Systemd/src/core/cgroup.c
Lennart Poettering 5af8805872 cgroup: drastically simplify caching of cgroups members mask
Previously we tried to be smart: when a new unit appeared and it only
added controllers to the cgroup mask we'd update the cached members mask
in all parents by ORing in the controller flags in their cached values.
Unfortunately this was quite broken, as we missed some conditions when
this cache had to be reset (for example, when a unit got unloaded),
moreover the optimization doesn't work when a controller is removed
anyway (as in that case there's no other way for the parent to iterate
though all children if any other, remaining child unit still needs it).
Hence, let's simplify the logic substantially: instead of updating the
cache on the right events (which we didn't get right), let's simply
invalidate the cache, and generate it lazily when we encounter it later.
This should actually result in better behaviour as we don't have to
calculate the new members mask for a whole subtree whever we have the
suspicion something changed, but can delay it to the point where we
actually need the members mask.

This allows us to simplify things quite a bit, which is good, since
validating this cache for correctness is hard enough.

Fixes: #9512
2018-11-23 13:41:37 +01:00

2872 lines
106 KiB
C

/* SPDX-License-Identifier: LGPL-2.1+ */
#include <fcntl.h>
#include <fnmatch.h>
#include "alloc-util.h"
#include "blockdev-util.h"
#include "bpf-firewall.h"
#include "btrfs-util.h"
#include "bpf-devices.h"
#include "bus-error.h"
#include "cgroup-util.h"
#include "cgroup.h"
#include "fd-util.h"
#include "fileio.h"
#include "fs-util.h"
#include "parse-util.h"
#include "path-util.h"
#include "process-util.h"
#include "procfs-util.h"
#include "special.h"
#include "stdio-util.h"
#include "string-table.h"
#include "string-util.h"
#include "virt.h"
#define CGROUP_CPU_QUOTA_PERIOD_USEC ((usec_t) 100 * USEC_PER_MSEC)
/* Returns the log level to use when cgroup attribute writes fail. When an attribute is missing or we have access
* problems we downgrade to LOG_DEBUG. This is supposed to be nice to container managers and kernels which want to mask
* out specific attributes from us. */
#define LOG_LEVEL_CGROUP_WRITE(r) (IN_SET(abs(r), ENOENT, EROFS, EACCES, EPERM) ? LOG_DEBUG : LOG_WARNING)
bool manager_owns_host_root_cgroup(Manager *m) {
assert(m);
/* Returns true if we are managing the root cgroup. Note that it isn't sufficient to just check whether the
* group root path equals "/" since that will also be the case if CLONE_NEWCGROUP is in the mix. Since there's
* appears to be no nice way to detect whether we are in a CLONE_NEWCGROUP namespace we instead just check if
* we run in any kind of container virtualization. */
if (MANAGER_IS_USER(m))
return false;
if (detect_container() > 0)
return false;
return empty_or_root(m->cgroup_root);
}
bool unit_has_host_root_cgroup(Unit *u) {
assert(u);
/* Returns whether this unit manages the root cgroup. This will return true if this unit is the root slice and
* the manager manages the root cgroup. */
if (!manager_owns_host_root_cgroup(u->manager))
return false;
return unit_has_name(u, SPECIAL_ROOT_SLICE);
}
static int set_attribute_and_warn(Unit *u, const char *controller, const char *attribute, const char *value) {
int r;
r = cg_set_attribute(controller, u->cgroup_path, attribute, value);
if (r < 0)
log_unit_full(u, LOG_LEVEL_CGROUP_WRITE(r), r, "Failed to set '%s' attribute on '%s' to '%.*s': %m",
