Systemd/src/core/dbus-cgroup.c
Zbigniew Jędrzejewski-Szmek 3a0f06c41a core: make TasksMax a partially dynamic property
TasksMax= and DefaultTasksMax= can be specified as percentages. We don't
actually document of what the percentage is relative to, but the implementation
uses the smallest of /proc/sys/kernel/pid_max, /proc/sys/kernel/threads-max,
and /sys/fs/cgroup/pids.max (when present). When the value is a percentage,
we immediately convert it to an absolute value. If the limit later changes
(which can happen e.g. when systemd-sysctl runs), the absolute value becomes
outdated.

So let's store either the percentage or absolute value, whatever was specified,
and only convert to an absolute value when the value is used. For example, when
starting a unit, the absolute value will be calculated when the cgroup for
the unit is created.

Fixes #13419.
2019-11-14 18:41:54 +01:00

1676 lines
69 KiB
C

/* SPDX-License-Identifier: LGPL-2.1+ */
#include <arpa/inet.h>
#include "af-list.h"
#include "alloc-util.h"
#include "bpf-firewall.h"
#include "bus-util.h"
#include "cgroup-util.h"
#include "cgroup.h"
#include "dbus-cgroup.h"
#include "dbus-util.h"
#include "errno-util.h"
#include "fd-util.h"
#include "fileio.h"
#include "limits-util.h"
#include "path-util.h"
BUS_DEFINE_PROPERTY_GET(bus_property_get_tasks_max, "t", TasksMax, tasks_max_resolve);
static BUS_DEFINE_PROPERTY_GET_ENUM(property_get_cgroup_device_policy, cgroup_device_policy, CGroupDevicePolicy);
static int property_get_cgroup_mask(
sd_bus *bus,
const char *path,
const char *interface,
const char *property,
sd_bus_message *reply,
void *userdata,
sd_bus_error *error) {
CGroupMask *mask = userdata;
CGroupController ctrl;
int r;
assert(bus);
assert(reply);
r = sd_bus_message_open_container(reply, 'a', "s");
if (r < 0)
return r;
for (ctrl = 0; ctrl < _CGROUP_CONTROLLER_MAX; ctrl++) {
if ((*mask & CGROUP_CONTROLLER_TO_MASK(ctrl)) == 0)
continue;
r = sd_bus_message_append(reply, "s", cgroup_controller_to_string(ctrl));
if (r < 0)
return r;
}
return sd_bus_message_close_container(reply);
}
static int property_get_delegate_controllers(
sd_bus *bus,
const char *path,
const char *interface,
const char *property,
sd_bus_message *reply,
void *userdata,
sd_bus_error *error) {
CGroupContext *c = userdata;
assert(bus);
assert(reply);
assert(c);
if (!c->delegate)
return sd_bus_message_append(reply, "as", 0);
return property_get_cgroup_mask(bus, path, interface, property, reply, &c->delegate_controllers, error);
}
static int property_get_cpuset(
sd_bus *bus,
const char *path,
const char *interface,
const char *property,
sd_bus_message *reply,
void *userdata,
sd_bus_error *error) {
CPUSet *cpus = userdata;
_cleanup_free_ uint8_t *array = NULL;
size_t allocated;
assert(bus);
assert(reply);
assert(cpus);
(void) cpu_set_to_dbus(cpus, &array, &allocated);
return sd_bus_message_append_array(reply, 'y', array, allocated);
}
static int property_get_io_device_weight(
sd_bus *bus,
const char *path,
const char *interface,
const char *property,
sd_bus_message *reply,
void *userdata,
sd_bus_error *error) {
CGroupContext *c = userdata;
CGroupIODeviceWeight *w;
int r;
assert(bus);
assert(reply);
assert(c);
r = sd_bus_message_open_container(reply, 'a', "(st)");
if (r < 0)
return r;
LIST_FOREACH(device_weights, w, c->io_device_weights) {
r = sd_bus_message_append(reply, "(st)", w->path, w->weight);
if (r < 0)
return r;
}
return sd_bus_message_close_container(reply);
}
static int property_get_io_device_limits(
sd_bus *bus,
const char *path,
const char *interface,
const char *property,
sd_bus_message *reply,
void *userdata,
sd_bus_error *error) {
CGroupContext *c = userdata;
CGroupIODeviceLimit *l;
int r;
assert(bus);
assert(reply);
assert(c);
r = sd_bus_message_open_container(reply, 'a', "(st)");
if (r < 0)
return r;
LIST_FOREACH(device_limits, l, c->io_device_limits) {
CGroupIOLimitType type;
type = cgroup_io_limit_type_from_string(property);
if (type < 0 || l->limits[type] == cgroup_io_limit_defaults[type])
continue;
r = sd_bus_message_append(reply, "(st)", l->path, l->limits[type]);
if (r < 0)
return r;
}
return sd_bus_message_close_container(reply);
}
static int property_get_io_device_latency(
sd_bus *bus,
const char *path,
const char *interface,
const char *property,
sd_bus_message *reply,
void *userdata,
sd_bus_error *error) {
CGroupContext *c = userdata;
CGroupIODeviceLatency *l;
int r;
assert(bus);
assert(reply);
assert(c);
r = sd_bus_message_open_container(reply, 'a', "(st)");
if (r < 0)
return r;
LIST_FOREACH(device_latencies, l, c->io_device_latencies) {
r = sd_bus_message_append(reply, "(st)", l->path, l->target_usec);
if (r < 0)
return r;
}
return sd_bus_message_close_container(reply);
}
static int property_get_blockio_device_weight(
sd_bus *bus,
const char *path,
const char *interface,
const char *property,
sd_bus_message *reply,
void *userdata,
sd_bus_error *error) {
CGroupContext *c = userdata;
CGroupBlockIODeviceWeight *w;
int r;
assert(bus);
assert(reply);
assert(c);
r = sd_bus_message_open_container(reply, 'a', "(st)");
if (r < 0)
return r;
