Systemd/src/core/job.c
Dave Reisner cc479760b4 Revert "job: Don't mark as redundant if deps are relevant"
This reverts commit 097537f07a.

At least Fedora and Debian have already reverted this at the distro
level because it causes more problems than it solves. Arch is debating
reverting it as well [0] but would strongly prefer that this happens
upstream first. Fixes #15188.

[0] https://bugs.archlinux.org/task/66458
2020-06-23 11:42:45 +02:00

1704 lines
56 KiB
C

/* SPDX-License-Identifier: LGPL-2.1+ */
#include <errno.h>
#include "sd-id128.h"
#include "sd-messages.h"
#include "alloc-util.h"
#include "async.h"
#include "cgroup.h"
#include "dbus-job.h"
#include "dbus.h"
#include "escape.h"
#include "fileio.h"
#include "job.h"
#include "log.h"
#include "macro.h"
#include "parse-util.h"
#include "serialize.h"
#include "set.h"
#include "sort-util.h"
#include "special.h"
#include "stdio-util.h"
#include "string-table.h"
#include "string-util.h"
#include "strv.h"
#include "terminal-util.h"
#include "unit.h"
#include "virt.h"
Job* job_new_raw(Unit *unit) {
Job *j;
/* used for deserialization */
assert(unit);
j = new(Job, 1);
if (!j)
return NULL;
*j = (Job) {
.manager = unit->manager,
.unit = unit,
.type = _JOB_TYPE_INVALID,
};
return j;
}
Job* job_new(Unit *unit, JobType type) {
Job *j;
assert(type < _JOB_TYPE_MAX);
j = job_new_raw(unit);
if (!j)
return NULL;
j->id = j->manager->current_job_id++;
j->type = type;
/* We don't link it here, that's what job_dependency() is for */
return j;
}
void job_unlink(Job *j) {
assert(j);
assert(!j->installed);
assert(!j->transaction_prev);
assert(!j->transaction_next);
assert(!j->subject_list);
assert(!j->object_list);
if (j->in_run_queue) {
prioq_remove(j->manager->run_queue, j, &j->run_queue_idx);
j->in_run_queue = false;
}
if (j->in_dbus_queue) {
LIST_REMOVE(dbus_queue, j->manager->dbus_job_queue, j);
j->in_dbus_queue = false;
}
if (j->in_gc_queue) {
LIST_REMOVE(gc_queue, j->manager->gc_job_queue, j);
j->in_gc_queue = false;
}
j->timer_event_source = sd_event_source_unref(j->timer_event_source);
}
Job* job_free(Job *j) {
assert(j);
assert(!j->installed);
assert(!j->transaction_prev);
assert(!j->transaction_next);
assert(!j->subject_list);
assert(!j->object_list);
job_unlink(j);
sd_bus_track_unref(j->bus_track);
strv_free(j->deserialized_clients);
return mfree(j);
}
static void job_set_state(Job *j, JobState state) {
assert(j);
assert(state >= 0);
assert(state < _JOB_STATE_MAX);
if (j->state == state)
return;
j->state = state;
if (!j->installed)
return;
if (j->state == JOB_RUNNING)
j->unit->manager->n_running_jobs++;
else {
assert(j->state == JOB_WAITING);
assert(j->unit->manager->n_running_jobs > 0);
j->unit->manager->n_running_jobs--;
if (j->unit->manager->n_running_jobs <= 0)
j->unit->manager->jobs_in_progress_event_source = sd_event_source_unref(j->unit->manager->jobs_in_progress_event_source);
}
}
void job_uninstall(Job *j) {
Job **pj;
assert(j->installed);
job_set_state(j, JOB_WAITING);
pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job;
assert(*pj == j);
/* Detach from next 'bigger' objects */
/* daemon-reload should be transparent to job observers */
if (!MANAGER_IS_RELOADING(j->manager))
bus_job_send_removed_signal(j);
*pj = NULL;
unit_add_to_gc_queue(j->unit);
unit_add_to_dbus_queue(j->unit); /* The Job property of the unit has changed now */
hashmap_remove_value(j->manager->jobs, UINT32_TO_PTR(j->id), j);
j->installed = false;
}
static bool job_type_allows_late_merge(JobType t) {
/* Tells whether it is OK to merge a job of type 't' with an already
* running job.
* Reloads cannot be merged this way. Think of the sequence:
* 1. Reload of a daemon is in progress; the daemon has already loaded
* its config file, but hasn't completed the reload operation yet.
* 2. Edit foo's config file.
* 3. Trigger another reload to have the daemon use the new config.
* Should the second reload job be merged into the first one, the daemon
* would not know about the new config.
