next == UINT64_MAX || next > start)) next = start; } if (next == UINT64_MAX) { /* No later partition? In that case check the end of the usable area */ next = fdisk_get_last_lba(c); assert(next < UINT64_MAX); next++; /* The last LBA is one sector before the end */ assert(next < UINT64_MAX / 512); next *= 512; if (offset > next) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end."); } assert(next >= offset); offset = round_up_size(offset, 4096); next = round_down_size(next, 4096); if (next >= offset) /* Check again, rounding might have fucked things up */ *ret = next - offset; else *ret = 0; return 0; } static int fdisk_ask_cb(struct fdisk_context *c, struct fdisk_ask *ask, void *data) { _cleanup_free_ char *ids = NULL; int r; if (fdisk_ask_get_type(ask) != FDISK_ASKTYPE_STRING) return -EINVAL; ids = new(char, ID128_UUID_STRING_MAX); if (!ids) return -ENOMEM; r = fdisk_ask_string_set_result(ask, id128_to_uuid_string(*(sd_id128_t*) data, ids)); if (r < 0) return r; TAKE_PTR(ids); return 0; } static int fdisk_set_disklabel_id_by_uuid(struct fdisk_context *c, sd_id128_t id) { int r; r = fdisk_set_ask(c, fdisk_ask_cb, &id); if (r < 0) return r; r = fdisk_set_disklabel_id(c); if (r < 0) return r; return fdisk_set_ask(c, NULL, NULL); } #define DISK_UUID_TOKEN "disk-uuid" static int disk_acquire_uuid(Context *context, sd_id128_t *ret) { union { unsigned char md[SHA256_DIGEST_LENGTH]; sd_id128_t id; } result; assert(context); assert(ret); /* Calculate the HMAC-SHA256 of the string "disk-uuid", keyed off the machine ID. We use the machine * ID as key (and not as cleartext!) since it's the machine ID we don't want to leak. */ if (!HMAC(EVP_sha256(), &context->seed, sizeof(context->seed), (const unsigned char*) DISK_UUID_TOKEN, strlen(DISK_UUID_TOKEN), result.md, NULL)) return log_error_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE), "HMAC-SHA256 calculation failed."); /* Take the first half, mark it as v4 UUID */ assert_cc(sizeof(result.md) == sizeof(result.id) * 2); *ret = id128_make_v4_uuid(result.id); return 0; } static int context_load_partition_table(Context *context, const char *node) { _cleanup_(fdisk_unref_contextp) struct fdisk_context *c = NULL; _cleanup_(fdisk_unref_tablep) struct fdisk_table *t = NULL; uint64_t left_boundary = UINT64_MAX, first_lba, last_lba, nsectors; _cleanup_free_ char *disk_uuid_string = NULL; bool from_scratch = false; sd_id128_t disk_uuid; size_t n_partitions; int r; assert(context); assert(node); c = fdisk_new_context(); if (!c) return log_oom(); r = fdisk_assign_device(c, node, arg_dry_run); if (r < 0) return log_error_errno(r, "Failed to open device: %m"); /* Tell udev not to interfere while we are processing the device */ if (flock(fdisk_get_devfd(c), arg_dry_run ? LOCK_SH : LOCK_EX) < 0) return log_error_errno(errno, "Failed to lock block device: %m"); switch (arg_empty) { case EMPTY_REFUSE: /* Refuse empty disks, insist on an existing GPT partition table */ if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT)) return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has no GPT disk label, not repartitioning.", node); break; case EMPTY_REQUIRE: /* Require an empty disk, refuse any existing partition table */ r = fdisk_has_label(c); if (r < 0) return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", node); if (r > 0) return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s already has a disk label, refusing.", node); from_scratch = true; break; case EMPTY_ALLOW: /* Allow both an empty disk and an existing partition table, but only GPT */ r = fdisk_has_label(c); if (r < 0) return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", node); if (r > 0) { if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT)) return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has non-GPT disk label, not repartitioning.", node); } else from_scratch = true; break; case EMPTY_FORCE: /* Always reinitiaize the disk, don't consider what there was on the disk before */ from_scratch = true; break; } if (from_scratch) { r = fdisk_enable_wipe(c, true); if (r < 0) return log_error_errno(r, "Failed to enable wiping of disk signature: %m"); r = fdisk_create_disklabel(c, "gpt"); if (r < 0) return log_error_errno(r, "Failed to create GPT disk label: %m"); r = disk_acquire_uuid(context, &disk_uuid); if (r < 0) return log_error_errno(r, "Failed to acquire disk GPT uuid: %m"); r = fdisk_set_disklabel_id_by_uuid(c, disk_uuid); if (r < 0) return log_error_errno(r, "Failed to set GPT disk label: %m"); goto add_initial_free_area; } r = fdisk_get_disklabel_id(c, &disk_uuid_string); if (r < 0) return log_error_errno(r, "Failed to get current GPT disk label UUID: %m"); r = sd_id128_from_string(disk_uuid_string, &disk_uuid); if (r < 0) return log_error_errno(r, "Failed to parse current GPT disk label UUID: %m"); if (sd_id128_is_null(disk_uuid)) { r = disk_acquire_uuid(context, &disk_uuid); if (r < 0) return log_error_errno(r, "Failed to acquire disk GPT uuid: %m"); r = fdisk_set_disklabel_id(c); if (r < 0) return log_error_errno(r, "Failed to set GPT disk label: %m"); } r = fdisk_get_partitions(c, &t); if (r < 0) return log_error_errno(r, "Failed to acquire partition table: %m"); n_partitions = fdisk_table_get_nents(t); for (size_t i = 0; i < n_partitions; i++) { _cleanup_free_ char *label_copy = NULL; Partition *pp, *last = NULL; struct fdisk_partition *p; struct fdisk_parttype *pt; const char *pts, *ids, *label; uint64_t sz, start; bool found = false; sd_id128_t ptid, id; size_t partno; p = fdisk_table_get_partition(t, i); if (!p) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m"); if (fdisk_partition_is_used(p) <= 0) continue; if (fdisk_partition_has_start(p) <= 0 || fdisk_partition_has_size(p) <= 0 || fdisk_partition_has_partno(p) <= 0) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a position, size or number."); pt = fdisk_partition_get_type(p); if (!pt) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to acquire type of partition: %m"); pts = fdisk_parttype_get_string(pt); if (!pts) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to acquire type of partition as string: %m"); r = sd_id128_from_string(pts, &ptid); if (r < 0) return log_error_errno(r, "Failed to parse partition type UUID %s: %m", pts); ids = fdisk_partition_get_uuid(p); if (!ids) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a UUID."); r = sd_id128_from_string(ids, &id); if (r < 0) return log_error_errno(r, "Failed to parse partition UUID %s: %m", ids); label = fdisk_partition_get_name(p); if (!isempty(label)) { label_copy = strdup(label); if (!label_copy) return log_oom(); } sz = fdisk_partition_get_size(p); assert_se(sz <= UINT64_MAX/512); sz *= 512; start = fdisk_partition_get_start(p); assert_se(start <= UINT64_MAX/512); start *= 512; partno = fdisk_partition_get_partno(p); if (left_boundary == UINT64_MAX || left_boundary > start) left_boundary = start; /* Assign this existing partition to the first partition of the right type that doesn't have * an existing one assigned yet. */ LIST_FOREACH(partitions, pp, context->partitions) { last = pp; if (!sd_id128_equal(pp->type_uuid, ptid)) continue; if (!pp->current_partition) { pp->current_uuid = id; pp->current_size = sz; pp->offset = start; pp->partno = partno; pp->current_label = TAKE_PTR(label_copy); pp->current_partition = p; fdisk_ref_partition(p); r = determine_current_padding(c, t, p, &pp->current_padding); if (r < 0) return r; if (pp->current_padding > 0) { r = context_add_free_area(context, pp->current_padding, pp); if (r < 0) return r; } found = true; break; } } /* If we have no matching definition, create a new one. */ if (!found) { _cleanup_(partition_freep) Partition *np = NULL; np = partition_new(); if (!np) return log_oom(); np->current_uuid = id; np->type_uuid = ptid; np->current_size = sz; np->offset = start; np->partno = partno; np->current_label = TAKE_PTR(label_copy); np->current_partition = p; fdisk_ref_partition(p); r = determine_current_padding(c, t, p, &np->current_padding); if (r < 0) return r; if (np->current_padding > 0) { r = context_add_free_area(context, np->current_padding, np); if (r < 0) return r; } LIST_INSERT_AFTER(partitions, context->partitions, last, TAKE_PTR(np)); context->n_partitions++; } } add_initial_free_area: nsectors = fdisk_get_nsectors(c); assert(nsectors <= UINT64_MAX/512); nsectors *= 512; first_lba = fdisk_get_first_lba(c); assert(first_lba <= UINT64_MAX/512); first_lba *= 512; last_lba = fdisk_get_last_lba(c); assert(last_lba < UINT64_MAX); last_lba++; assert(last_lba <= UINT64_MAX/512); last_lba *= 512; assert(last_lba >= first_lba); if (left_boundary == UINT64_MAX) { /* No partitions at all? Then the whole disk is up for grabs. */ first_lba = round_up_size(first_lba, 4096); last_lba = round_down_size(last_lba, 4096); if (last_lba > first_lba) { r = context_add_free_area(context, last_lba - first_lba, NULL); if (r < 0) return r; } } else { /* Add space left of first partition */ assert(left_boundary >= first_lba); first_lba = round_up_size(first_lba, 4096); left_boundary = round_down_size(left_boundary, 4096); last_lba = round_down_size(last_lba, 4096); if (left_boundary > first_lba) { r = context_add_free_area(context, left_boundary - first_lba, NULL); if (r < 0) return r; } } context->start = first_lba; context->end = last_lba; context->total = nsectors; context->fdisk_context = TAKE_PTR(c); return from_scratch; } static void context_unload_partition_table(Context *context) { Partition *p, *next; assert(context); LIST_FOREACH_SAFE(partitions, p, next, context->partitions) { /* Entirely remove partitions that have no configuration */ if (PARTITION_IS_FOREIGN(p)) { partition_unlink_and_free(context, p); continue; } /* Otherwise drop all data we read off the block device and everything we might have * calculated based on it */ p->dropped = false; p->current_size = UINT64_MAX; p->new_size = UINT64_MAX; p->current_padding = UINT64_MAX; p->new_padding = UINT64_MAX; p->partno = UINT64_MAX; p->offset = UINT64_MAX; if (p->current_partition) { fdisk_unref_partition(p->current_partition); p->current_partition = NULL; } if (p->new_partition) { fdisk_unref_partition(p->new_partition); p->new_partition = NULL; } p->padding_area = NULL; p->allocated_to_area = NULL; p->current_uuid = p->new_uuid = SD_ID128_NULL; } context->start = UINT64_MAX; context->end = UINT64_MAX; context->total = UINT64_MAX; if (context->fdisk_context) { fdisk_unref_context(context->fdisk_context); context->fdisk_context = NULL; } context_free_free_areas(context); } static int format_size_change(uint64_t from, uint64_t to, char **ret) { char format_buffer1[FORMAT_BYTES_MAX], format_buffer2[FORMAT_BYTES_MAX], *buf; if (from != UINT64_MAX) format_bytes(format_buffer1, sizeof(format_buffer1), from); if (to != UINT64_MAX) format_bytes(format_buffer2, sizeof(format_buffer2), to); if (from != UINT64_MAX) { if (from == to || to == UINT64_MAX) buf = strdup(format_buffer1); else buf = strjoin(format_buffer1, " ", special_glyph(SPECIAL_GLYPH_ARROW), " ", format_buffer2); } else if (to != UINT64_MAX) buf = strjoin(special_glyph(SPECIAL_GLYPH_ARROW), " ", format_buffer2); else { *ret = NULL; return 0; } if (!buf) return log_oom(); *ret = TAKE_PTR(buf); return 1; } static const char *partition_label(const Partition *p) { assert(p); if (p->new_label) return p->new_label; if (p->current_label) return p->current_label; return gpt_partition_type_uuid_to_string(p->type_uuid); } static int context_dump_partitions(Context *context, const char *node) { _cleanup_(table_unrefp) Table *t = NULL; uint64_t sum_padding = 0, sum_size = 0; Partition *p; int r; t = table_new("type", "label", "uuid", "file", "node", "offset", "raw size", "size", "raw padding", "padding"); if (!t) return log_oom(); if (!DEBUG_LOGGING) (void) table_set_display(t, 0, 1, 2, 3, 4, 7, 9, (size_t) -1); (void) table_set_align_percent(t, table_get_cell(t, 0, 4), 100); (void) table_set_align_percent(t, table_get_cell(t, 0, 5), 100); LIST_FOREACH(partitions, p, context->partitions) { _cleanup_free_ char *size_change = NULL, *padding_change = NULL, *partname = NULL; char uuid_buffer[ID128_UUID_STRING_MAX]; const char *label; if (p->dropped) continue; label = partition_label(p); partname = p->partno != UINT64_MAX ? fdisk_partname(node, p->partno+1) : NULL; r = format_size_change(p->current_size, p->new_size, &size_change); if (r < 0) return r; r = format_size_change(p->current_padding, p->new_padding, &padding_change); if (r < 0) return r; if (p->new_size != UINT64_MAX) sum_size += p->new_size; if (p->new_padding != UINT64_MAX) sum_padding += p->new_padding; r = table_add_many( t, TABLE_STRING, gpt_partition_type_uuid_to_string_harder(p->type_uuid, uuid_buffer), TABLE_STRING, label ?: "-", TABLE_SET_COLOR, label ? NULL : ansi_grey(), TABLE_UUID, sd_id128_is_null(p->new_uuid) ? p->current_uuid : p->new_uuid, TABLE_STRING, p->definition_path ? basename(p->definition_path) : "-", TABLE_SET_COLOR, p->definition_path ? NULL : ansi_grey(), TABLE_STRING, partname ?: "no", TABLE_SET_COLOR, partname ? NULL : ansi_highlight(), TABLE_UINT64, p->offset, TABLE_UINT64, p->new_size, TABLE_STRING, size_change, TABLE_SET_COLOR, !p->partitions_next && sum_size > 0 ? ansi_underline() : NULL, TABLE_UINT64, p->new_padding, TABLE_STRING, padding_change, TABLE_SET_COLOR, !p->partitions_next && sum_padding > 0 ? ansi_underline() : NULL); if (r < 0) return log_error_errno(r, "Failed to add row to table: %m"); } if (sum_padding > 0 || sum_size > 0) { char s[FORMAT_BYTES_MAX]; const char *a, *b; a = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", format_bytes(s, sizeof(s), sum_size)); b = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", format_bytes(s, sizeof(s), sum_padding)); r = table_add_many( t, TABLE_EMPTY, TABLE_EMPTY, TABLE_EMPTY, TABLE_EMPTY, TABLE_EMPTY, TABLE_EMPTY, TABLE_EMPTY, TABLE_STRING, a, TABLE_EMPTY, TABLE_STRING, b); if (r < 0) return log_error_errno(r, "Failed to add row to table: %m"); } r = table_print(t, stdout); if (r < 0) return log_error_errno(r, "Failed to dump table: %m"); return 0; } static void context_bar_char_process_partition( Context *context, Partition *bar[], size_t n, Partition *p, size_t *ret_start) { uint64_t from, to, total; size_t x, y; assert(context); assert(bar); assert(n > 0); assert(p); if (p->dropped) return; assert(p->offset != UINT64_MAX); assert(p->new_size != UINT64_MAX); from = p->offset; to = from + p->new_size; assert(context->end >= context->start); total = context->end - context->start; assert(from >= context->start); assert(from <= context->end); x = (from - context->start) * n / total; assert(to >= context->start); assert(to <= context->end); y = (to - context->start) * n / total; assert(x <= y); assert(y <= n); for (size_t i = x; i < y; i++) bar[i] = p; *ret_start = x; } static int partition_hint(const Partition *p, const char *node, char **ret) { _cleanup_free_ char *buf = NULL; char ids[ID128_UUID_STRING_MAX]; const char *label; sd_id128_t id; /* Tries really hard to find a suitable description for this partition */ if (p->definition_path) { buf = strdup(basename(p->definition_path)); goto done; } label = partition_label(p); if (!isempty(label)) { buf = strdup(label); goto done; } if (p->partno != UINT64_MAX) { buf = fdisk_partname(node, p->partno+1); goto done; } if (!sd_id128_is_null(p->new_uuid)) id = p->new_uuid; else if (!sd_id128_is_null(p->current_uuid)) id = p->current_uuid; else id = p->type_uuid; buf = strdup(id128_to_uuid_string(id, ids)); done: if (!buf) return -ENOMEM; *ret = TAKE_PTR(buf); return 0; } static int context_dump_partition_bar(Context *context, const char *node) { _cleanup_free_ Partition **bar = NULL; _cleanup_free_ size_t *start_array = NULL; Partition *p, *last = NULL; bool z = false; size_t c, j = 0; assert((c = columns()) >= 2); c -= 2; /* We do not use the leftmost and rightmost character cell */ bar = new0(Partition*, c); if (!bar) return log_oom(); start_array = new(size_t, context->n_partitions); if (!start_array) return log_oom(); LIST_FOREACH(partitions, p, context->partitions) context_bar_char_process_partition(context, bar, c, p, start_array + j++); putc(' ', stdout); for (size_t i = 0; i < c; i++) { if (bar[i]) { if (last != bar[i]) z = !z; fputs(z ? ansi_green() : ansi_yellow(), stdout); fputs(special_glyph(SPECIAL_GLYPH_DARK_SHADE), stdout); } else { fputs(ansi_normal(), stdout); fputs(special_glyph(SPECIAL_GLYPH_LIGHT_SHADE), stdout); } last = bar[i]; } fputs(ansi_normal(), stdout); putc('\n', stdout); for (size_t i = 0; i < context->n_partitions; i++) { _cleanup_free_ char **line = NULL; line = new0(char*, c); if (!line) return log_oom(); j = 0; LIST_FOREACH(partitions, p, context->partitions) { _cleanup_free_ char *d = NULL; j++; if (i < context->n_partitions - j) { if (line[start_array[j-1]]) { const char *e; /* Upgrade final corner to the right with a branch to the right */ e = startswith(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_RIGHT)); if (e) { d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), e); if (!d) return log_oom(); } } if (!d) { d = strdup(special_glyph(SPECIAL_GLYPH_TREE_VERTICAL)); if (!d) return log_oom(); } } else if (i == context->n_partitions - j) { _cleanup_free_ char *hint = NULL; (void) partition_hint(p, node, &hint); if (streq_ptr(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_VERTICAL))) d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), " ", strna(hint)); else d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_RIGHT), " ", strna(hint)); if (!d) return log_oom(); } if (d) free_and_replace(line[start_array[j-1]], d); } putc(' ', stdout); j = 0; while (j < c) { if (line[j]) { fputs(line[j], stdout); j += utf8_console_width(line[j]); } else { putc(' ', stdout); j++; } } putc('\n', stdout); for (j = 0; j < c; j++) free(line[j]); } return 0; } static bool context_changed(const Context *context) { Partition *p; LIST_FOREACH(partitions, p, context->partitions) { if (p->dropped) continue; if (p->allocated_to_area) return true; if (p->new_size != p->current_size) return true; } return false; } static int context_wipe_partition(Context *context, Partition *p) { _cleanup_(blkid_free_probep) blkid_probe probe = NULL; int r; assert(context); assert(p); assert(!PARTITION_EXISTS(p)); /* Safety check: never wipe existing partitions */ probe = blkid_new_probe(); if (!probe) return log_oom(); assert(p->offset != UINT64_MAX); assert(p->new_size != UINT64_MAX); errno = 0; r = blkid_probe_set_device(probe, fdisk_get_devfd(context->fdisk_context), p->offset, p->new_size); if (r < 0) return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to allocate device probe for partition %" PRIu64 ".", p->partno); errno = 0; if (blkid_probe_enable_superblocks(probe, true) < 0 || blkid_probe_set_superblocks_flags(probe, BLKID_SUBLKS_MAGIC|BLKID_SUBLKS_BADCSUM) < 0 || blkid_probe_enable_partitions(probe, true) < 0 || blkid_probe_set_partitions_flags(probe, BLKID_PARTS_MAGIC) < 0) return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to enable superblock and partition probing for partition %" PRIu64 ".", p->partno); for (;;) { errno = 0; r = blkid_do_probe(probe); if (r < 0) return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to probe for file systems."); if (r > 0) break; errno = 0; if (blkid_do_wipe(probe, false) < 0) return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to wipe file system signature."); } log_info("Successfully wiped file system signatures from partition %" PRIu64 ".", p->partno); return 0; } static int context_discard_range(Context *context, uint64_t offset, uint64_t size) { struct stat st; int fd; assert(context); assert(offset != UINT64_MAX); assert(size != UINT64_MAX); if (size <= 0) return 0; fd = fdisk_get_devfd(context->fdisk_context); assert(fd >= 0); if (fstat(fd, &st) < 0) return -errno; if (S_ISREG(st.st_mode)) { if (fallocate(fd, FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE, offset, size) < 0) { if (ERRNO_IS_NOT_SUPPORTED(errno)) return -EOPNOTSUPP; return -errno; } return 1; } if (S_ISBLK(st.st_mode)) { uint64_t range[2], end; range[0] = round_up_size(offset, 512); end = offset + size; if (end <= range[0]) return 0; range[1] = round_down_size(end - range[0], 512); if (range[1] <= 0) return 0; if (ioctl(fd, BLKDISCARD, range) < 0) { if (ERRNO_IS_NOT_SUPPORTED(errno)) return -EOPNOTSUPP; return -errno; } return 1; } return -EOPNOTSUPP; } static int context_discard_partition(Context *context, Partition *p) { int r; assert(context); assert(p); assert(p->offset != UINT64_MAX); assert(p->new_size != UINT64_MAX); assert(!PARTITION_EXISTS(p)); /* Safety check: never discard existing partitions */ if (!arg_discard) return 0; r = context_discard_range(context, p->offset, p->new_size); if (r == -EOPNOTSUPP) { log_info("Storage does not support discarding, not discarding data in new partition %" PRIu64 ".", p->partno); return 0; } if (r == 0) { log_info("Partition %" PRIu64 " too short for discard, skipping.", p->partno); return 0; } if (r < 0) return log_error_errno(r, "Failed to discard data for new partition %" PRIu64 ".", p->partno); log_info("Successfully discarded data from partition %" PRIu64 ".", p->partno); return 1; } static int context_discard_gap_after(Context *context, Partition *p) { uint64_t gap, next = UINT64_MAX; Partition *q; int r; assert(context); assert(!p || (p->offset != UINT64_MAX && p->new_size != UINT64_MAX)); if (p) gap = p->offset + p->new_size; else gap = context->start; LIST_FOREACH(partitions, q, context->partitions) { if (q->dropped) continue; assert(q->offset != UINT64_MAX); assert(q->new_size != UINT64_MAX); if (q->offset < gap) continue; if (next == UINT64_MAX || q->offset < next) next = q->offset; } if (next == UINT64_MAX) { next = context->end; if (gap > next) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end."); } assert(next >= gap); r = context_discard_range(context, gap, next - gap); if (r == -EOPNOTSUPP) { if (p) log_info("Storage does not support discarding, not discarding gap after partition %" PRIu64 ".", p->partno); else log_info("Storage does not support discarding, not discarding gap at beginning of disk."); return 0; } if (r == 0) /* Too short */ return 0; if (r < 0) { if (p) return log_error_errno(r, "Failed to discard gap after partition %" PRIu64 ".", p->partno); else return log_error_errno(r, "Failed to discard gap at beginning of disk."); } if (p) log_info("Successfully discarded gap after partition %" PRIu64 ".", p->partno); else log_info("Successfully discarded gap at beginning of disk."); return 0; } static int context_wipe_and_discard(Context *context, bool from_scratch) { Partition *p; int r; assert(context); /* Wipe and discard the contents of all partitions we are about to create. We skip the discarding if * we were supposed to start from scratch anyway, as in that case we just discard the whole block * device in one go early on. */ LIST_FOREACH(partitions, p, context->partitions) { if (!p->allocated_to_area) continue; if (!from_scratch) { r = context_discard_partition(context, p); if (r < 0) return r; } r = context_wipe_partition(context, p); if (r < 0) return r; if (!from_scratch) { r = context_discard_gap_after(context, p); if (r < 0) return r; } } if (!from_scratch) { r = context_discard_gap_after(context, NULL); if (r < 0) return r; } return 0; } static int partition_acquire_uuid(Context *context, Partition *p, sd_id128_t *ret) { struct { sd_id128_t type_uuid; uint64_t counter; } _packed_ plaintext = {}; union { unsigned char md[SHA256_DIGEST_LENGTH]; sd_id128_t id; } result; uint64_t k = 0; Partition *q; int r; assert(context); assert(p); assert(ret); /* Calculate a good UUID for the indicated partition. We want a certain degree of reproducibility, * hence we won't generate the UUIDs randomly. Instead we use a cryptographic hash (precisely: * HMAC-SHA256) to derive them from a single seed. The seed is generally the machine ID of the * installation we are processing, but if random behaviour is desired can be random, too. We use the * seed value as key for the HMAC (since the machine ID is something we generally don't want to leak) * and the partition type as plaintext. The partition type is suffixed with a counter (only for the * second and later partition of the same type) if we have more than one partition of the same * time. Or in other words: * * With: * SEED := /etc/machine-id * * If first partition instance of type TYPE_UUID: * PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID) * * For all later partition instances of type TYPE_UUID with INSTANCE being the LE64 encoded instance number: * PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID || INSTANCE) */ LIST_FOREACH(partitions, q, context->partitions) { if (p == q) break; if (!sd_id128_equal(p->type_uuid, q->type_uuid)) continue; k++; } plaintext.type_uuid = p->type_uuid; plaintext.counter = htole64(k); if (!HMAC(EVP_sha256(), &context->seed, sizeof(context->seed), (const unsigned char*) &plaintext, k == 0 ? sizeof(sd_id128_t) : sizeof(plaintext), result.md, NULL)) return log_error_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE), "SHA256 calculation failed."); /* Take the first half, mark it as v4 UUID */ assert_cc(sizeof(result.md) == sizeof(result.id) * 2); result.id = id128_make_v4_uuid(result.id); /* Ensure this partition UUID is actually unique, and there's no remaining partition from an earlier run? */ LIST_FOREACH(partitions, q, context->partitions) { if (p == q) continue; if (sd_id128_equal(q->current_uuid, result.id) || sd_id128_equal(q->new_uuid, result.id)) { log_warning("Partition UUID calculated from seed for partition %" PRIu64 " exists already, reverting to randomized UUID.", p->partno); r = sd_id128_randomize(&result.id); if (r < 0) return log_error_errno(r, "Failed to generate randomized UUID: %m"); break; } } *ret = result.id; return 0; } static int partition_acquire_label(Context *context, Partition *p, char **ret) { _cleanup_free_ char *label = NULL; const char *prefix; unsigned k = 1; assert(context); assert(p); assert(ret); prefix = gpt_partition_type_uuid_to_string(p->type_uuid); if (!prefix) prefix = "linux"; for (;;) { const char *ll = label ?: prefix; bool retry = false; Partition *q; LIST_FOREACH(partitions, q, context->partitions) { if (p == q) break; if (streq_ptr(ll, q->current_label) || streq_ptr(ll, q->new_label)) { retry = true; break; } } if (!retry) break; label = mfree(label); if (asprintf(&label, "%s-%u", prefix, ++k) < 0) return log_oom(); } if (!label) { label = strdup(prefix); if (!label) return log_oom(); } *ret = TAKE_PTR(label); return 0; } static int context_acquire_partition_uuids_and_labels(Context *context) { Partition *p; int r; assert(context); LIST_FOREACH(partitions, p, context->partitions) { assert(sd_id128_is_null(p->new_uuid)); assert(!p->new_label); /* Never touch foreign partitions */ if (PARTITION_IS_FOREIGN(p)) { p->new_uuid = p->current_uuid; if (p->current_label) { p->new_label = strdup(p->current_label); if (!p->new_label) return log_oom(); } continue; } if (!sd_id128_is_null(p->current_uuid)) p->new_uuid = p->current_uuid; /* Never change initialized UUIDs */ else { r = partition_acquire_uuid(context, p, &p->new_uuid); if (r < 0) return r; } if (!isempty(p->current_label)) { p->new_label = strdup(p->current_label); /* never change initialized labels */ if (!p->new_label) return log_oom(); } else { r = partition_acquire_label(context, p, &p->new_label); if (r < 0) return r; } } return 0; } static int device_kernel_partitions_supported(int fd) { struct loop_info64 info; struct stat st; assert(fd >= 0); if (fstat(fd, &st) < 0) return log_error_errno(fd, "Failed to fstat() image file: %m"); if (!S_ISBLK(st.st_mode)) return false; if (ioctl(fd, LOOP_GET_STATUS64, &info) < 0) { if (ERRNO_IS_NOT_SUPPORTED(errno) || errno == EINVAL) return true; /* not a loopback device, let's assume partition are supported */ return log_error_errno(fd, "Failed to issue LOOP_GET_STATUS64 on block device: %m"); } #if HAVE_VALGRIND_MEMCHECK_H /* Valgrind currently doesn't know LOOP_GET_STATUS64. Remove this once it does */ VALGRIND_MAKE_MEM_DEFINED(&info, sizeof(info)); #endif return FLAGS_SET(info.lo_flags, LO_FLAGS_PARTSCAN); } static int context_write_partition_table( Context *context, const char *node, bool from_scratch) { _cleanup_(fdisk_unref_tablep) struct fdisk_table *original_table = NULL; int capable, r; Partition *p; assert(context); if (arg_pretty > 0 || (arg_pretty < 0 && isatty(STDOUT_FILENO) > 0)) { if (context->n_partitions == 0) puts("Empty partition table."); else (void) context_dump_partitions(context, node); putc('\n', stdout); (void) context_dump_partition_bar(context, node); putc('\n', stdout); fflush(stdout); } if (!from_scratch && !context_changed(context)) { log_info("No changes."); return 0; } if (arg_dry_run) { log_notice("Refusing