LIST_FOREACH(device_weights, w, c->blockio_device_weights) {
r = sd_bus_message_append(reply, "(st)", w->path, w->weight);
if (r < 0)
return r;
}
return sd_bus_message_close_container(reply);
}
static int property_get_blockio_device_bandwidths(
sd_bus *bus,
const char *path,
const char *interface,
const char *property,
sd_bus_message *reply,
void *userdata,
sd_bus_error *error) {
CGroupContext *c = userdata;
CGroupBlockIODeviceBandwidth *b;
int r;
assert(bus);
assert(reply);
assert(c);
r = sd_bus_message_open_container(reply, 'a', "(st)");
if (r < 0)
return r;
LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
uint64_t v;
if (streq(property, "BlockIOReadBandwidth"))
v = b->rbps;
else
v = b->wbps;
if (v == CGROUP_LIMIT_MAX)
continue;
r = sd_bus_message_append(reply, "(st)", b->path, v);
if (r < 0)
return r;
}
return sd_bus_message_close_container(reply);
}
static int property_get_device_allow(
sd_bus *bus,
const char *path,
const char *interface,
const char *property,
sd_bus_message *reply,
void *userdata,
sd_bus_error *error) {
CGroupContext *c = userdata;
CGroupDeviceAllow *a;
int r;
assert(bus);
assert(reply);
assert(c);
r = sd_bus_message_open_container(reply, 'a', "(ss)");
if (r < 0)
return r;
LIST_FOREACH(device_allow, a, c->device_allow) {
unsigned k = 0;
char rwm[4];
if (a->r)
rwm[k++] = 'r';
if (a->w)
rwm[k++] = 'w';
if (a->m)
rwm[k++] = 'm';
rwm[k] = 0;
r = sd_bus_message_append(reply, "(ss)", a->path, rwm);
if (r < 0)
return r;
}
return sd_bus_message_close_container(reply);
}
static int property_get_ip_address_access(
sd_bus *bus,
const char *path,
const char *interface,
const char *property,
sd_bus_message *reply,
void *userdata,
sd_bus_error *error) {
IPAddressAccessItem** items = userdata, *i;
int r;
r = sd_bus_message_open_container(reply, 'a', "(iayu)");
if (r < 0)
return r;
LIST_FOREACH(items, i, *items) {
r = sd_bus_message_open_container(reply, 'r', "iayu");
if (r < 0)
return r;
r = sd_bus_message_append(reply, "i", i->family);
if (r < 0)
return r;
r = sd_bus_message_append_array(reply, 'y', &i->address, FAMILY_ADDRESS_SIZE(i->family));
if (r < 0)
return r;
r = sd_bus_message_append(reply, "u", (uint32_t) i->prefixlen);
if (r < 0)
return r;
r = sd_bus_message_close_container(reply);
if (r < 0)
return r;
}
return sd_bus_message_close_container(reply);
}
const sd_bus_vtable bus_cgroup_vtable[] = {
SD_BUS_VTABLE_START(0),
SD_BUS_PROPERTY("Delegate", "b", bus_property_get_bool, offsetof(CGroupContext, delegate), 0),
SD_BUS_PROPERTY("DelegateControllers", "as", property_get_delegate_controllers, 0, 0),
SD_BUS_PROPERTY("CPUAccounting", "b", bus_property_get_bool, offsetof(CGroupContext, cpu_accounting), 0),
SD_BUS_PROPERTY("CPUWeight", "t", NULL, offsetof(CGroupContext, cpu_weight), 0),
SD_BUS_PROPERTY("StartupCPUWeight", "t", NULL, offsetof(CGroupContext, startup_cpu_weight), 0),
SD_BUS_PROPERTY("CPUShares", "t", NULL, offsetof(CGroupContext, cpu_shares), 0),
SD_BUS_PROPERTY("StartupCPUShares", "t", NULL, offsetof(CGroupContext, startup_cpu_shares), 0),
SD_BUS_PROPERTY("CPUQuotaPerSecUSec", "t", bus_property_get_usec, offsetof(CGroupContext, cpu_quota_per_sec_usec), 0),
SD_BUS_PROPERTY("CPUQuotaPeriodUSec", "t", bus_property_get_usec, offsetof(CGroupContext, cpu_quota_period_usec), 0),
SD_BUS_PROPERTY("AllowedCPUs", "ay", property_get_cpuset, offsetof(CGroupContext, cpuset_cpus), 0),
SD_BUS_PROPERTY("AllowedMemoryNodes", "ay", property_get_cpuset, offsetof(CGroupContext, cpuset_mems), 0),
SD_BUS_PROPERTY("IOAccounting", "b", bus_property_get_bool, offsetof(CGroupContext, io_accounting), 0),
SD_BUS_PROPERTY("IOWeight", "t", NULL, offsetof(CGroupContext, io_weight), 0),
SD_BUS_PROPERTY("StartupIOWeight", "t", NULL, offsetof(CGroupContext, startup_io_weight), 0),
SD_BUS_PROPERTY("IODeviceWeight", "a(st)", property_get_io_device_weight, 0, 0),
SD_BUS_PROPERTY("IOReadBandwidthMax", "a(st)", property_get_io_device_limits, 0, 0),
SD_BUS_PROPERTY("IOWriteBandwidthMax", "a(st)", property_get_io_device_limits, 0, 0),
SD_BUS_PROPERTY("IOReadIOPSMax", "a(st)", property_get_io_device_limits, 0, 0),
SD_BUS_PROPERTY("IOWriteIOPSMax", "a(st)", property_get_io_device_limits, 0, 0),
SD_BUS_PROPERTY("IODeviceLatencyTargetUSec", "a(st)", property_get_io_device_latency, 0, 0),
SD_BUS_PROPERTY("BlockIOAccounting", "b", bus_property_get_bool, offsetof(CGroupContext, blockio_accounting), 0),
SD_BUS_PROPERTY("BlockIOWeight", "t", NULL, offsetof(CGroupContext, blockio_weight), 0),
SD_BUS_PROPERTY("StartupBlockIOWeight", "t", NULL, offsetof(CGroupContext, startup_blockio_weight), 0),
SD_BUS_PROPERTY("BlockIODeviceWeight", "a(st)", property_get_blockio_device_weight, 0, 0),
SD_BUS_PROPERTY("BlockIOReadBandwidth", "a(st)", property_get_blockio_device_bandwidths, 0, 0),
SD_BUS_PROPERTY("BlockIOWriteBandwidth", "a(st)", property_get_blockio_device_bandwidths, 0, 0),
SD_BUS_PROPERTY("MemoryAccounting", "b", bus_property_get_bool, offsetof(CGroupContext, memory_accounting), 0),
SD_BUS_PROPERTY("DefaultMemoryLow", "t", NULL, offsetof(CGroupContext, default_memory_low), 0),
SD_BUS_PROPERTY("DefaultMemoryMin", "t", NULL, offsetof(CGroupContext, default_memory_min), 0),