* JOB_RESTART jobs on the other hand can be merged, because they get
* patched into JOB_START after stopping the unit. So if we see a
* JOB_RESTART running, it means the unit hasn't stopped yet and at
* this time the merge is still allowed. */
return t != JOB_RELOAD;
}
static void job_merge_into_installed(Job *j, Job *other) {
assert(j->installed);
assert(j->unit == other->unit);
if (j->type != JOB_NOP)
assert_se(job_type_merge_and_collapse(&j->type, other->type, j->unit) == 0);
else
assert(other->type == JOB_NOP);
j->irreversible = j->irreversible || other->irreversible;
j->ignore_order = j->ignore_order || other->ignore_order;
}
Job* job_install(Job *j) {
Job **pj;
Job *uj;
assert(!j->installed);
assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION);
assert(j->state == JOB_WAITING);
pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job;
uj = *pj;
if (uj) {
if (job_type_is_conflicting(uj->type, j->type))
job_finish_and_invalidate(uj, JOB_CANCELED, false, false);
else {
/* not conflicting, i.e. mergeable */
if (uj->state == JOB_WAITING ||
(job_type_allows_late_merge(j->type) && job_type_is_superset(uj->type, j->type))) {
job_merge_into_installed(uj, j);
log_unit_debug(uj->unit,
"Merged %s/%s into installed job %s/%s as %"PRIu32,
j->unit->id, job_type_to_string(j->type), uj->unit->id,
job_type_to_string(uj->type), uj->id);
return uj;
} else {
/* already running and not safe to merge into */
/* Patch uj to become a merged job and re-run it. */
/* XXX It should be safer to queue j to run after uj finishes, but it is
* not currently possible to have more than one installed job per unit. */
job_merge_into_installed(uj, j);
log_unit_debug(uj->unit,
"Merged into running job, re-running: %s/%s as %"PRIu32,
uj->unit->id, job_type_to_string(uj->type), uj->id);
job_set_state(uj, JOB_WAITING);
return uj;
}
}
}
/* Install the job */
*pj = j;
j->installed = true;
j->manager->n_installed_jobs++;
log_unit_debug(j->unit,
"Installed new job %s/%s as %u",
j->unit->id, job_type_to_string(j->type), (unsigned) j->id);
job_add_to_gc_queue(j);
job_add_to_dbus_queue(j); /* announce this job to clients */
unit_add_to_dbus_queue(j->unit); /* The Job property of the unit has changed now */
return j;
}
int job_install_deserialized(Job *j) {
Job **pj;
int r;
assert(!j->installed);
if (j->type < 0 || j->type >= _JOB_TYPE_MAX_IN_TRANSACTION)
return log_unit_debug_errno(j->unit, SYNTHETIC_ERRNO(EINVAL),
"Invalid job type %s in deserialization.",
strna(job_type_to_string(j->type)));
pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job;
if (*pj)
return log_unit_debug_errno(j->unit, SYNTHETIC_ERRNO(EEXIST),
"Unit already has a job installed. Not installing deserialized job.");
r = hashmap_ensure_allocated(&j->manager->jobs, NULL);
if (r < 0)
return r;
r = hashmap_put(j->manager->jobs, UINT32_TO_PTR(j->id), j);
if (r == -EEXIST)
return log_unit_debug_errno(j->unit, r, "Job ID %" PRIu32 " already used, cannot deserialize job.", j->id);
if (r < 0)
return log_unit_debug_errno(j->unit, r, "Failed to insert job into jobs hash table: %m");
*pj = j;
j->installed = true;
if (j->state == JOB_RUNNING)
j->unit->manager->n_running_jobs++;
log_unit_debug(j->unit,
"Reinstalled deserialized job %s/%s as %u",
j->unit->id, job_type_to_string(j->type), (unsigned) j->id);
return 0;
}
JobDependency* job_dependency_new(Job *subject, Job *object, bool matters, bool conflicts) {
JobDependency *l;
assert(object);
/* Adds a new job link, which encodes that the 'subject' job
* needs the 'object' job in some way. If 'subject' is NULL
* this means the 'anchor' job (i.e. the one the user
* explicitly asked for) is the requester. */
l = new0(JobDependency, 1);
if (!l)
return NULL;
l->subject = subject;
l->object = object;
l->matters = matters;
l->conflicts = conflicts;
if (subject)
LIST_PREPEND(subject, subject->subject_list, l);
LIST_PREPEND(object, object->object_list, l);
return l;
}
void job_dependency_free(JobDependency *l) {
assert(l);
if (l->subject)
LIST_REMOVE(subject, l->subject->subject_list, l);
LIST_REMOVE(object, l->object->object_list, l);
free(l);
}
void job_dump(Job *j, FILE *f, const char *prefix) {
assert(j);
assert(f);
prefix = strempty(prefix);
fprintf(f,
"%s-> Job %u:\n"
"%s\tAction: %s -> %s\n"
"%s\tState: %s\n"
"%s\tIrreversible: %s\n"
"%s\tMay GC: %s\n",
prefix, j->id,
prefix, j->unit->id, job_type_to_string(j->type),
prefix, job_state_to_string(j->state),
prefix, yes_no(j->irreversible),
prefix, yes_no(job_may_gc(j)));
}
/*
* Merging is commutative, so imagine the matrix as symmetric. We store only
* its lower triangle to avoid duplication. We don't store the main diagonal,
* because A merged with A is simply A.
*
* If the resulting type is collapsed immediately afterwards (to get rid of
* the JOB_RELOAD_OR_START, which lies outside the lookup function's domain),
* the following properties hold:
*
* Merging is associative! A merged with B, and then merged with C is the same
* as A merged with the result of B merged with C.
*
* Mergeability is transitive! If A can be merged with B and B with C then
* A also with C.
*
* Also, if A merged with B cannot be merged with C, then either A or B cannot
* be merged with C either.
*/
static const JobType job_merging_table[] = {
/* What \ With * JOB_START JOB_VERIFY_ACTIVE JOB_STOP JOB_RELOAD */
/*********************************************************************************/
/*JOB_START */
/*JOB_VERIFY_ACTIVE */ JOB_START,
/*JOB_STOP */ -1, -1,
/*JOB_RELOAD */ JOB_RELOAD_OR_START, JOB_RELOAD, -1,