strna(attribute), isempty(u->cgroup_path) ? "/" : u->cgroup_path, (int) strcspn(value, NEWLINE), value);
return r;
}
static void cgroup_compat_warn(void) {
static bool cgroup_compat_warned = false;
if (cgroup_compat_warned)
return;
log_warning("cgroup compatibility translation between legacy and unified hierarchy settings activated. "
"See cgroup-compat debug messages for details.");
cgroup_compat_warned = true;
}
#define log_cgroup_compat(unit, fmt, ...) do { \
cgroup_compat_warn(); \
log_unit_debug(unit, "cgroup-compat: " fmt, ##__VA_ARGS__); \
} while (false)
void cgroup_context_init(CGroupContext *c) {
assert(c);
/* Initialize everything to the kernel defaults. */
*c = (CGroupContext) {
.cpu_weight = CGROUP_WEIGHT_INVALID,
.startup_cpu_weight = CGROUP_WEIGHT_INVALID,
.cpu_quota_per_sec_usec = USEC_INFINITY,
.cpu_shares = CGROUP_CPU_SHARES_INVALID,
.startup_cpu_shares = CGROUP_CPU_SHARES_INVALID,
.memory_high = CGROUP_LIMIT_MAX,
.memory_max = CGROUP_LIMIT_MAX,
.memory_swap_max = CGROUP_LIMIT_MAX,
.memory_limit = CGROUP_LIMIT_MAX,
.io_weight = CGROUP_WEIGHT_INVALID,
.startup_io_weight = CGROUP_WEIGHT_INVALID,
.blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
.startup_blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
.tasks_max = CGROUP_LIMIT_MAX,
};
}
void cgroup_context_free_device_allow(CGroupContext *c, CGroupDeviceAllow *a) {
assert(c);
assert(a);
LIST_REMOVE(device_allow, c->device_allow, a);
free(a->path);
free(a);
}
void cgroup_context_free_io_device_weight(CGroupContext *c, CGroupIODeviceWeight *w) {
assert(c);
assert(w);
LIST_REMOVE(device_weights, c->io_device_weights, w);
free(w->path);
free(w);
}
void cgroup_context_free_io_device_latency(CGroupContext *c, CGroupIODeviceLatency *l) {
assert(c);
assert(l);
LIST_REMOVE(device_latencies, c->io_device_latencies, l);
free(l->path);
free(l);
}
void cgroup_context_free_io_device_limit(CGroupContext *c, CGroupIODeviceLimit *l) {
assert(c);
assert(l);
LIST_REMOVE(device_limits, c->io_device_limits, l);
free(l->path);
free(l);
}
void cgroup_context_free_blockio_device_weight(CGroupContext *c, CGroupBlockIODeviceWeight *w) {
assert(c);
assert(w);
LIST_REMOVE(device_weights, c->blockio_device_weights, w);
free(w->path);
free(w);
}
void cgroup_context_free_blockio_device_bandwidth(CGroupContext *c, CGroupBlockIODeviceBandwidth *b) {
assert(c);
assert(b);
LIST_REMOVE(device_bandwidths, c->blockio_device_bandwidths, b);
free(b->path);
free(b);
}
void cgroup_context_done(CGroupContext *c) {
assert(c);
while (c->io_device_weights)
cgroup_context_free_io_device_weight(c, c->io_device_weights);
while (c->io_device_latencies)
cgroup_context_free_io_device_latency(c, c->io_device_latencies);
while (c->io_device_limits)
cgroup_context_free_io_device_limit(c, c->io_device_limits);
while (c->blockio_device_weights)
cgroup_context_free_blockio_device_weight(c, c->blockio_device_weights);
while (c->blockio_device_bandwidths)
cgroup_context_free_blockio_device_bandwidth(c, c->blockio_device_bandwidths);
while (c->device_allow)
cgroup_context_free_device_allow(c, c->device_allow);
c->ip_address_allow = ip_address_access_free_all(c->ip_address_allow);
c->ip_address_deny = ip_address_access_free_all(c->ip_address_deny);
}
void cgroup_context_dump(CGroupContext *c, FILE* f, const char *prefix) {
CGroupIODeviceLimit *il;
CGroupIODeviceWeight *iw;
CGroupIODeviceLatency *l;
CGroupBlockIODeviceBandwidth *b;
CGroupBlockIODeviceWeight *w;
CGroupDeviceAllow *a;
IPAddressAccessItem *iaai;
char u[FORMAT_TIMESPAN_MAX];