SD_BUS_PROPERTY("MemoryMin", "t", NULL, offsetof(CGroupContext, memory_min), 0),
SD_BUS_PROPERTY("MemoryLow", "t", NULL, offsetof(CGroupContext, memory_low), 0),
SD_BUS_PROPERTY("MemoryHigh", "t", NULL, offsetof(CGroupContext, memory_high), 0),
SD_BUS_PROPERTY("MemoryMax", "t", NULL, offsetof(CGroupContext, memory_max), 0),
SD_BUS_PROPERTY("MemorySwapMax", "t", NULL, offsetof(CGroupContext, memory_swap_max), 0),
SD_BUS_PROPERTY("MemoryLimit", "t", NULL, offsetof(CGroupContext, memory_limit), 0),
SD_BUS_PROPERTY("DevicePolicy", "s", property_get_cgroup_device_policy, offsetof(CGroupContext, device_policy), 0),
SD_BUS_PROPERTY("DeviceAllow", "a(ss)", property_get_device_allow, 0, 0),
SD_BUS_PROPERTY("TasksAccounting", "b", bus_property_get_bool, offsetof(CGroupContext, tasks_accounting), 0),
SD_BUS_PROPERTY("TasksMax", "t", bus_property_get_tasks_max, offsetof(CGroupContext, tasks_max), 0),
SD_BUS_PROPERTY("IPAccounting", "b", bus_property_get_bool, offsetof(CGroupContext, ip_accounting), 0),
SD_BUS_PROPERTY("IPAddressAllow", "a(iayu)", property_get_ip_address_access, offsetof(CGroupContext, ip_address_allow), 0),
SD_BUS_PROPERTY("IPAddressDeny", "a(iayu)", property_get_ip_address_access, offsetof(CGroupContext, ip_address_deny), 0),
SD_BUS_PROPERTY("IPIngressFilterPath", "as", NULL, offsetof(CGroupContext, ip_filters_ingress), 0),
SD_BUS_PROPERTY("IPEgressFilterPath", "as", NULL, offsetof(CGroupContext, ip_filters_egress), 0),
SD_BUS_PROPERTY("DisableControllers", "as", property_get_cgroup_mask, offsetof(CGroupContext, disable_controllers), 0),
SD_BUS_VTABLE_END
};
static int bus_cgroup_set_transient_property(
Unit *u,
CGroupContext *c,
const char *name,
sd_bus_message *message,
UnitWriteFlags flags,
sd_bus_error *error) {
int r;
assert(u);
assert(c);
assert(name);
assert(message);
flags |= UNIT_PRIVATE;
if (streq(name, "Delegate")) {
int b;
if (!UNIT_VTABLE(u)->can_delegate)
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Delegation not available for unit type");
r = sd_bus_message_read(message, "b", &b);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
c->delegate = b;
c->delegate_controllers = b ? _CGROUP_MASK_ALL : 0;
unit_write_settingf(u, flags, name, "Delegate=%s", yes_no(b));
}
return 1;
} else if (STR_IN_SET(name, "DelegateControllers", "DisableControllers")) {
CGroupMask mask = 0;
if (streq(name, "DelegateControllers") && !UNIT_VTABLE(u)->can_delegate)
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Delegation not available for unit type");
r = sd_bus_message_enter_container(message, 'a', "s");
if (r < 0)
return r;
for (;;) {
CGroupController cc;
const char *t;
r = sd_bus_message_read(message, "s", &t);
if (r < 0)
return r;
if (r == 0)
break;
cc = cgroup_controller_from_string(t);
if (cc < 0)
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Unknown cgroup controller '%s'", t);
mask |= CGROUP_CONTROLLER_TO_MASK(cc);
}
r = sd_bus_message_exit_container(message);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
_cleanup_free_ char *t = NULL;
r = cg_mask_to_string(mask, &t);
if (r < 0)
return r;
if (streq(name, "DelegateControllers")) {
c->delegate = true;
if (mask == 0)
c->delegate_controllers = 0;
else
c->delegate_controllers |= mask;
unit_write_settingf(u, flags, name, "Delegate=%s", strempty(t));
} else if (streq(name, "DisableControllers")) {
if (mask == 0)
c->disable_controllers = 0;
else
c->disable_controllers |= mask;
unit_write_settingf(u, flags, name, "%s=%s", name, strempty(t));
}
}
return 1;
} else if (STR_IN_SET(name, "IPIngressFilterPath", "IPEgressFilterPath")) {
char ***filters;
size_t n = 0;
filters = streq(name, "IPIngressFilterPath") ? &c->ip_filters_ingress : &c->ip_filters_egress;
r = sd_bus_message_enter_container(message, 'a', "s");
if (r < 0)
return r;
for (;;) {
const char *path;
r = sd_bus_message_read(message, "s", &path);
if (r < 0)
return r;
if (r == 0)
break;
if (!path_is_normalized(path) || !path_is_absolute(path))
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "%s= expects a normalized absolute path.", name);
if (!UNIT_WRITE_FLAGS_NOOP(flags) && !strv_contains(*filters, path)) {
r = strv_extend(filters, path);
if (r < 0)
return log_oom();
}
n++;
}
r = sd_bus_message_exit_container(message);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
_cleanup_free_ char *buf = NULL;
_cleanup_fclose_ FILE *f = NULL;
char **entry;
size_t size = 0;
if (n == 0)
*filters = strv_free(*filters);
unit_invalidate_cgroup_bpf(u);
f = open_memstream_unlocked(&buf, &size);
if (!f)
return -ENOMEM;
fputs(name, f);
fputs("=\n", f);
STRV_FOREACH(entry, *filters)
fprintf(f, "%s=%s\n", name, *entry);
r = fflush_and_check(f);
if (r < 0)
return r;
unit_write_setting(u, flags, name, buf);
if (*filters) {
r = bpf_firewall_supported();
if (r < 0)
return r;
if (r != BPF_FIREWALL_SUPPORTED_WITH_MULTI) {
static bool warned = false;
log_full(warned ? LOG_DEBUG : LOG_WARNING,
"Transient unit %s configures an IP firewall with BPF, but the local system does not support BPF/cgroup firewalling with multiple filters.\n"