/*JOB_RESTART */ JOB_RESTART, JOB_RESTART, -1, JOB_RESTART,
};
JobType job_type_lookup_merge(JobType a, JobType b) {
assert_cc(ELEMENTSOF(job_merging_table) == _JOB_TYPE_MAX_MERGING * (_JOB_TYPE_MAX_MERGING - 1) / 2);
assert(a >= 0 && a < _JOB_TYPE_MAX_MERGING);
assert(b >= 0 && b < _JOB_TYPE_MAX_MERGING);
if (a == b)
return a;
if (a < b) {
JobType tmp = a;
a = b;
b = tmp;
}
return job_merging_table[(a - 1) * a / 2 + b];
}
bool job_type_is_redundant(JobType a, UnitActiveState b) {
switch (a) {
case JOB_START:
return IN_SET(b, UNIT_ACTIVE, UNIT_RELOADING);
case JOB_STOP:
return IN_SET(b, UNIT_INACTIVE, UNIT_FAILED);
case JOB_VERIFY_ACTIVE:
return IN_SET(b, UNIT_ACTIVE, UNIT_RELOADING);
case JOB_RELOAD:
return
b == UNIT_RELOADING;
case JOB_RESTART:
return
b == UNIT_ACTIVATING;
case JOB_NOP:
return true;
default:
assert_not_reached("Invalid job type");
}
}
JobType job_type_collapse(JobType t, Unit *u) {
UnitActiveState s;
switch (t) {
case JOB_TRY_RESTART:
s = unit_active_state(u);
if (!UNIT_IS_ACTIVE_OR_RELOADING(s))
return JOB_NOP;
return JOB_RESTART;
case JOB_TRY_RELOAD:
s = unit_active_state(u);
if (!UNIT_IS_ACTIVE_OR_RELOADING(s))
return JOB_NOP;
return JOB_RELOAD;
case JOB_RELOAD_OR_START:
s = unit_active_state(u);
if (!UNIT_IS_ACTIVE_OR_RELOADING(s))
return JOB_START;
return JOB_RELOAD;
default:
return t;
}
}
int job_type_merge_and_collapse(JobType *a, JobType b, Unit *u) {
JobType t;
t = job_type_lookup_merge(*a, b);
if (t < 0)
return -EEXIST;
*a = job_type_collapse(t, u);
return 0;
}
static bool job_is_runnable(Job *j) {
Iterator i;
Unit *other;
void *v;
assert(j);
assert(j->installed);
/* Checks whether there is any job running for the units this
* job needs to be running after (in the case of a 'positive'
* job type) or before (in the case of a 'negative' job
* type. */
/* Note that unit types have a say in what is runnable,
* too. For example, if they return -EAGAIN from
* unit_start() they can indicate they are not
* runnable yet. */
/* First check if there is an override */
if (j->ignore_order)
return true;
if (j->type == JOB_NOP)
return true;
HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i)
if (other->job && job_compare(j, other->job, UNIT_AFTER) > 0) {
log_unit_debug(j->unit,
"starting held back, waiting for: %s",
other->id);
return false;
}
HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i)
if (other->job && job_compare(j, other->job, UNIT_BEFORE) > 0) {
log_unit_debug(j->unit,
"stopping held back, waiting for: %s",
other->id);
return false;
}
return true;
}
static void job_change_type(Job *j, JobType newtype) {
assert(j);
log_unit_debug(j->unit,
"Converting job %s/%s -> %s/%s",
j->unit->id, job_type_to_string(j->type),
j->unit->id, job_type_to_string(newtype));
j->type = newtype;
}
_pure_ static const char* job_get_begin_status_message_format(Unit *u, JobType t) {
const char *format;
assert(u);
if (t == JOB_RELOAD)
return "Reloading %s.";
assert(IN_SET(t, JOB_START, JOB_STOP));
format = UNIT_VTABLE(u)->status_message_formats.starting_stopping[t == JOB_STOP];
if (format)
return format;
/* Return generic strings */
if (t == JOB_START)
return "Starting %s.";
else {
assert(t == JOB_STOP);
return "Stopping %s.";
}
}
static void job_print_begin_status_message(Unit *u, JobType t) {
const char *format;
assert(u);
/* Reload status messages have traditionally not been printed to console. */
if (!IN_SET(t, JOB_START, JOB_STOP))
return;
format = job_get_begin_status_message_format(u, t);
DISABLE_WARNING_FORMAT_NONLITERAL;
unit_status_printf(u, STATUS_TYPE_NORMAL, "", format);
REENABLE_WARNING;
}
static void job_log_begin_status_message(Unit *u, uint32_t job_id, JobType t) {
const char *format, *mid;
char buf[LINE_MAX];
assert(u);
assert(t >= 0);
assert(t < _JOB_TYPE_MAX);
if (!IN_SET(t, JOB_START, JOB_STOP, JOB_RELOAD))
return;
if (log_on_console()) /* Skip this if it would only go on the console anyway */
return;
/* We log status messages for all units and all operations. */
format = job_get_begin_status_message_format(u, t);
DISABLE_WARNING_FORMAT_NONLITERAL;
(void) snprintf(buf, sizeof buf, format, unit_status_string(u));
REENABLE_WARNING;
mid = t == JOB_START ? "MESSAGE_ID=" SD_MESSAGE_UNIT_STARTING_STR :
t == JOB_STOP ? "MESSAGE_ID=" SD_MESSAGE_UNIT_STOPPING_STR :
"MESSAGE_ID=" SD_MESSAGE_UNIT_RELOADING_STR;
/* Note that we deliberately use LOG_MESSAGE() instead of
* LOG_UNIT_MESSAGE() here, since this is supposed to mimic
* closely what is written to screen using the status output,
* which is supposed the highest level, friendliest output
* possible, which means we should avoid the low-level unit
* name. */
log_struct(LOG_INFO,
LOG_MESSAGE("%s", buf),
"JOB_ID=%" PRIu32, job_id,
"JOB_TYPE=%s", job_type_to_string(t),
LOG_UNIT_ID(u),
LOG_UNIT_INVOCATION_ID(u),
mid);
}
static void job_emit_begin_status_message(Unit *u, uint32_t job_id, JobType t) {
assert(u);
assert(t >= 0);
assert(t < _JOB_TYPE_MAX);
job_log_begin_status_message(u, job_id, t);
job_print_begin_status_message(u, t);
}
static int job_perform_on_unit(Job **j) {
uint32_t id;
Manager *m;
JobType t;
Unit *u;
int r;
/* While we execute this operation the job might go away (for
* example: because it finishes immediately or is replaced by
* a new, conflicting job.) To make sure we don't access a
* freed job later on we store the id here, so that we can
* verify the job is still valid. */
assert(j);
assert(*j);
m = (*j)->manager;
u = (*j)->unit;
t = (*j)->type;
id = (*j)->id;
switch (t) {
case JOB_START:
r = unit_start(u);
break;