assert(c);
assert(f);
prefix = strempty(prefix);
fprintf(f,
"%sCPUAccounting=%s\n"
"%sIOAccounting=%s\n"
"%sBlockIOAccounting=%s\n"
"%sMemoryAccounting=%s\n"
"%sTasksAccounting=%s\n"
"%sIPAccounting=%s\n"
"%sCPUWeight=%" PRIu64 "\n"
"%sStartupCPUWeight=%" PRIu64 "\n"
"%sCPUShares=%" PRIu64 "\n"
"%sStartupCPUShares=%" PRIu64 "\n"
"%sCPUQuotaPerSecSec=%s\n"
"%sIOWeight=%" PRIu64 "\n"
"%sStartupIOWeight=%" PRIu64 "\n"
"%sBlockIOWeight=%" PRIu64 "\n"
"%sStartupBlockIOWeight=%" PRIu64 "\n"
"%sMemoryMin=%" PRIu64 "\n"
"%sMemoryLow=%" PRIu64 "\n"
"%sMemoryHigh=%" PRIu64 "\n"
"%sMemoryMax=%" PRIu64 "\n"
"%sMemorySwapMax=%" PRIu64 "\n"
"%sMemoryLimit=%" PRIu64 "\n"
"%sTasksMax=%" PRIu64 "\n"
"%sDevicePolicy=%s\n"
"%sDelegate=%s\n",
prefix, yes_no(c->cpu_accounting),
prefix, yes_no(c->io_accounting),
prefix, yes_no(c->blockio_accounting),
prefix, yes_no(c->memory_accounting),
prefix, yes_no(c->tasks_accounting),
prefix, yes_no(c->ip_accounting),
prefix, c->cpu_weight,
prefix, c->startup_cpu_weight,
prefix, c->cpu_shares,
prefix, c->startup_cpu_shares,
prefix, format_timespan(u, sizeof(u), c->cpu_quota_per_sec_usec, 1),
prefix, c->io_weight,
prefix, c->startup_io_weight,
prefix, c->blockio_weight,
prefix, c->startup_blockio_weight,
prefix, c->memory_min,
prefix, c->memory_low,
prefix, c->memory_high,
prefix, c->memory_max,
prefix, c->memory_swap_max,
prefix, c->memory_limit,
prefix, c->tasks_max,
prefix, cgroup_device_policy_to_string(c->device_policy),
prefix, yes_no(c->delegate));
if (c->delegate) {
_cleanup_free_ char *t = NULL;
(void) cg_mask_to_string(c->delegate_controllers, &t);
fprintf(f, "%sDelegateControllers=%s\n",
prefix,
strempty(t));
}
LIST_FOREACH(device_allow, a, c->device_allow)
fprintf(f,
"%sDeviceAllow=%s %s%s%s\n",
prefix,
a->path,
a->r ? "r" : "", a->w ? "w" : "", a->m ? "m" : "");
LIST_FOREACH(device_weights, iw, c->io_device_weights)
fprintf(f,
"%sIODeviceWeight=%s %" PRIu64 "\n",
prefix,
iw->path,
iw->weight);
LIST_FOREACH(device_latencies, l, c->io_device_latencies)
fprintf(f,
"%sIODeviceLatencyTargetSec=%s %s\n",
prefix,
l->path,
format_timespan(u, sizeof(u), l->target_usec, 1));
LIST_FOREACH(device_limits, il, c->io_device_limits) {
char buf[FORMAT_BYTES_MAX];
CGroupIOLimitType type;
for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
if (il->limits[type] != cgroup_io_limit_defaults[type])
fprintf(f,
"%s%s=%s %s\n",
prefix,
cgroup_io_limit_type_to_string(type),
il->path,
format_bytes(buf, sizeof(buf), il->limits[type]));
}
LIST_FOREACH(device_weights, w, c->blockio_device_weights)
fprintf(f,
"%sBlockIODeviceWeight=%s %" PRIu64,
prefix,
w->path,
w->weight);
LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
char buf[FORMAT_BYTES_MAX];
if (b->rbps != CGROUP_LIMIT_MAX)
fprintf(f,
"%sBlockIOReadBandwidth=%s %s\n",
prefix,
b->path,
format_bytes(buf, sizeof(buf), b->rbps));
if (b->wbps != CGROUP_LIMIT_MAX)
fprintf(f,
"%sBlockIOWriteBandwidth=%s %s\n",
prefix,
b->path,
format_bytes(buf, sizeof(buf), b->wbps));
}
LIST_FOREACH(items, iaai, c->ip_address_allow) {
_cleanup_free_ char *k = NULL;
(void) in_addr_to_string(iaai->family, &iaai->address, &k);
fprintf(f, "%sIPAddressAllow=%s/%u\n", prefix, strnull(k), iaai->prefixlen);
}
LIST_FOREACH(items, iaai, c->ip_address_deny) {
_cleanup_free_ char *k = NULL;
(void) in_addr_to_string(iaai->family, &iaai->address, &k);
fprintf(f, "%sIPAddressDeny=%s/%u\n", prefix, strnull(k), iaai->prefixlen);
}
}
int cgroup_add_device_allow(CGroupContext *c, const char *dev, const char *mode) {