"Starting this unit will fail! (This warning is only shown for the first started transient unit using IP firewalling.)", u->id);
warned = true;
}
}
}
return 1;
}
return 0;
}
static int bus_cgroup_set_boolean(
Unit *u,
const char *name,
bool *p,
CGroupMask mask,
sd_bus_message *message,
UnitWriteFlags flags,
sd_bus_error *error) {
int b, r;
assert(p);
r = sd_bus_message_read(message, "b", &b);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
*p = b;
unit_invalidate_cgroup(u, mask);
unit_write_settingf(u, flags, name, "%s=%s", name, yes_no(b));
}
return 1;
}
#define BUS_DEFINE_SET_CGROUP_WEIGHT(function, mask, check, val) \
static int bus_cgroup_set_##function( \
Unit *u, \
const char *name, \
uint64_t *p, \
sd_bus_message *message, \
UnitWriteFlags flags, \
sd_bus_error *error) { \
\
uint64_t v; \
int r; \
\
assert(p); \
\
r = sd_bus_message_read(message, "t", &v); \
if (r < 0) \
return r; \
\
if (!check(v)) \
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, \
"Value specified in %s is out of range", name); \
\
if (!UNIT_WRITE_FLAGS_NOOP(flags)) { \
*p = v; \
unit_invalidate_cgroup(u, (mask)); \
\
if (v == (val)) \
unit_write_settingf(u, flags, name, \
"%s=", name); \
else \
unit_write_settingf(u, flags, name, \
"%s=%" PRIu64, name, v); \
} \
\
return 1; \
}
#define BUS_DEFINE_SET_CGROUP_LIMIT(function, mask, scale, minimum) \
static int bus_cgroup_set_##function( \
Unit *u, \
const char *name, \
uint64_t *p, \
sd_bus_message *message, \
UnitWriteFlags flags, \
sd_bus_error *error) { \
\
uint64_t v; \
int r; \
\
assert(p); \
\
r = sd_bus_message_read(message, "t", &v); \
if (r < 0) \
return r; \
\
if (v < minimum) \
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, \
"Value specified in %s is out of range", name); \
\
if (!UNIT_WRITE_FLAGS_NOOP(flags)) { \
*p = v; \
unit_invalidate_cgroup(u, (mask)); \
\
if (v == CGROUP_LIMIT_MAX) \
unit_write_settingf(u, flags, name, \
"%s=infinity", name); \
else \
unit_write_settingf(u, flags, name, \
"%s=%" PRIu64, name, v); \
} \
\
return 1; \
} \
static int bus_cgroup_set_##function##_scale( \
Unit *u, \
const char *name, \
uint64_t *p, \
sd_bus_message *message, \
UnitWriteFlags flags, \
sd_bus_error *error) { \
\
uint64_t v; \
uint32_t raw; \
int r; \
\
assert(p); \
\
r = sd_bus_message_read(message, "u", &raw); \
if (r < 0) \
return r; \
\
v = scale(raw, UINT32_MAX); \
if (v < minimum || v >= UINT64_MAX) \
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, \
"Value specified in %s is out of range", name); \
\
if (!UNIT_WRITE_FLAGS_NOOP(flags)) { \
const char *e; \
\
*p = v; \
unit_invalidate_cgroup(u, (mask)); \
\
/* Chop off suffix */ \
assert_se(e = endswith(name, "Scale")); \
name = strndupa(name, e - name); \
\
unit_write_settingf(u, flags, name, "%s=%" PRIu32 "%%", name, \
(uint32_t) (DIV_ROUND_UP((uint64_t) raw * 100U, (uint64_t) UINT32_MAX))); \
} \
\
return 1; \
}
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wtype-limits"
BUS_DEFINE_SET_CGROUP_WEIGHT(cpu_weight, CGROUP_MASK_CPU, CGROUP_WEIGHT_IS_OK, CGROUP_WEIGHT_INVALID);
BUS_DEFINE_SET_CGROUP_WEIGHT(cpu_shares, CGROUP_MASK_CPU, CGROUP_CPU_SHARES_IS_OK, CGROUP_CPU_SHARES_INVALID);
BUS_DEFINE_SET_CGROUP_WEIGHT(io_weight, CGROUP_MASK_IO, CGROUP_WEIGHT_IS_OK, CGROUP_WEIGHT_INVALID);
BUS_DEFINE_SET_CGROUP_WEIGHT(blockio_weight, CGROUP_MASK_BLKIO, CGROUP_BLKIO_WEIGHT_IS_OK, CGROUP_BLKIO_WEIGHT_INVALID);
BUS_DEFINE_SET_CGROUP_LIMIT(memory, CGROUP_MASK_MEMORY, physical_memory_scale, 1);
BUS_DEFINE_SET_CGROUP_LIMIT(memory_protection, CGROUP_MASK_MEMORY, physical_memory_scale, 0);
BUS_DEFINE_SET_CGROUP_LIMIT(swap, CGROUP_MASK_MEMORY, physical_memory_scale, 0);
#pragma GCC diagnostic pop
static int bus_cgroup_set_tasks_max(
Unit *u,
const char *name,
TasksMax *p,
sd_bus_message *message,
UnitWriteFlags flags,
sd_bus_error *error) {
uint64_t v;
int r;
assert(p);
r = sd_bus_message_read(message, "t", &v);
if (r < 0)
return r;
if (v < 1)
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS,
"Value specified in %s is out of range", name);
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
*p = (TasksMax) { .value = v, .scale = 0 }; /* When .scale==0, .value is the absolute value */
unit_invalidate_cgroup(u, CGROUP_MASK_PIDS);
if (v == CGROUP_LIMIT_MAX)
unit_write_settingf(u, flags, name,
"%s=infinity", name);
else
unit_write_settingf(u, flags, name,
"%s=%" PRIu64, name, v);
}
return 1;
}
static int bus_cgroup_set_tasks_max_scale(
Unit *u,
const char *name,
TasksMax *p,
sd_bus_message *message,
UnitWriteFlags flags,
sd_bus_error *error) {
uint32_t v;
int r;
assert(p);
r = sd_bus_message_read(message, "u", &v);
if (r < 0)
return r;
if (v < 1 || v >= UINT32_MAX)
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS,
"Value specified in %s is out of range", name);
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
*p = (TasksMax) { v, UINT32_MAX }; /* .scale is not 0, so this is interpreted as v/UINT32_MAX. */
unit_invalidate_cgroup(u, CGROUP_MASK_PIDS);
unit_write_settingf(u, flags, name, "%s=%" PRIu32 "%%", "TasksMax",
(uint32_t) (DIV_ROUND_UP((uint64_t) v * 100U, (uint64_t) UINT32_MAX)));