case JOB_RESTART:
t = JOB_STOP;
_fallthrough_;
case JOB_STOP:
r = unit_stop(u);
break;
case JOB_RELOAD:
r = unit_reload(u);
break;
default:
assert_not_reached("Invalid job type");
}
/* Log if the job still exists and the start/stop/reload function actually did something. Note that this means
* for units for which there's no 'activating' phase (i.e. because we transition directly from 'inactive' to
* 'active') we'll possibly skip the "Starting..." message. */
*j = manager_get_job(m, id);
if (*j && r > 0)
job_emit_begin_status_message(u, id, t);
return r;
}
int job_run_and_invalidate(Job *j) {
int r;
assert(j);
assert(j->installed);
assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION);
assert(j->in_run_queue);
prioq_remove(j->manager->run_queue, j, &j->run_queue_idx);
j->in_run_queue = false;
if (j->state != JOB_WAITING)
return 0;
if (!job_is_runnable(j))
return -EAGAIN;
job_start_timer(j, true);
job_set_state(j, JOB_RUNNING);
job_add_to_dbus_queue(j);
switch (j->type) {
case JOB_VERIFY_ACTIVE: {
UnitActiveState t;
t = unit_active_state(j->unit);
if (UNIT_IS_ACTIVE_OR_RELOADING(t))
r = -EALREADY;
else if (t == UNIT_ACTIVATING)
r = -EAGAIN;
else
r = -EBADR;
break;
}
case JOB_START:
case JOB_STOP:
case JOB_RESTART:
r = job_perform_on_unit(&j);
/* If the unit type does not support starting/stopping, then simply wait. */
if (r == -EBADR)
r = 0;
break;
case JOB_RELOAD:
r = job_perform_on_unit(&j);
break;
case JOB_NOP:
r = -EALREADY;
break;
default:
assert_not_reached("Unknown job type");
}
if (j) {
if (r == -EAGAIN)
job_set_state(j, JOB_WAITING); /* Hmm, not ready after all, let's return to JOB_WAITING state */
else if (r == -EALREADY) /* already being executed */
r = job_finish_and_invalidate(j, JOB_DONE, true, true);
else if (r == -ECOMM) /* condition failed, but all is good */
r = job_finish_and_invalidate(j, JOB_DONE, true, false);
else if (r == -EBADR)
r = job_finish_and_invalidate(j, JOB_SKIPPED, true, false);
else if (r == -ENOEXEC)
r = job_finish_and_invalidate(j, JOB_INVALID, true, false);
else if (r == -EPROTO)
r = job_finish_and_invalidate(j, JOB_ASSERT, true, false);
else if (r == -EOPNOTSUPP)
r = job_finish_and_invalidate(j, JOB_UNSUPPORTED, true, false);
else if (r == -ENOLINK)
r = job_finish_and_invalidate(j, JOB_DEPENDENCY, true, false);
else if (r == -ESTALE)
r = job_finish_and_invalidate(j, JOB_ONCE, true, false);
else if (r < 0)
r = job_finish_and_invalidate(j, JOB_FAILED, true, false);
}
return r;
}
_pure_ static const char *job_get_done_status_message_format(Unit *u, JobType t, JobResult result) {
static const char *const generic_finished_start_job[_JOB_RESULT_MAX] = {
[JOB_DONE] = "Started %s.",
[JOB_TIMEOUT] = "Timed out starting %s.",
[JOB_FAILED] = "Failed to start %s.",
[JOB_DEPENDENCY] = "Dependency failed for %s.",
[JOB_ASSERT] = "Assertion failed for %s.",
[JOB_UNSUPPORTED] = "Starting of %s not supported.",
[JOB_COLLECTED] = "Unnecessary job for %s was removed.",
[JOB_ONCE] = "Unit %s has been started before and cannot be started again."
};
static const char *const generic_finished_stop_job[_JOB_RESULT_MAX] = {
[JOB_DONE] = "Stopped %s.",
[JOB_FAILED] = "Stopped (with error) %s.",
[JOB_TIMEOUT] = "Timed out stopping %s.",
};
static const char *const generic_finished_reload_job[_JOB_RESULT_MAX] = {
[JOB_DONE] = "Reloaded %s.",
[JOB_FAILED] = "Reload failed for %s.",
[JOB_TIMEOUT] = "Timed out reloading %s.",
};
/* When verify-active detects the unit is inactive, report it.
* Most likely a DEPEND warning from a requisiting unit will
* occur next and it's nice to see what was requisited. */
static const char *const generic_finished_verify_active_job[_JOB_RESULT_MAX] = {
[JOB_SKIPPED] = "%s is not active.",
};
const char *format;
assert(u);
assert(t >= 0);
assert(t < _JOB_TYPE_MAX);
if (IN_SET(t, JOB_START, JOB_STOP, JOB_RESTART)) {
const UnitStatusMessageFormats *formats = &UNIT_VTABLE(u)->status_message_formats;
if (formats->finished_job) {
format = formats->finished_job(u, t, result);
if (format)
return format;
}
format = t == JOB_START ?
formats->finished_start_job[result] :
formats->finished_stop_job[result];
if (format)
return format;
}
/* Return generic strings */
if (t == JOB_START)
return generic_finished_start_job[result];
else if (IN_SET(t, JOB_STOP, JOB_RESTART))
return generic_finished_stop_job[result];
else if (t == JOB_RELOAD)
return generic_finished_reload_job[result];
else if (t == JOB_VERIFY_ACTIVE)
return generic_finished_verify_active_job[result];
return NULL;
}
static const struct {
const char *color, *word;
} job_print_done_status_messages[_JOB_RESULT_MAX] = {
[JOB_DONE] = { ANSI_OK_COLOR, " OK " },
[JOB_TIMEOUT] = { ANSI_HIGHLIGHT_RED, " TIME " },
[JOB_FAILED] = { ANSI_HIGHLIGHT_RED, "FAILED" },
[JOB_DEPENDENCY] = { ANSI_HIGHLIGHT_YELLOW, "DEPEND" },
[JOB_SKIPPED] = { ANSI_HIGHLIGHT, " INFO " },
[JOB_ASSERT] = { ANSI_HIGHLIGHT_YELLOW, "ASSERT" },
[JOB_UNSUPPORTED] = { ANSI_HIGHLIGHT_YELLOW, "UNSUPP" },
/* JOB_COLLECTED */
[JOB_ONCE] = { ANSI_HIGHLIGHT_RED, " ONCE " },
};
static void job_print_done_status_message(Unit *u, JobType t, JobResult result) {
const char *format;
const char *status;
assert(u);
assert(t >= 0);
assert(t < _JOB_TYPE_MAX);
/* Reload status messages have traditionally not been printed to console. */
if (t == JOB_RELOAD)
return;
/* No message if the job did not actually do anything due to failed condition. */
if (t == JOB_START && result == JOB_DONE && !u->condition_result)
return;
if (!job_print_done_status_messages[result].word)
return;