_cleanup_free_ CGroupDeviceAllow *a = NULL;
_cleanup_free_ char *d = NULL;
assert(c);
assert(dev);
assert(isempty(mode) || in_charset(mode, "rwm"));
a = new(CGroupDeviceAllow, 1);
if (!a)
return -ENOMEM;
d = strdup(dev);
if (!d)
return -ENOMEM;
*a = (CGroupDeviceAllow) {
.path = TAKE_PTR(d),
.r = isempty(mode) || strchr(mode, 'r'),
.w = isempty(mode) || strchr(mode, 'w'),
.m = isempty(mode) || strchr(mode, 'm'),
};
LIST_PREPEND(device_allow, c->device_allow, a);
TAKE_PTR(a);
return 0;
}
static int lookup_block_device(const char *p, dev_t *ret) {
struct stat st;
int r;
assert(p);
assert(ret);
if (stat(p, &st) < 0)
return log_warning_errno(errno, "Couldn't stat device '%s': %m", p);
if (S_ISBLK(st.st_mode))
*ret = st.st_rdev;
else if (major(st.st_dev) != 0)
*ret = st.st_dev; /* If this is not a device node then use the block device this file is stored on */
else {
/* If this is btrfs, getting the backing block device is a bit harder */
r = btrfs_get_block_device(p, ret);
if (r < 0 && r != -ENOTTY)
return log_warning_errno(r, "Failed to determine block device backing btrfs file system '%s': %m", p);
if (r == -ENOTTY) {
log_warning("'%s' is not a block device node, and file system block device cannot be determined or is not local.", p);
return -ENODEV;
}
}
/* If this is a LUKS device, try to get the originating block device */
(void) block_get_originating(*ret, ret);
/* If this is a partition, try to get the originating block device */
(void) block_get_whole_disk(*ret, ret);
return 0;
}
static int whitelist_device(BPFProgram *prog, const char *path, const char *node, const char *acc) {
struct stat st;
bool ignore_notfound;
int r;
assert(path);
assert(acc);
if (node[0] == '-') {
/* Non-existent paths starting with "-" must be silently ignored */
node++;
ignore_notfound = true;
} else
ignore_notfound = false;
if (stat(node, &st) < 0) {
if (errno == ENOENT && ignore_notfound)
return 0;
return log_warning_errno(errno, "Couldn't stat device %s: %m", node);
}
if (!S_ISCHR(st.st_mode) && !S_ISBLK(st.st_mode)) {
log_warning("%s is not a device.", node);
return -ENODEV;
}
if (cg_all_unified() > 0) {
if (!prog)
return 0;
return cgroup_bpf_whitelist_device(prog, S_ISCHR(st.st_mode) ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
major(st.st_rdev), minor(st.st_rdev), acc);
} else {
char buf[2+DECIMAL_STR_MAX(dev_t)*2+2+4];
sprintf(buf,
"%c %u:%u %s",
S_ISCHR(st.st_mode) ? 'c' : 'b',
major(st.st_rdev), minor(st.st_rdev),
acc);
/* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL here. */
r = cg_set_attribute("devices", path, "devices.allow", buf);
if (r < 0)
return log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING,
r, "Failed to set devices.allow on %s: %m", path);
return 0;
}
}
static int whitelist_major(BPFProgram *prog, const char *path, const char *name, char type, const char *acc) {
_cleanup_fclose_ FILE *f = NULL;
char *p, *w;
bool good = false;
int r;
assert(path);
assert(acc);
assert(IN_SET(type, 'b', 'c'));
f = fopen("/proc/devices", "re");
if (!f)
return log_warning_errno(errno, "Cannot open /proc/devices to resolve %s (%c): %m", name, type);
for (;;) {
_cleanup_free_ char *line = NULL;
unsigned maj;
r = read_line(f, LONG_LINE_MAX, &line);
if (r < 0)
return log_warning_errno(r, "Failed to read /proc/devices: %m");
if (r == 0)
break;
if (type == 'c' && streq(line, "Character devices:")) {
good = true;
continue;
}
if (type == 'b' && streq(line, "Block devices:")) {
good = true;
continue;
}
if (isempty(line)) {
good = false;
continue;
