# Make sure no one can read the files we generate but us umask 077 # Destroy any old key on the Yubikey (careful!) ykman piv reset # Generate a new private/public key pair on the device, store the public key in 'pubkey.pem'. ykman piv generate-key -a RSA2048 9d pubkey.pem # Create a self-signed certificate from this public key, and store it on the # device. The "subject" should be an arbitrary string to identify the token in # the p11tool output below. ykman piv generate-certificate --subject "Knobelei" 9d pubkey.pem # Check if the newly create key on the Yubikey shows up as token in PKCS#11. Have a look at the output, and # copy the resulting token URI to the clipboard. p11tool --list-tokens # Generate a (secret) random key to use as LUKS decryption key. dd if=/dev/urandom of=plaintext.bin bs=128 count=1 # Encode the secret key also as base64 text (with all whitespace removed) base64 < plaintext.bin | tr -d '\n\r\t ' > plaintext.base64 # Encrypt this newly generated (binary) LUKS decryption key using the public key whose private key is on the # Yubikey, store the result in /etc/cryptsetup-keys.d/mytest.key, where we'll look for it during boot. mkdir -p /etc/cryptsetup-keys.d sudo openssl rsautl -encrypt -pubin -inkey pubkey.pem -in plaintext.bin -out /etc/cryptsetup-keys.d/mytest.key # Configure the LUKS decryption key on the LUKS device. We use very low pbkdf settings since the key already # has quite a high quality (it comes directly from /dev/urandom after all), and thus we don't need to do much # key derivation. Replace /dev/sdXn by the partition to use (e.g. sda1) sudo cryptsetup luksAddKey /dev/sdXn plaintext.base64 --pbkdf=pbkdf2 --pbkdf-force-iterations=1000 # Now securely delete the plain text LUKS key, we don't need it anymore, and since it contains secret key # material it should be removed from disk thoroughly. shred -u plaintext.bin plaintext.base64 # We don't need the public key anymore either, let's remove it too. Since this one is not security # sensitive we just do a regular "rm" here. rm pubkey.pem # Test: Let's run systemd-cryptsetup to test if this all worked. The option string should contain the full # PKCS#11 URI we have in the clipboard; it tells the tool how to decipher the encrypted LUKS key. Note that # systemd-cryptsetup automatically searches for the encrypted key in /etc/cryptsetup-keys.d/, hence we do # not need to specify the key file path explicitly here. sudo systemd-cryptsetup attach mytest /dev/sdXn - 'pkcs11-uri=pkcs11:…' # If that worked, let's now add the same line persistently to /etc/crypttab, for the future. sudo bash -c 'echo "mytest /dev/sdXn - \'pkcs11-uri=pkcs11:…\'" >> /etc/crypttab'