}
return 1;
}
int bus_cgroup_set_property(
Unit *u,
CGroupContext *c,
const char *name,
sd_bus_message *message,
UnitWriteFlags flags,
sd_bus_error *error) {
CGroupIOLimitType iol_type;
int r;
assert(u);
assert(c);
assert(name);
assert(message);
flags |= UNIT_PRIVATE;
if (streq(name, "CPUAccounting"))
return bus_cgroup_set_boolean(u, name, &c->cpu_accounting, get_cpu_accounting_mask(), message, flags, error);
if (streq(name, "CPUWeight"))
return bus_cgroup_set_cpu_weight(u, name, &c->cpu_weight, message, flags, error);
if (streq(name, "StartupCPUWeight"))
return bus_cgroup_set_cpu_weight(u, name, &c->startup_cpu_weight, message, flags, error);
if (streq(name, "CPUShares"))
return bus_cgroup_set_cpu_shares(u, name, &c->cpu_shares, message, flags, error);
if (streq(name, "StartupCPUShares"))
return bus_cgroup_set_cpu_shares(u, name, &c->startup_cpu_shares, message, flags, error);
if (streq(name, "IOAccounting"))
return bus_cgroup_set_boolean(u, name, &c->io_accounting, CGROUP_MASK_IO, message, flags, error);
if (streq(name, "IOWeight"))
return bus_cgroup_set_io_weight(u, name, &c->io_weight, message, flags, error);
if (streq(name, "StartupIOWeight"))
return bus_cgroup_set_io_weight(u, name, &c->startup_io_weight, message, flags, error);
if (streq(name, "BlockIOAccounting"))
return bus_cgroup_set_boolean(u, name, &c->blockio_accounting, CGROUP_MASK_BLKIO, message, flags, error);
if (streq(name, "BlockIOWeight"))
return bus_cgroup_set_blockio_weight(u, name, &c->blockio_weight, message, flags, error);
if (streq(name, "StartupBlockIOWeight"))
return bus_cgroup_set_blockio_weight(u, name, &c->startup_blockio_weight, message, flags, error);
if (streq(name, "MemoryAccounting"))
return bus_cgroup_set_boolean(u, name, &c->memory_accounting, CGROUP_MASK_MEMORY, message, flags, error);
if (streq(name, "MemoryMin")) {
r = bus_cgroup_set_memory_protection(u, name, &c->memory_min, message, flags, error);
if (r > 0)
c->memory_min_set = true;
return r;
}
if (streq(name, "MemoryLow")) {
r = bus_cgroup_set_memory_protection(u, name, &c->memory_low, message, flags, error);
if (r > 0)
c->memory_low_set = true;
return r;
}
if (streq(name, "DefaultMemoryMin")) {
r = bus_cgroup_set_memory_protection(u, name, &c->default_memory_min, message, flags, error);
if (r > 0)
c->default_memory_min_set = true;
return r;
}
if (streq(name, "DefaultMemoryLow")) {
r = bus_cgroup_set_memory_protection(u, name, &c->default_memory_low, message, flags, error);
if (r > 0)
c->default_memory_low_set = true;
return r;
}
if (streq(name, "MemoryHigh"))
return bus_cgroup_set_memory(u, name, &c->memory_high, message, flags, error);
if (streq(name, "MemorySwapMax"))
return bus_cgroup_set_swap(u, name, &c->memory_swap_max, message, flags, error);
if (streq(name, "MemoryMax"))
return bus_cgroup_set_memory(u, name, &c->memory_max, message, flags, error);
if (streq(name, "MemoryLimit"))
return bus_cgroup_set_memory(u, name, &c->memory_limit, message, flags, error);
if (streq(name, "MemoryMinScale")) {
r = bus_cgroup_set_memory_protection_scale(u, name, &c->memory_min, message, flags, error);
if (r > 0)
c->memory_min_set = true;
return r;
}
if (streq(name, "MemoryLowScale")) {
r = bus_cgroup_set_memory_protection_scale(u, name, &c->memory_low, message, flags, error);
if (r > 0)
c->memory_low_set = true;
return r;
}
if (streq(name, "DefaultMemoryMinScale")) {
r = bus_cgroup_set_memory_protection_scale(u, name, &c->default_memory_min, message, flags, error);
if (r > 0)
c->default_memory_min_set = true;
return r;
}
if (streq(name, "DefaultMemoryLowScale")) {
r = bus_cgroup_set_memory_protection_scale(u, name, &c->default_memory_low, message, flags, error);
if (r > 0)
c->default_memory_low_set = true;
return r;
}
if (streq(name, "MemoryHighScale"))
return bus_cgroup_set_memory_scale(u, name, &c->memory_high, message, flags, error);
if (streq(name, "MemorySwapMaxScale"))
return bus_cgroup_set_swap_scale(u, name, &c->memory_swap_max, message, flags, error);
if (streq(name, "MemoryMaxScale"))
return bus_cgroup_set_memory_scale(u, name, &c->memory_max, message, flags, error);
if (streq(name, "MemoryLimitScale"))
return bus_cgroup_set_memory_scale(u, name, &c->memory_limit, message, flags, error);
if (streq(name, "TasksAccounting"))
return bus_cgroup_set_boolean(u, name, &c->tasks_accounting, CGROUP_MASK_PIDS, message, flags, error);
if (streq(name, "TasksMax"))
return bus_cgroup_set_tasks_max(u, name, &c->tasks_max, message, flags, error);
if (streq(name, "TasksMaxScale"))
return bus_cgroup_set_tasks_max_scale(u, name, &c->tasks_max, message, flags, error);
if (streq(name, "CPUQuotaPerSecUSec")) {
uint64_t u64;
r = sd_bus_message_read(message, "t", &u64);
if (r < 0)
return r;
if (u64 <= 0)
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "CPUQuotaPerSecUSec= value out of range");
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
c->cpu_quota_per_sec_usec = u64;
u->warned_clamping_cpu_quota_period = false;
unit_invalidate_cgroup(u, CGROUP_MASK_CPU);
if (c->cpu_quota_per_sec_usec == USEC_INFINITY)
unit_write_setting(u, flags, "CPUQuota", "CPUQuota=");