format = job_get_done_status_message_format(u, t, result);
if (!format)
return;
if (log_get_show_color())
status = strjoina(job_print_done_status_messages[result].color,
job_print_done_status_messages[result].word,
ANSI_NORMAL);
else
status = job_print_done_status_messages[result].word;
DISABLE_WARNING_FORMAT_NONLITERAL;
unit_status_printf(u,
result == JOB_DONE ? STATUS_TYPE_NORMAL : STATUS_TYPE_NOTICE,
status, format);
REENABLE_WARNING;
if (t == JOB_START && result == JOB_FAILED) {
_cleanup_free_ char *quoted;
quoted = shell_maybe_quote(u->id, ESCAPE_BACKSLASH);
manager_status_printf(u->manager, STATUS_TYPE_NORMAL, NULL, "See 'systemctl status %s' for details.", strna(quoted));
}
}
static void job_log_done_status_message(Unit *u, uint32_t job_id, JobType t, JobResult result) {
const char *format, *mid;
char buf[LINE_MAX];
static const int job_result_log_level[_JOB_RESULT_MAX] = {
[JOB_DONE] = LOG_INFO,
[JOB_CANCELED] = LOG_INFO,
[JOB_TIMEOUT] = LOG_ERR,
[JOB_FAILED] = LOG_ERR,
[JOB_DEPENDENCY] = LOG_WARNING,
[JOB_SKIPPED] = LOG_NOTICE,
[JOB_INVALID] = LOG_INFO,
[JOB_ASSERT] = LOG_WARNING,
[JOB_UNSUPPORTED] = LOG_WARNING,
[JOB_COLLECTED] = LOG_INFO,
[JOB_ONCE] = LOG_ERR,
};
assert(u);
assert(t >= 0);
assert(t < _JOB_TYPE_MAX);
/* Skip printing if output goes to the console, and job_print_status_message()
will actually print something to the console. */
if (log_on_console() && job_print_done_status_messages[result].word)
return;
/* Show condition check message if the job did not actually do anything due to failed condition. */
if ((t == JOB_START && result == JOB_DONE && !u->condition_result) ||
(t == JOB_START && result == JOB_SKIPPED)) {
log_struct(LOG_INFO,
"MESSAGE=Condition check resulted in %s being skipped.", unit_status_string(u),
"JOB_ID=%" PRIu32, job_id,
"JOB_TYPE=%s", job_type_to_string(t),
"JOB_RESULT=%s", job_result_to_string(result),
LOG_UNIT_ID(u),
LOG_UNIT_INVOCATION_ID(u),
"MESSAGE_ID=" SD_MESSAGE_UNIT_STARTED_STR);
return;
}
format = job_get_done_status_message_format(u, t, result);
if (!format)
return;
/* The description might be longer than the buffer, but that's OK,
* we'll just truncate it here. Note that we use snprintf() rather than
* xsprintf() on purpose here: we are fine with truncation and don't
* consider that an error. */
DISABLE_WARNING_FORMAT_NONLITERAL;
(void) snprintf(buf, sizeof(buf), format, unit_status_string(u));
REENABLE_WARNING;
switch (t) {
case JOB_START:
if (result == JOB_DONE)
mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_STARTED_STR;
else
mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_FAILED_STR;
break;
case JOB_RELOAD:
mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_RELOADED_STR;
break;
case JOB_STOP:
case JOB_RESTART:
mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_STOPPED_STR;
break;
default:
log_struct(job_result_log_level[result],
LOG_MESSAGE("%s", buf),
"JOB_ID=%" PRIu32, job_id,
"JOB_TYPE=%s", job_type_to_string(t),
"JOB_RESULT=%s", job_result_to_string(result),
LOG_UNIT_ID(u),
LOG_UNIT_INVOCATION_ID(u));
return;
}
log_struct(job_result_log_level[result],
LOG_MESSAGE("%s", buf),
"JOB_ID=%" PRIu32, job_id,
"JOB_TYPE=%s", job_type_to_string(t),
"JOB_RESULT=%s", job_result_to_string(result),
LOG_UNIT_ID(u),
LOG_UNIT_INVOCATION_ID(u),
mid);
}
static void job_emit_done_status_message(Unit *u, uint32_t job_id, JobType t, JobResult result) {
assert(u);
job_log_done_status_message(u, job_id, t, result);
job_print_done_status_message(u, t, result);
}
static void job_fail_dependencies(Unit *u, UnitDependency d) {
Unit *other;
Iterator i;
void *v;
assert(u);
HASHMAP_FOREACH_KEY(v, other, u->dependencies[d], i) {
Job *j = other->job;
if (!j)
continue;
if (!IN_SET(j->type, JOB_START, JOB_VERIFY_ACTIVE))
continue;
job_finish_and_invalidate(j, JOB_DEPENDENCY, true, false);
}
}
int job_finish_and_invalidate(Job *j, JobResult result, bool recursive, bool already) {
Unit *u;
Unit *other;
JobType t;
Iterator i;
void *v;
assert(j);
assert(j->installed);
assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION);
u = j->unit;
t = j->type;
j->result = result;
log_unit_debug(u, "Job %" PRIu32 " %s/%s finished, result=%s", j->id, u->id, job_type_to_string(t), job_result_to_string(result));
/* If this job did nothing to respective unit we don't log the status message */
if (!already)
job_emit_done_status_message(u, j->id, t, result);
/* Patch restart jobs so that they become normal start jobs */
if (result == JOB_DONE && t == JOB_RESTART) {
job_change_type(j, JOB_START);
job_set_state(j, JOB_WAITING);
job_add_to_dbus_queue(j);
job_add_to_run_queue(j);
job_add_to_gc_queue(j);
goto finish;
}
if (IN_SET(result, JOB_FAILED, JOB_INVALID))
j->manager->n_failed_jobs++;
job_uninstall(j);
job_free(j);
/* Fail depending jobs on failure */
if (result != JOB_DONE && recursive) {
if (IN_SET(t, JOB_START, JOB_VERIFY_ACTIVE)) {
job_fail_dependencies(u, UNIT_REQUIRED_BY);
job_fail_dependencies(u, UNIT_REQUISITE_OF);
job_fail_dependencies(u, UNIT_BOUND_BY);
} else if (t == JOB_STOP)
job_fail_dependencies(u, UNIT_CONFLICTED_BY);
}
/* A special check to make sure we take down anything RequisiteOf if we
* aren't active. This is when the verify-active job merges with a
* satisfying job type, and then loses it's invalidation effect, as the
* result there is JOB_DONE for the start job we merged into, while we
* should be failing the depending job if the said unit isn't in fact
* active. Oneshots are an example of this, where going directly from
* activating to inactive is success.