to repartition, please re-run with --dry-run=no."); return 0; } log_info("Applying changes."); if (from_scratch) { r = context_discard_range(context, 0, context->total); if (r == -EOPNOTSUPP) log_info("Storage does not support discarding, not discarding entire block device data."); else if (r < 0) return log_error_errno(r, "Failed to discard entire block device: %m"); else if (r > 0) log_info("Discarded entire block device."); } r = fdisk_get_partitions(context->fdisk_context, &original_table); if (r < 0) return log_error_errno(r, "Failed to acquire partition table: %m"); /* Wipe fs signatures and discard sectors where the new partitions are going to be placed and in the * gaps between partitions, just to be sure. */ r = context_wipe_and_discard(context, from_scratch); if (r < 0) return r; LIST_FOREACH(partitions, p, context->partitions) { if (p->dropped) continue; assert(p->new_size != UINT64_MAX); assert(p->offset != UINT64_MAX); assert(p->partno != UINT64_MAX); if (PARTITION_EXISTS(p)) { bool changed = false; assert(p->current_partition); if (p->new_size != p->current_size) { assert(p->new_size >= p->current_size); assert(p->new_size % 512 == 0); r = fdisk_partition_size_explicit(p->current_partition, true); if (r < 0) return log_error_errno(r, "Failed to enable explicit sizing: %m"); r = fdisk_partition_set_size(p->current_partition, p->new_size / 512); if (r < 0) return log_error_errno(r, "Failed to grow partition: %m"); log_info("Growing existing partition %" PRIu64 ".", p->partno); changed = true; } if (!sd_id128_equal(p->new_uuid, p->current_uuid)) { char buf[ID128_UUID_STRING_MAX]; assert(!sd_id128_is_null(p->new_uuid)); r = fdisk_partition_set_uuid(p->current_partition, id128_to_uuid_string(p->new_uuid, buf)); if (r < 0) return log_error_errno(r, "Failed to set partition UUID: %m"); log_info("Initializing UUID of existing partition %" PRIu64 ".", p->partno); changed = true; } if (!streq_ptr(p->new_label, p->current_label)) { assert(!isempty(p->new_label)); r = fdisk_partition_set_name(p->current_partition, p->new_label); if (r < 0) return log_error_errno(r, "Failed to set partition label: %m"); log_info("Setting partition label of existing partition %" PRIu64 ".", p->partno); changed = true; } if (changed) { assert(!PARTITION_IS_FOREIGN(p)); /* never touch foreign partitions */ r = fdisk_set_partition(context->fdisk_context, p->partno, p->current_partition); if (r < 0) return log_error_errno(r, "Failed to update partition: %m"); } } else { _cleanup_(fdisk_unref_partitionp) struct fdisk_partition *q = NULL; _cleanup_(fdisk_unref_parttypep) struct fdisk_parttype *t = NULL; char ids[ID128_UUID_STRING_MAX]; assert(!p->new_partition); assert(p->offset % 512 == 0); assert(p->new_size % 512 == 0); assert(!sd_id128_is_null(p->new_uuid)); assert(!isempty(p->new_label)); t = fdisk_new_parttype(); if (!t) return log_oom(); r = fdisk_parttype_set_typestr(t, id128_to_uuid_string(p->type_uuid, ids)); if (r < 0) return log_error_errno(r, "Failed to initialize partition type: %m"); q = fdisk_new_partition(); if (!q) return log_oom(); r = fdisk_partition_set_type(q, t); if (r < 0) return log_error_errno(r, "Failed to set partition type: %m"); r = fdisk_partition_size_explicit(q, true); if (r < 0) return log_error_errno(r, "Failed to enable explicit sizing: %m"); r = fdisk_partition_set_start(q, p->offset / 512); if (r < 0) return log_error_errno(r, "Failed to position partition: %m"); r = fdisk_partition_set_size(q, p->new_size / 512); if (r < 0) return log_error_errno(r, "Failed to grow partition: %m"); r = fdisk_partition_set_partno(q, p->partno); if (r < 0) return log_error_errno(r, "Failed to set partition number: %m"); r = fdisk_partition_set_uuid(q, id128_to_uuid_string(p->new_uuid, ids)); if (r < 0) return log_error_errno(r, "Failed to set partition UUID: %m"); r = fdisk_partition_set_name(q, p->new_label); if (r < 0) return log_error_errno(r, "Failed to set partition label: %m"); log_info("Creating new partition %" PRIu64 ".", p->partno); r = fdisk_add_partition(context->fdisk_context, q, NULL); if (r < 0) return log_error_errno(r, "Failed to add partition: %m"); assert(!p->new_partition); p->new_partition = TAKE_PTR(q); } } log_info("Writing new partition table."); r = fdisk_write_disklabel(context->fdisk_context); if (r < 0) return log_error_errno(r, "Failed to write partition table: %m"); capable = device_kernel_partitions_supported(fdisk_get_devfd(context->fdisk_context)); if (capable < 0) return capable; if (capable > 0) { log_info("Telling kernel to reread partition table."); if (from_scratch) r = fdisk_reread_partition_table(context->fdisk_context); else r = fdisk_reread_changes(context->fdisk_context, original_table); if (r < 0) return log_error_errno(r, "Failed to reread partition table: %m"); } else log_notice("Not telling kernel to reread partition table, because selected image does not support kernel partition block devices."); log_info("All done."); return 0; } static int context_read_seed(Context *context, const char *root) { int r; assert(context); if (!sd_id128_is_null(context->seed)) return 0; if (!arg_randomize) { _cleanup_close_ int fd = -1; fd = chase_symlinks_and_open("/etc/machine-id", root, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC, NULL); if (fd == -ENOENT) log_info("No machine ID set, using randomized partition UUIDs."); else if (fd < 0) return log_error_errno(fd, "Failed to determine machine ID of image: %m"); else { r = id128_read_fd(fd, ID128_PLAIN, &context->seed); if (r == -ENOMEDIUM) log_info("No machine ID set, using randomized partition UUIDs."); else if (r < 0) return log_error_errno(r, "Failed to parse machine ID of image: %m"); return 0; } } r = sd_id128_randomize(&context->seed); if (r < 0) return