else
/* config_parse_cpu_quota() requires an integer, so truncating division is used on
* purpose here. */
unit_write_settingf(u, flags, "CPUQuota",
"CPUQuota=%0.f%%",
(double) (c->cpu_quota_per_sec_usec / 10000));
}
return 1;
} else if (streq(name, "CPUQuotaPeriodUSec")) {
uint64_t u64;
r = sd_bus_message_read(message, "t", &u64);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
c->cpu_quota_period_usec = u64;
u->warned_clamping_cpu_quota_period = false;
unit_invalidate_cgroup(u, CGROUP_MASK_CPU);
if (c->cpu_quota_period_usec == USEC_INFINITY)
unit_write_setting(u, flags, "CPUQuotaPeriodSec", "CPUQuotaPeriodSec=");
else {
char v[FORMAT_TIMESPAN_MAX];
unit_write_settingf(u, flags, "CPUQuotaPeriodSec",
"CPUQuotaPeriodSec=%s",
format_timespan(v, sizeof(v), c->cpu_quota_period_usec, 1));
}
}
return 1;
} else if (STR_IN_SET(name, "AllowedCPUs", "AllowedMemoryNodes")) {
const void *a;
size_t n;
_cleanup_(cpu_set_reset) CPUSet new_set = {};
r = sd_bus_message_read_array(message, 'y', &a, &n);
if (r < 0)
return r;
r = cpu_set_from_dbus(a, n, &new_set);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
_cleanup_free_ char *setstr = NULL;
CPUSet *set;
setstr = cpu_set_to_range_string(&new_set);
if (!setstr)
return -ENOMEM;
if (streq(name, "AllowedCPUs"))
set = &c->cpuset_cpus;
else
set = &c->cpuset_mems;
cpu_set_reset(set);
*set = new_set;
new_set = (CPUSet) {};
unit_invalidate_cgroup(u, CGROUP_MASK_CPUSET);
unit_write_settingf(u, flags, name, "%s=%s", name, setstr);
}
return 1;
} else if ((iol_type = cgroup_io_limit_type_from_string(name)) >= 0) {
const char *path;
unsigned n = 0;
uint64_t u64;
r = sd_bus_message_enter_container(message, 'a', "(st)");
if (r < 0)
return r;
while ((r = sd_bus_message_read(message, "(st)", &path, &u64)) > 0) {
if (!path_is_normalized(path))
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Path '%s' specified in %s= is not normalized.", name, path);
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
CGroupIODeviceLimit *a = NULL, *b;
LIST_FOREACH(device_limits, b, c->io_device_limits) {
if (path_equal(path, b->path)) {
a = b;
break;
}
}
if (!a) {
CGroupIOLimitType type;
a = new0(CGroupIODeviceLimit, 1);
if (!a)
return -ENOMEM;
a->path = strdup(path);
if (!a->path) {
free(a);
return -ENOMEM;
}
for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
a->limits[type] = cgroup_io_limit_defaults[type];
LIST_PREPEND(device_limits, c->io_device_limits, a);
}
a->limits[iol_type] = u64;
}
n++;
}
if (r < 0)
return r;
r = sd_bus_message_exit_container(message);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
CGroupIODeviceLimit *a;
_cleanup_free_ char *buf = NULL;
_cleanup_fclose_ FILE *f = NULL;
size_t size = 0;
if (n == 0) {
LIST_FOREACH(device_limits, a, c->io_device_limits)
a->limits[iol_type] = cgroup_io_limit_defaults[iol_type];
}
unit_invalidate_cgroup(u, CGROUP_MASK_IO);
f = open_memstream_unlocked(&buf, &size);
if (!f)
return -ENOMEM;
fprintf(f, "%s=\n", name);
LIST_FOREACH(device_limits, a, c->io_device_limits)
if (a->limits[iol_type] != cgroup_io_limit_defaults[iol_type])
fprintf(f, "%s=%s %" PRIu64 "\n", name, a->path, a->limits[iol_type]);
r = fflush_and_check(f);
if (r < 0)
return r;
unit_write_setting(u, flags, name, buf);
}
return 1;
} else if (streq(name, "IODeviceWeight")) {
const char *path;
uint64_t weight;
unsigned n = 0;
r = sd_bus_message_enter_container(message, 'a', "(st)");
if (r < 0)
return r;
while ((r = sd_bus_message_read(message, "(st)", &path, &weight)) > 0) {
if (!path_is_normalized(path))
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Path '%s' specified in %s= is not normalized.", name, path);
if (!CGROUP_WEIGHT_IS_OK(weight) || weight == CGROUP_WEIGHT_INVALID)
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "IODeviceWeight= value out of range");
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
CGroupIODeviceWeight *a = NULL, *b;
LIST_FOREACH(device_weights, b, c->io_device_weights) {
if (path_equal(b->path, path)) {
a = b;
break;
}
}
if (!a) {
a = new0(CGroupIODeviceWeight, 1);
if (!a)
return -ENOMEM;
a->path = strdup(path);
if (!a->path) {
free(a);
return -ENOMEM;
}
LIST_PREPEND(device_weights, c->io_device_weights, a);
}
a->weight = weight;
}
n++;
}
r = sd_bus_message_exit_container(message);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
_cleanup_free_ char *buf = NULL;
_cleanup_fclose_ FILE *f = NULL;
CGroupIODeviceWeight *a;
size_t size = 0;
if (n == 0) {
while (c->io_device_weights)
cgroup_context_free_io_device_weight(c, c->io_device_weights);
}
unit_invalidate_cgroup(u, CGROUP_MASK_IO);
f = open_memstream_unlocked(&buf, &size);
if (!f)
return -ENOMEM;
fputs("IODeviceWeight=\n", f);
LIST_FOREACH(device_weights, a, c->io_device_weights)
fprintf(f, "IODeviceWeight=%s %" PRIu64 "\n", a->path, a->weight);
r = fflush_and_check(f);
if (r < 0)
return r;
unit_write_setting(u, flags, name, buf);
}
return 1;
} else if (streq(name, "IODeviceLatencyTargetUSec")) {
const char *path;
uint64_t target;
unsigned n = 0;
r = sd_bus_message_enter_container(message, 'a', "(st)");
if (r < 0)
return r;