*
* This happens when you use ConditionXYZ= in a unit too, since in that
* case the job completes with the JOB_DONE result, but the unit never
* really becomes active. Note that such a case still involves merging:
*
* A start job waits for something else, and a verify-active comes in
* and merges in the installed job. Then, later, when it becomes
* runnable, it finishes with JOB_DONE result as execution on conditions
* not being met is skipped, breaking our dependency semantics.
*
* Also, depending on if start job waits or not, the merging may or may
* not happen (the verify-active job may trigger after it finishes), so
* you get undeterministic results without this check.
*/
if (result == JOB_DONE && recursive && !UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u))) {
if (IN_SET(t, JOB_START, JOB_RELOAD))
job_fail_dependencies(u, UNIT_REQUISITE_OF);
}
/* Trigger OnFailure dependencies that are not generated by
* the unit itself. We don't treat JOB_CANCELED as failure in
* this context. And JOB_FAILURE is already handled by the
* unit itself. */
if (IN_SET(result, JOB_TIMEOUT, JOB_DEPENDENCY)) {
log_struct(LOG_NOTICE,
"JOB_TYPE=%s", job_type_to_string(t),
"JOB_RESULT=%s", job_result_to_string(result),
LOG_UNIT_ID(u),
LOG_UNIT_MESSAGE(u, "Job %s/%s failed with result '%s'.",
u->id,
job_type_to_string(t),
job_result_to_string(result)));
unit_start_on_failure(u);
}
unit_trigger_notify(u);
finish:
/* Try to start the next jobs that can be started */
HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_AFTER], i)
if (other->job) {
job_add_to_run_queue(other->job);
job_add_to_gc_queue(other->job);
}
HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BEFORE], i)
if (other->job) {
job_add_to_run_queue(other->job);
job_add_to_gc_queue(other->job);
}
manager_check_finished(u->manager);
return 0;
}
static int job_dispatch_timer(sd_event_source *s, uint64_t monotonic, void *userdata) {
Job *j = userdata;
Unit *u;
assert(j);
assert(s == j->timer_event_source);
log_unit_warning(j->unit, "Job %s/%s timed out.", j->unit->id, job_type_to_string(j->type));
u = j->unit;
job_finish_and_invalidate(j, JOB_TIMEOUT, true, false);
emergency_action(u->manager, u->job_timeout_action,
EMERGENCY_ACTION_IS_WATCHDOG|EMERGENCY_ACTION_WARN,
u->job_timeout_reboot_arg, -1, "job timed out");
return 0;
}
int job_start_timer(Job *j, bool job_running) {
int r;
usec_t timeout_time, old_timeout_time;
if (job_running) {
j->begin_running_usec = now(CLOCK_MONOTONIC);
if (j->unit->job_running_timeout == USEC_INFINITY)
return 0;
timeout_time = usec_add(j->begin_running_usec, j->unit->job_running_timeout);
if (j->timer_event_source) {
/* Update only if JobRunningTimeoutSec= results in earlier timeout */
r = sd_event_source_get_time(j->timer_event_source, &old_timeout_time);
if (r < 0)
return r;
if (old_timeout_time <= timeout_time)
return 0;
return sd_event_source_set_time(j->timer_event_source, timeout_time);
}
} else {
if (j->timer_event_source)
return 0;
j->begin_usec = now(CLOCK_MONOTONIC);
if (j->unit->job_timeout == USEC_INFINITY)
return 0;
timeout_time = usec_add(j->begin_usec, j->unit->job_timeout);
}
r = sd_event_add_time(
j->manager->event,
&j->timer_event_source,
CLOCK_MONOTONIC,
timeout_time, 0,
job_dispatch_timer, j);
if (r < 0)
return r;
(void) sd_event_source_set_description(j->timer_event_source, "job-start");
return 0;
}
void job_add_to_run_queue(Job *j) {
int r;
assert(j);
assert(j->installed);
if (j->in_run_queue)
return;
if (prioq_isempty(j->manager->run_queue)) {
r = sd_event_source_set_enabled(j->manager->run_queue_event_source, SD_EVENT_ONESHOT);
if (r < 0)
log_warning_errno(r, "Failed to enable job run queue event source, ignoring: %m");
}
r = prioq_put(j->manager->run_queue, j, &j->run_queue_idx);
if (r < 0)
log_warning_errno(r, "Failed put job in run queue, ignoring: %m");
else
j->in_run_queue = true;
}
void job_add_to_dbus_queue(Job *j) {
assert(j);
assert(j->installed);
if (j->in_dbus_queue)
return;
/* We don't check if anybody is subscribed here, since this
* job might just have been created and not yet assigned to a
* connection/client. */
LIST_PREPEND(dbus_queue, j->manager->dbus_job_queue, j);
j->in_dbus_queue = true;
}
char *job_dbus_path(Job *j) {
char *p;
assert(j);
if (asprintf(&p, "/org/freedesktop/systemd1/job/%"PRIu32, j->id) < 0)
return NULL;
return p;
}
int job_serialize(Job *j, FILE *f) {
assert(j);
assert(f);
(void) serialize_item_format(f, "job-id", "%u", j->id);
(void) serialize_item(f, "job-type", job_type_to_string(j->type));
(void) serialize_item(f, "job-state", job_state_to_string(j->state));
(void) serialize_bool(f, "job-irreversible", j->irreversible);
(void) serialize_bool(f, "job-sent-dbus-new-signal", j->sent_dbus_new_signal);
(void) serialize_bool(f, "job-ignore-order", j->ignore_order);
if (j->begin_usec > 0)