log_error_errno(r, "Failed to generate randomized seed: %m"); return 0; } static int context_factory_reset(Context *context, bool from_scratch) { Partition *p; size_t n = 0; int r; assert(context); if (arg_factory_reset <= 0) return 0; if (from_scratch) /* Nothing to reset if we start from scratch */ return 0; if (arg_dry_run) { log_notice("Refusing to factory reset, please re-run with --dry-run=no."); return 0; } log_info("Applying factory reset."); LIST_FOREACH(partitions, p, context->partitions) { if (!p->factory_reset || !PARTITION_EXISTS(p)) continue; assert(p->partno != UINT64_MAX); log_info("Removing partition %" PRIu64 " for factory reset.", p->partno); r = fdisk_delete_partition(context->fdisk_context, p->partno); if (r < 0) return log_error_errno(r, "Failed to remove partition %" PRIu64 ": %m", p->partno); n++; } if (n == 0) { log_info("Factory reset requested, but no partitions to delete found."); return 0; } r = fdisk_write_disklabel(context->fdisk_context); if (r < 0) return log_error_errno(r, "Failed to write disk label: %m"); log_info("Successfully deleted %zu partitions.", n); return 1; } static int context_can_factory_reset(Context *context) { Partition *p; assert(context); LIST_FOREACH(partitions, p, context->partitions) if (p->factory_reset && PARTITION_EXISTS(p)) return true; return false; } static int help(void) { _cleanup_free_ char *link = NULL; int r; r = terminal_urlify_man("systemd-repart", "1", &link); if (r < 0) return log_oom(); printf("%s [OPTIONS...] [DEVICE]\n" "\n%sGrow and add partitions to partition table.%s\n\n" " -h --help Show this help\n" " --version Show package version\n" " --dry-run=BOOL Whether to run dry-run operation\n" " --empty=MODE One of refuse, allow, require, force; controls how to\n" " handle empty disks lacking partition table\n" " --discard=BOOL Whether to discard backing blocks for new partitions\n" " --pretty=BOOL Whether to show pretty summary before executing operation\n" " --factory-reset=BOOL Whether to remove data partitions before recreating\n" " them\n" " --can-factory-reset Test whether factory reset is defined\n" " --root=PATH Operate relative to root path\n" " --definitions=DIR Find partitions in specified directory\n" " --seed=UUID 128bit seed UUID to derive all UUIDs from\n" "\nSee the %s for details.\n" , program_invocation_short_name , ansi_highlight(), ansi_normal() , link ); return 0; } static int parse_argv(int argc, char *argv[]) { enum { ARG_VERSION = 0x100, ARG_DRY_RUN, ARG_EMPTY, ARG_DISCARD, ARG_FACTORY_RESET, ARG_CAN_FACTORY_RESET, ARG_ROOT, ARG_SEED, ARG_PRETTY, ARG_DEFINITIONS, }; static const struct option options[] = { { "help", no_argument, NULL, 'h' }, { "version", no_argument, NULL, ARG_VERSION }, { "dry-run", required_argument, NULL, ARG_DRY_RUN }, { "empty", required_argument, NULL, ARG_EMPTY }, { "discard", required_argument, NULL, ARG_DISCARD }, { "factory-reset", required_argument, NULL, ARG_FACTORY_RESET }, { "can-factory-reset", no_argument, NULL, ARG_CAN_FACTORY_RESET }, { "root", required_argument, NULL, ARG_ROOT }, { "seed", required_argument, NULL, ARG_SEED }, { "pretty", required_argument, NULL, ARG_PRETTY }, { "definitions", required_argument, NULL, ARG_DEFINITIONS }, {} }; int c, r; assert(argc >= 0); assert(argv); while ((c = getopt_long(argc, argv, "h", options, NULL)) >= 0) switch (c) { case 'h': return help(); case ARG_VERSION: return version(); case ARG_DRY_RUN: r = parse_boolean(optarg); if (r < 0) return log_error_errno(r, "Failed to parse --dry-run= parameter: %s", optarg); arg_dry_run = r; break; case ARG_EMPTY: if (isempty(optarg) || streq(optarg, "refuse")) arg_empty = EMPTY_REFUSE; else if (streq(optarg, "allow")) arg_empty = EMPTY_ALLOW; else if (streq(optarg, "require")) arg_empty = EMPTY_REQUIRE; else if (streq(optarg, "force")) arg_empty = EMPTY_FORCE; else return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Failed to parse --empty= parameter: %s", optarg); break; case ARG_DISCARD: r = parse_boolean(optarg); if (r < 0) return log_error_errno(r, "Failed to parse --discard= parameter: %s", optarg); arg_discard = r; break; case ARG_FACTORY_RESET: r = parse_boolean(optarg); if (r < 0) return log_error_errno(r, "Failed to parse --factory-reset= parameter: %s", optarg); arg_factory_reset = r; break; case ARG_CAN_FACTORY_RESET: arg_can_factory_reset = true; break; case ARG_ROOT: r = parse_path_argument_and_warn(optarg, false, &arg_root); if (r < 0) return r; break; case ARG_SEED: if (isempty(optarg)) { arg_seed = SD_ID128_NULL; arg_randomize = false; } else if (streq(optarg, "random")) arg_randomize = true; else { r = sd_id128_from_string(optarg, &arg_seed); if (r < 0) return log_error_errno(r, "Failed to parse seed: %s", optarg); arg_randomize = false; } break; case ARG_PRETTY: r = parse_boolean(optarg); if (r < 0) return log_error_errno(r, "Failed to parse --pretty= parameter: %s", optarg); arg_pretty = r; break; case ARG_DEFINITIONS: r = parse_path_argument_and_warn(optarg, false, &arg_definitions); if (r < 0) return r; break; case '?': return -EINVAL; default: assert_not_reached("Unhandled option"); } if (argc - optind > 1) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Expected at most one argument, the path to the block device."); if (arg_factory_reset > 0 && IN_SET(arg_empty, EMPTY_FORCE, EMPTY_REQUIRE)) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Combination of --factory-reset=yes and --empty=force/--empty=require is invalid."); if (arg_can_factory_reset) arg_dry_run = true; arg_node = argc > optind ? argv[optind] : NULL; return 1; } static int parse_proc_cmdline_factory_reset(void) { bool b; int r; if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */ return 0; if (!in_initrd()) /* Never honour kernel command line factory reset request