while ((r = sd_bus_message_read(message, "(st)", &path, &target)) > 0) {
if (!path_is_normalized(path))
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Path '%s' specified in %s= is not normalized.", name, path);
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
CGroupIODeviceLatency *a = NULL, *b;
LIST_FOREACH(device_latencies, b, c->io_device_latencies) {
if (path_equal(b->path, path)) {
a = b;
break;
}
}
if (!a) {
a = new0(CGroupIODeviceLatency, 1);
if (!a)
return -ENOMEM;
a->path = strdup(path);
if (!a->path) {
free(a);
return -ENOMEM;
}
LIST_PREPEND(device_latencies, c->io_device_latencies, a);
}
a->target_usec = target;
}
n++;
}
r = sd_bus_message_exit_container(message);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
_cleanup_free_ char *buf = NULL;
_cleanup_fclose_ FILE *f = NULL;
char ts[FORMAT_TIMESPAN_MAX];
CGroupIODeviceLatency *a;
size_t size = 0;
if (n == 0) {
while (c->io_device_latencies)
cgroup_context_free_io_device_latency(c, c->io_device_latencies);
}
unit_invalidate_cgroup(u, CGROUP_MASK_IO);
f = open_memstream_unlocked(&buf, &size);
if (!f)
return -ENOMEM;
fputs("IODeviceLatencyTargetSec=\n", f);
LIST_FOREACH(device_latencies, a, c->io_device_latencies)
fprintf(f, "IODeviceLatencyTargetSec=%s %s\n",
a->path, format_timespan(ts, sizeof(ts), a->target_usec, 1));
r = fflush_and_check(f);
if (r < 0)
return r;
unit_write_setting(u, flags, name, buf);
}
return 1;
} else if (STR_IN_SET(name, "BlockIOReadBandwidth", "BlockIOWriteBandwidth")) {
const char *path;
bool read = true;
unsigned n = 0;
uint64_t u64;
if (streq(name, "BlockIOWriteBandwidth"))
read = false;
r = sd_bus_message_enter_container(message, 'a', "(st)");
if (r < 0)
return r;
while ((r = sd_bus_message_read(message, "(st)", &path, &u64)) > 0) {
if (!path_is_normalized(path))
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Path '%s' specified in %s= is not normalized.", name, path);
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
CGroupBlockIODeviceBandwidth *a = NULL, *b;
LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
if (path_equal(path, b->path)) {
a = b;
break;
}
}
if (!a) {
a = new0(CGroupBlockIODeviceBandwidth, 1);
if (!a)
return -ENOMEM;
a->rbps = CGROUP_LIMIT_MAX;
a->wbps = CGROUP_LIMIT_MAX;
a->path = strdup(path);
if (!a->path) {
free(a);
return -ENOMEM;
}
LIST_PREPEND(device_bandwidths, c->blockio_device_bandwidths, a);
}
if (read)
a->rbps = u64;
else
a->wbps = u64;
}
n++;
}
if (r < 0)
return r;
r = sd_bus_message_exit_container(message);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
CGroupBlockIODeviceBandwidth *a;
_cleanup_free_ char *buf = NULL;
_cleanup_fclose_ FILE *f = NULL;
size_t size = 0;
if (n == 0) {
LIST_FOREACH(device_bandwidths, a, c->blockio_device_bandwidths) {
if (read)
a->rbps = CGROUP_LIMIT_MAX;
else
a->wbps = CGROUP_LIMIT_MAX;
}
}
unit_invalidate_cgroup(u, CGROUP_MASK_BLKIO);
f = open_memstream_unlocked(&buf, &size);
if (!f)
return -ENOMEM;
if (read) {
fputs("BlockIOReadBandwidth=\n", f);
LIST_FOREACH(device_bandwidths, a, c->blockio_device_bandwidths)
if (a->rbps != CGROUP_LIMIT_MAX)
fprintf(f, "BlockIOReadBandwidth=%s %" PRIu64 "\n", a->path, a->rbps);
} else {
fputs("BlockIOWriteBandwidth=\n", f);
LIST_FOREACH(device_bandwidths, a, c->blockio_device_bandwidths)
if (a->wbps != CGROUP_LIMIT_MAX)
fprintf(f, "BlockIOWriteBandwidth=%s %" PRIu64 "\n", a->path, a->wbps);
}
r = fflush_and_check(f);
if (r < 0)
return r;
unit_write_setting(u, flags, name, buf);
}
return 1;
} else if (streq(name, "BlockIODeviceWeight")) {
const char *path;
uint64_t weight;
unsigned n = 0;
r = sd_bus_message_enter_container(message, 'a', "(st)");
if (r < 0)
return r;
while ((r = sd_bus_message_read(message, "(st)", &path, &weight)) > 0) {
if (!path_is_normalized(path))
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Path '%s' specified in %s= is not normalized.", name, path);
if (!CGROUP_BLKIO_WEIGHT_IS_OK(weight) || weight == CGROUP_BLKIO_WEIGHT_INVALID)
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "BlockIODeviceWeight= out of range");
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
CGroupBlockIODeviceWeight *a = NULL, *b;
LIST_FOREACH(device_weights, b, c->blockio_device_weights) {
if (path_equal(b->path, path)) {
a = b;
break;
}
}
if (!a) {
a = new0(CGroupBlockIODeviceWeight, 1);
if (!a)
return -ENOMEM;
a->path = strdup(path);
if (!a->path) {
free(a);
return -ENOMEM;
}
LIST_PREPEND(device_weights, c->blockio_device_weights, a);
}
a->weight = weight;
}
n++;
}
r = sd_bus_message_exit_container(message);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
_cleanup_free_ char *buf = NULL;
_cleanup_fclose_ FILE *f = NULL;
CGroupBlockIODeviceWeight *a;
size_t size = 0;
if (n == 0) {
while (c->blockio_device_weights)
cgroup_context_free_blockio_device_weight(c, c->blockio_device_weights);
}
unit_invalidate_cgroup(u, CGROUP_MASK_BLKIO);
f = open_memstream_unlocked(&buf, &size);
if (!f)
return -ENOMEM;
fputs("BlockIODeviceWeight=\n", f);
LIST_FOREACH(device_weights, a, c->blockio_device_weights)
fprintf(f, "BlockIODeviceWeight=%s %" PRIu64 "\n", a->path, a->weight);