(void) serialize_usec(f, "job-begin", j->begin_usec);
if (j->begin_running_usec > 0)
(void) serialize_usec(f, "job-begin-running", j->begin_running_usec);
bus_track_serialize(j->bus_track, f, "subscribed");
/* End marker */
fputc('\n', f);
return 0;
}
int job_deserialize(Job *j, FILE *f) {
int r;
assert(j);
assert(f);
for (;;) {
_cleanup_free_ char *line = NULL;
char *l, *v;
size_t k;
r = read_line(f, LONG_LINE_MAX, &line);
if (r < 0)
return log_error_errno(r, "Failed to read serialization line: %m");
if (r == 0)
return 0;
l = strstrip(line);
/* End marker */
if (isempty(l))
return 0;
k = strcspn(l, "=");
if (l[k] == '=') {
l[k] = 0;
v = l+k+1;
} else
v = l+k;
if (streq(l, "job-id")) {
if (safe_atou32(v, &j->id) < 0)
log_debug("Failed to parse job id value: %s", v);
} else if (streq(l, "job-type")) {
JobType t;
t = job_type_from_string(v);
if (t < 0)
log_debug("Failed to parse job type: %s", v);
else if (t >= _JOB_TYPE_MAX_IN_TRANSACTION)
log_debug("Cannot deserialize job of type: %s", v);
else
j->type = t;
} else if (streq(l, "job-state")) {
JobState s;
s = job_state_from_string(v);
if (s < 0)
log_debug("Failed to parse job state: %s", v);
else
job_set_state(j, s);
} else if (streq(l, "job-irreversible")) {
int b;
b = parse_boolean(v);
if (b < 0)
log_debug("Failed to parse job irreversible flag: %s", v);
else
j->irreversible = j->irreversible || b;
} else if (streq(l, "job-sent-dbus-new-signal")) {
int b;
b = parse_boolean(v);
if (b < 0)
log_debug("Failed to parse job sent_dbus_new_signal flag: %s", v);
else
j->sent_dbus_new_signal = j->sent_dbus_new_signal || b;
} else if (streq(l, "job-ignore-order")) {
int b;
b = parse_boolean(v);
if (b < 0)
log_debug("Failed to parse job ignore_order flag: %s", v);
else
j->ignore_order = j->ignore_order || b;
} else if (streq(l, "job-begin"))
(void) deserialize_usec(v, &j->begin_usec);
else if (streq(l, "job-begin-running"))
(void) deserialize_usec(v, &j->begin_running_usec);
else if (streq(l, "subscribed")) {
if (strv_extend(&j->deserialized_clients, v) < 0)
return log_oom();
} else
log_debug("Unknown job serialization key: %s", l);
}
}
int job_coldplug(Job *j) {
int r;
usec_t timeout_time = USEC_INFINITY;
assert(j);
/* After deserialization is complete and the bus connection
* set up again, let's start watching our subscribers again */
(void) bus_job_coldplug_bus_track(j);
if (j->state == JOB_WAITING)
job_add_to_run_queue(j);
/* Maybe due to new dependencies we don't actually need this job anymore? */
job_add_to_gc_queue(j);
/* Create timer only when job began or began running and the respective timeout is finite.
* Follow logic of job_start_timer() if both timeouts are finite */
if (j->begin_usec == 0)
return 0;
if (j->unit->job_timeout != USEC_INFINITY)
timeout_time = usec_add(j->begin_usec, j->unit->job_timeout);
if (timestamp_is_set(j->begin_running_usec))
timeout_time = MIN(timeout_time, usec_add(j->begin_running_usec, j->unit->job_running_timeout));
if (timeout_time == USEC_INFINITY)
return 0;
j->timer_event_source = sd_event_source_unref(j->timer_event_source);
r = sd_event_add_time(
j->manager->event,
&j->timer_event_source,
CLOCK_MONOTONIC,
timeout_time, 0,
job_dispatch_timer, j);
if (r < 0)
log_debug_errno(r, "Failed to restart timeout for job: %m");
(void) sd_event_source_set_description(j->timer_event_source, "job-timeout");
return r;
}
void job_shutdown_magic(Job *j) {
assert(j);
/* The shutdown target gets some special treatment here: we
* tell the kernel to begin with flushing its disk caches, to
* optimize shutdown time a bit. Ideally we wouldn't hardcode
* this magic into PID 1. However all other processes aren't
* options either since they'd exit much sooner than PID 1 and
* asynchronous sync() would cause their exit to be
* delayed. */
if (j->type != JOB_START)
return;
if (!MANAGER_IS_SYSTEM(j->unit->manager))
return;
if (!unit_has_name(j->unit, SPECIAL_SHUTDOWN_TARGET))
return;
/* In case messages on console has been disabled on boot */
j->unit->manager->no_console_output = false;
if (detect_container() > 0)
return;
(void) asynchronous_sync(NULL);
}
int job_get_timeout(Job *j, usec_t *timeout) {
usec_t x = USEC_INFINITY, y = USEC_INFINITY;
Unit *u = j->unit;
int r;
assert(u);
if (j->timer_event_source) {
r = sd_event_source_get_time(j->timer_event_source, &x);
if (r < 0)
return r;
}
if (UNIT_VTABLE(u)->get_timeout) {
r = UNIT_VTABLE(u)->get_timeout(u, &y);
if (r < 0)
return r;
}
if (x == USEC_INFINITY && y == USEC_INFINITY)
return 0;
*timeout = MIN(x, y);
return 1;
}
bool job_may_gc(Job *j) {
Unit *other;
Iterator i;
void *v;
assert(j);
/* Checks whether this job should be GC'ed away. We only do this for jobs of units that have no effect on their
* own and just track external state. For now the only unit type that qualifies for this are .device units.