outside of the initrd */ return 0; r = proc_cmdline_get_bool("systemd.factory_reset", &b); if (r < 0) return log_error_errno(r, "Failed to parse systemd.factory_reset kernel command line argument: %m"); if (r > 0) { arg_factory_reset = b; if (b) log_notice("Honouring factory reset requested via kernel command line."); } return 0; } static int parse_efi_variable_factory_reset(void) { _cleanup_free_ char *value = NULL; int r; if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */ return 0; if (!in_initrd()) /* Never honour EFI variable factory reset request outside of the initrd */ return 0; r = efi_get_variable_string(EFI_VENDOR_SYSTEMD, "FactoryReset", &value); if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r)) return 0; if (r < 0) return log_error_errno(r, "Failed to read EFI variable FactoryReset: %m"); r = parse_boolean(value); if (r < 0) return log_error_errno(r, "Failed to parse EFI variable FactoryReset: %m"); arg_factory_reset = r; if (r) log_notice("Honouring factory reset requested via EFI variable FactoryReset: %m"); return 0; } static int remove_efi_variable_factory_reset(void) { int r; r = efi_set_variable(EFI_VENDOR_SYSTEMD, "FactoryReset", NULL, 0); if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r)) return 0; if (r < 0) return log_error_errno(r, "Failed to remove EFI variable FactoryReset: %m"); log_info("Successfully unset EFI variable FactoryReset."); return 0; } static int acquire_root_devno(const char *p, int mode, char **ret) { _cleanup_close_ int fd = -1; struct stat st; dev_t devno; int r; fd = open(p, mode); if (fd < 0) return -errno; if (fstat(fd, &st) < 0) return -errno; if (S_ISREG(st.st_mode)) { char *s; s = strdup(p); if (!s) return log_oom(); *ret = s; return 0; } if (S_ISBLK(st.st_mode)) devno = st.st_rdev; else if (S_ISDIR(st.st_mode)) { devno = st.st_dev; if (major(st.st_dev) == 0) { r = btrfs_get_block_device_fd(fd, &devno); if (r == -ENOTTY) /* not btrfs */ return -ENODEV; if (r < 0) return r; } } else return -ENOTBLK; /* From dm-crypt to backing partition */ r = block_get_originating(devno, &devno); if (r < 0) log_debug_errno(r, "Failed to find underlying block device for '%s', ignoring: %m", p); /* From partition to whole disk containing it */ r = block_get_whole_disk(devno, &devno); if (r < 0) log_debug_errno(r, "Failed to find whole disk block device for '%s', ingoring: %m", p); return device_path_make_canonical(S_IFBLK, devno, ret); } static int find_root(char **ret) { const char *t; int r; if (arg_node) { r = acquire_root_devno(arg_node, O_RDONLY|O_CLOEXEC, ret); if (r < 0) return log_error_errno(r, "Failed to determine backing device of %s: %m", arg_node); return 0; } /* Let's search for the root device. We look for two cases here: first in /, and then in /usr. The * latter we check for cases where / is a tmpfs and only /usr is an actual persistent block device * (think: volatile setups) */ FOREACH_STRING(t, "/", "/usr") { _cleanup_free_ char *j = NULL; const char *p; if (in_initrd()) { j = path_join("/sysroot", t); if (!j) return log_oom(); p = j; } else p = t; r = acquire_root_devno(p, O_RDONLY|O_DIRECTORY|O_CLOEXEC, ret); if (r < 0) { if (r != -ENODEV) return log_error_errno(r, "Failed to determine backing device of %s: %m", p); } else return 0; } return log_error_errno(SYNTHETIC_ERRNO(ENODEV), "Failed to discover root block device."); } static int run(int argc, char *argv[]) { _cleanup_(context_freep) Context* context = NULL; _cleanup_free_ char *node = NULL; bool from_scratch; int r; log_show_color(true); log_parse_environment(); log_open(); if (in_initrd()) { /* Default to operation on /sysroot when invoked in the initrd! */ arg_root = strdup("/sysroot"); if (!arg_root) return log_oom(); } r = parse_argv(argc, argv); if (r <= 0) return r; r = parse_proc_cmdline_factory_reset(); if (r < 0) return r; r = parse_efi_variable_factory_reset(); if (r < 0) return r; r = find_root(&node); if (r < 0) return r; context = context_new(arg_seed); if (!context) return log_oom(); r = context_read_definitions(context, arg_definitions, arg_root); if (r < 0) return r; r = context_load_partition_table(context, node); if (r == -EHWPOISON) return 77; /* Special return value which means "Not GPT, so not doing anything". This isn't * really an error when called at boot. */ if (r < 0) return r; from_scratch = r > 0; /* Starting from scratch */ if (arg_can_factory_reset) { r = context_can_factory_reset(context); if (r < 0) return r; if (r == 0) return EXIT_FAILURE; return 0; } r = context_factory_reset(context, from_scratch); if (r < 0) return r; if (r > 0) { /* We actually did a factory reset! */ r = remove_efi_variable_factory_reset(); if (r < 0) return r; /* Reload the reduced partition table */ context_unload_partition_table(context); r = context_load_partition_table(context, node); if (r < 0) return r; } #if 0 (void) context_dump_partitions(context, node); putchar('\n'); #endif r = context_read_seed(context, arg_root); if (r < 0) return r; /* First try to fit new partitions in, dropping by priority until it fits */ for (;;) { if (context_allocate_partitions(context)) break; /* Success! */ if (!context_drop_one_priority(context)) return log_error_errno(SYNTHETIC_ERRNO(ENOSPC), "Can't fit requested partitions into free space, refusing."); } /* Now assign free space according to the weight logic */ r = context_grow_partitions(context); if (r < 0) return r; /* Now calculate where each partition gets placed */ context_place_partitions(context); /* Make sure each partition has a unique UUID and unique label */ r = context_acquire_partition_uuids_and_labels(context); if (r < 0) return r; r = context_write_partition_table(context, node, from_scratch); if (r < 0) return r; return 0; } DEFINE_MAIN_FUNCTION_WITH_POSITIVE_FAILURE(run);