r = fflush_and_check(f);
if (r < 0)
return r;
unit_write_setting(u, flags, name, buf);
}
return 1;
} else if (streq(name, "DevicePolicy")) {
const char *policy;
CGroupDevicePolicy p;
r = sd_bus_message_read(message, "s", &policy);
if (r < 0)
return r;
p = cgroup_device_policy_from_string(policy);
if (p < 0)
return -EINVAL;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
c->device_policy = p;
unit_invalidate_cgroup(u, CGROUP_MASK_DEVICES);
unit_write_settingf(u, flags, name, "DevicePolicy=%s", policy);
}
return 1;
} else if (streq(name, "DeviceAllow")) {
const char *path, *rwm;
unsigned n = 0;
r = sd_bus_message_enter_container(message, 'a', "(ss)");
if (r < 0)
return r;
while ((r = sd_bus_message_read(message, "(ss)", &path, &rwm)) > 0) {
if (!valid_device_allow_pattern(path) || strpbrk(path, WHITESPACE))
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "DeviceAllow= requires device node or pattern");
if (isempty(rwm))
rwm = "rwm";
else if (!in_charset(rwm, "rwm"))
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "DeviceAllow= requires combination of rwm flags");
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
CGroupDeviceAllow *a = NULL, *b;
LIST_FOREACH(device_allow, b, c->device_allow) {
if (path_equal(b->path, path)) {
a = b;
break;
}
}
if (!a) {
a = new0(CGroupDeviceAllow, 1);
if (!a)
return -ENOMEM;
a->path = strdup(path);
if (!a->path) {
free(a);
return -ENOMEM;
}
LIST_PREPEND(device_allow, c->device_allow, a);
}
a->r = !!strchr(rwm, 'r');
a->w = !!strchr(rwm, 'w');
a->m = !!strchr(rwm, 'm');
}
n++;
}
if (r < 0)
return r;
r = sd_bus_message_exit_container(message);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
_cleanup_free_ char *buf = NULL;
_cleanup_fclose_ FILE *f = NULL;
CGroupDeviceAllow *a;
size_t size = 0;
if (n == 0) {
while (c->device_allow)
cgroup_context_free_device_allow(c, c->device_allow);
}
unit_invalidate_cgroup(u, CGROUP_MASK_DEVICES);
f = open_memstream_unlocked(&buf, &size);
if (!f)
return -ENOMEM;
fputs("DeviceAllow=\n", f);
LIST_FOREACH(device_allow, a, c->device_allow)
fprintf(f, "DeviceAllow=%s %s%s%s\n", a->path, a->r ? "r" : "", a->w ? "w" : "", a->m ? "m" : "");
r = fflush_and_check(f);
if (r < 0)
return r;
unit_write_setting(u, flags, name, buf);
}
return 1;
} else if (streq(name, "IPAccounting")) {
int b;
r = sd_bus_message_read(message, "b", &b);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
c->ip_accounting = b;
unit_invalidate_cgroup_bpf(u);
unit_write_settingf(u, flags, name, "IPAccounting=%s", yes_no(b));
}
return 1;
} else if (STR_IN_SET(name, "IPAddressAllow", "IPAddressDeny")) {
IPAddressAccessItem **list;
size_t n = 0;
list = streq(name, "IPAddressAllow") ? &c->ip_address_allow : &c->ip_address_deny;
r = sd_bus_message_enter_container(message, 'a', "(iayu)");
if (r < 0)
return r;
for (;;) {
const void *ap;
int32_t family;
uint32_t prefixlen;
size_t an;
r = sd_bus_message_enter_container(message, 'r', "iayu");
if (r < 0)
return r;
if (r == 0)
break;
r = sd_bus_message_read(message, "i", &family);
if (r < 0)
return r;
if (!IN_SET(family, AF_INET, AF_INET6))
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "%s= expects IPv4 or IPv6 addresses only.", name);
r = sd_bus_message_read_array(message, 'y', &ap, &an);
if (r < 0)
return r;
if (an != FAMILY_ADDRESS_SIZE(family))
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "IP address has wrong size for family (%s, expected %zu, got %zu)",
af_to_name(family), FAMILY_ADDRESS_SIZE(family), an);
r = sd_bus_message_read(message, "u", &prefixlen);
if (r < 0)
return r;
if (prefixlen > FAMILY_ADDRESS_SIZE(family)*8)
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Prefix length %" PRIu32 " too large for address family %s.", prefixlen, af_to_name(family));
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
IPAddressAccessItem *item;
item = new0(IPAddressAccessItem, 1);
if (!item)
return -ENOMEM;
item->family = family;
item->prefixlen = prefixlen;
memcpy(&item->address, ap, an);
LIST_PREPEND(items, *list, item);
}
r = sd_bus_message_exit_container(message);
if (r < 0)
return r;
n++;
}
r = sd_bus_message_exit_container(message);
if (r < 0)
return r;
*list = ip_address_access_reduce(*list);
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
_cleanup_free_ char *buf = NULL;
_cleanup_fclose_ FILE *f = NULL;
IPAddressAccessItem *item;
size_t size = 0;
if (n == 0)
*list = ip_address_access_free_all(*list);
unit_invalidate_cgroup_bpf(u);
f = open_memstream_unlocked(&buf, &size);
if (!f)
return -ENOMEM;
fputs(name, f);
fputs("=\n", f);
LIST_FOREACH(items, item, *list) {
char buffer[CONST_MAX(INET_ADDRSTRLEN, INET6_ADDRSTRLEN)];
errno = 0;
if (!inet_ntop(item->family, &item->address, buffer, sizeof(buffer)))
return errno_or_else(EINVAL);
fprintf(f, "%s=%s/%u\n", name, buffer, item->prefixlen);
}
r = fflush_and_check(f);
if (r < 0)
return r;
unit_write_setting(u, flags, name, buf);
}
return 1;
}
if (streq(name, "DisableControllers") || (u->transient && u->load_state == UNIT_STUB))
return bus_cgroup_set_transient_property(u, c, name, message, flags, error);
return 0;
}