* Returns true if the job can be collected. */
if (!UNIT_VTABLE(j->unit)->gc_jobs)
return false;
if (sd_bus_track_count(j->bus_track) > 0)
return false;
/* FIXME: So this is a bit ugly: for now we don't properly track references made via private bus connections
* (because it's nasty, as sd_bus_track doesn't apply to it). We simply remember that the job was once
* referenced by one, and reset this whenever we notice that no private bus connections are around. This means
* the GC is a bit too conservative when it comes to jobs created by private bus connections. */
if (j->ref_by_private_bus) {
if (set_isempty(j->unit->manager->private_buses))
j->ref_by_private_bus = false;
else
return false;
}
if (j->type == JOB_NOP)
return false;
/* The logic is inverse to job_is_runnable, we cannot GC as long as we block any job. */
HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i)
if (other->job && job_compare(j, other->job, UNIT_BEFORE) < 0)
return false;
HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i)
if (other->job && job_compare(j, other->job, UNIT_AFTER) < 0)
return false;
return true;
}
void job_add_to_gc_queue(Job *j) {
assert(j);
if (j->in_gc_queue)
return;
if (!job_may_gc(j))
return;
LIST_PREPEND(gc_queue, j->unit->manager->gc_job_queue, j);
j->in_gc_queue = true;
}
static int job_compare_id(Job * const *a, Job * const *b) {
return CMP((*a)->id, (*b)->id);
}
static size_t sort_job_list(Job **list, size_t n) {
Job *previous = NULL;
size_t a, b;
/* Order by numeric IDs */
typesafe_qsort(list, n, job_compare_id);
/* Filter out duplicates */
for (a = 0, b = 0; a < n; a++) {
if (previous == list[a])
continue;
previous = list[b++] = list[a];
}
return b;
}
int job_get_before(Job *j, Job*** ret) {
_cleanup_free_ Job** list = NULL;
size_t n = 0, n_allocated = 0;
Unit *other = NULL;
Iterator i;
void *v;
/* Returns a list of all pending jobs that need to finish before this job may be started. */
assert(j);
assert(ret);
if (j->ignore_order) {
*ret = NULL;
return 0;
}
HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i) {
if (!other->job)
continue;
if (job_compare(j, other->job, UNIT_AFTER) <= 0)
continue;
if (!GREEDY_REALLOC(list, n_allocated, n+1))
return -ENOMEM;
list[n++] = other->job;
}
HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i) {
if (!other->job)
continue;
if (job_compare(j, other->job, UNIT_BEFORE) <= 0)
continue;
if (!GREEDY_REALLOC(list, n_allocated, n+1))
return -ENOMEM;
list[n++] = other->job;
}
n = sort_job_list(list, n);
*ret = TAKE_PTR(list);
return (int) n;
}
int job_get_after(Job *j, Job*** ret) {
_cleanup_free_ Job** list = NULL;
size_t n = 0, n_allocated = 0;
Unit *other = NULL;
void *v;
Iterator i;
assert(j);
assert(ret);
/* Returns a list of all pending jobs that are waiting for this job to finish. */
HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i) {
if (!other->job)
continue;
if (other->job->ignore_order)
continue;
if (job_compare(j, other->job, UNIT_BEFORE) >= 0)
continue;
if (!GREEDY_REALLOC(list, n_allocated, n+1))
return -ENOMEM;
list[n++] = other->job;
}
HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i) {
if (!other->job)
continue;
if (other->job->ignore_order)
continue;
if (job_compare(j, other->job, UNIT_AFTER) >= 0)
continue;
if (!GREEDY_REALLOC(list, n_allocated, n+1))
return -ENOMEM;
list[n++] = other->job;
}
n = sort_job_list(list, n);
*ret = TAKE_PTR(list);
return (int) n;
}
static const char* const job_state_table[_JOB_STATE_MAX] = {
[JOB_WAITING] = "waiting",
[JOB_RUNNING] = "running",
};
DEFINE_STRING_TABLE_LOOKUP(job_state, JobState);
static const char* const job_type_table[_JOB_TYPE_MAX] = {
[JOB_START] = "start",
[JOB_VERIFY_ACTIVE] = "verify-active",
[JOB_STOP] = "stop",
[JOB_RELOAD] = "reload",
[JOB_RELOAD_OR_START] = "reload-or-start",
[JOB_RESTART] = "restart",
[JOB_TRY_RESTART] = "try-restart",
[JOB_TRY_RELOAD] = "try-reload",
[JOB_NOP] = "nop",
};
DEFINE_STRING_TABLE_LOOKUP(job_type, JobType);
static const char* const job_mode_table[_JOB_MODE_MAX] = {
[JOB_FAIL] = "fail",
[JOB_REPLACE] = "replace",
[JOB_REPLACE_IRREVERSIBLY] = "replace-irreversibly",
[JOB_ISOLATE] = "isolate",
[JOB_FLUSH] = "flush",
[JOB_IGNORE_DEPENDENCIES] = "ignore-dependencies",
[JOB_IGNORE_REQUIREMENTS] = "ignore-requirements",
[JOB_TRIGGERING] = "triggering",
};
DEFINE_STRING_TABLE_LOOKUP(job_mode, JobMode);
static const char* const job_result_table[_JOB_RESULT_MAX] = {
[JOB_DONE] = "done",
[JOB_CANCELED] = "canceled",
[JOB_TIMEOUT] = "timeout",
[JOB_FAILED] = "failed",
[JOB_DEPENDENCY] = "dependency",
[JOB_SKIPPED] = "skipped",
[JOB_INVALID] = "invalid",
[JOB_ASSERT] = "assert",
[JOB_UNSUPPORTED] = "unsupported",
[JOB_COLLECTED] = "collected",
[JOB_ONCE] = "once",
};
DEFINE_STRING_TABLE_LOOKUP(job_result, JobResult);
const char* job_type_to_access_method(JobType t) {
assert(t >= 0);
assert(t < _JOB_TYPE_MAX);
if (IN_SET(t, JOB_START, JOB_RESTART, JOB_TRY_RESTART))
return "start";
else if (t == JOB_STOP)
return "stop";
else
return "reload";
}
/*
* assume_dep assumed dependency between units (a is before/after b)
*
* Returns
* 0 jobs are independent,
* >0 a should run after b,
* <0 a should run before b,
*
* The logic means that for a service a and a service b where b.After=a:
*
* start a + start b → 1st step start a, 2nd step start b
* start a + stop b → 1st step stop b, 2nd step start a
* stop a + start b → 1st step stop a, 2nd step start b
* stop a + stop b → 1st step stop b, 2nd step stop a
*
* This has the side effect that restarts are properly
* synchronized too.
*/
int job_compare(Job *a, Job *b, UnitDependency assume_dep) {
assert(a->type < _JOB_TYPE_MAX_IN_TRANSACTION);
assert(b->type < _JOB_TYPE_MAX_IN_TRANSACTION);
assert(IN_SET(assume_dep, UNIT_AFTER, UNIT_BEFORE));
/* Trivial cases first */
if (a->type == JOB_NOP || b->type == JOB_NOP)
return 0;
if (a->ignore_order || b->ignore_order)
return 0;
if (assume_dep == UNIT_AFTER)
return -job_compare(b, a, UNIT_BEFORE);
/* Let's make it simple, JOB_STOP goes always first (in case both ua and ub stop,
* then ub's stop goes first anyway).
* JOB_RESTART is JOB_STOP in disguise (before it is patched to JOB_START). */
if (IN_SET(b->type, JOB_STOP, JOB_RESTART))
return 1;
else
return -1;
}