}
if (!good)
continue;
p = strstrip(line);
w = strpbrk(p, WHITESPACE);
if (!w)
continue;
*w = 0;
r = safe_atou(p, &maj);
if (r < 0)
continue;
if (maj <= 0)
continue;
w++;
w += strspn(w, WHITESPACE);
if (fnmatch(name, w, 0) != 0)
continue;
if (cg_all_unified() > 0) {
if (!prog)
continue;
(void) cgroup_bpf_whitelist_major(prog,
type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
maj, acc);
} else {
char buf[2+DECIMAL_STR_MAX(unsigned)+3+4];
sprintf(buf,
"%c %u:* %s",
type,
maj,
acc);
/* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL
* here. */
r = cg_set_attribute("devices", path, "devices.allow", buf);
if (r < 0)
log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING,
r, "Failed to set devices.allow on %s: %m", path);
}
}
return 0;
}
static bool cgroup_context_has_cpu_weight(CGroupContext *c) {
return c->cpu_weight != CGROUP_WEIGHT_INVALID ||
c->startup_cpu_weight != CGROUP_WEIGHT_INVALID;
}
static bool cgroup_context_has_cpu_shares(CGroupContext *c) {
return c->cpu_shares != CGROUP_CPU_SHARES_INVALID ||
c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID;
}
static uint64_t cgroup_context_cpu_weight(CGroupContext *c, ManagerState state) {
if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
c->startup_cpu_weight != CGROUP_WEIGHT_INVALID)
return c->startup_cpu_weight;
else if (c->cpu_weight != CGROUP_WEIGHT_INVALID)
return c->cpu_weight;
else
return CGROUP_WEIGHT_DEFAULT;
}
static uint64_t cgroup_context_cpu_shares(CGroupContext *c, ManagerState state) {
if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID)
return c->startup_cpu_shares;
else if (c->cpu_shares != CGROUP_CPU_SHARES_INVALID)
return c->cpu_shares;
else
return CGROUP_CPU_SHARES_DEFAULT;
}
static void cgroup_apply_unified_cpu_weight(Unit *u, uint64_t weight) {
char buf[DECIMAL_STR_MAX(uint64_t) + 2];
xsprintf(buf, "%" PRIu64 "\n", weight);
(void) set_attribute_and_warn(u, "cpu", "cpu.weight", buf);
}
static void cgroup_apply_unified_cpu_quota(Unit *u, usec_t quota) {
char buf[(DECIMAL_STR_MAX(usec_t) + 1) * 2 + 1];
if (quota != USEC_INFINITY)
xsprintf(buf, USEC_FMT " " USEC_FMT "\n",
quota * CGROUP_CPU_QUOTA_PERIOD_USEC / USEC_PER_SEC, CGROUP_CPU_QUOTA_PERIOD_USEC);
else
xsprintf(buf, "max " USEC_FMT "\n", CGROUP_CPU_QUOTA_PERIOD_USEC);
(void) set_attribute_and_warn(u, "cpu", "cpu.max", buf);
}
static void cgroup_apply_legacy_cpu_shares(Unit *u, uint64_t shares) {
char buf[DECIMAL_STR_MAX(uint64_t) + 2];
xsprintf(buf, "%" PRIu64 "\n", shares);
(void) set_attribute_and_warn(u, "cpu", "cpu.shares", buf);
}
static void cgroup_apply_legacy_cpu_quota(Unit *u, usec_t quota) {
char buf[DECIMAL_STR_MAX(usec_t) + 2];
xsprintf(buf, USEC_FMT "\n", CGROUP_CPU_QUOTA_PERIOD_USEC);
(void) set_attribute_and_warn(u, "cpu", "cpu.cfs_period_us", buf);
if (quota != USEC_INFINITY) {
xsprintf(buf, USEC_FMT "\n", quota * CGROUP_CPU_QUOTA_PERIOD_USEC / USEC_PER_SEC);
(void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", buf);
} else
(void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", "-1\n");
}
static uint64_t cgroup_cpu_shares_to_weight(uint64_t shares) {
return CLAMP(shares * CGROUP_WEIGHT_DEFAULT / CGROUP_CPU_SHARES_DEFAULT,
CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
}
static uint64_t cgroup_cpu_weight_to_shares(uint64_t weight) {
return CLAMP(weight * CGROUP_CPU_SHARES_DEFAULT / CGROUP_WEIGHT_DEFAULT,
CGROUP_CPU_SHARES_MIN, CGROUP_CPU_SHARES_MAX);
}
static bool cgroup_context_has_io_config(CGroupContext *c) {
return c->io_accounting ||
c->io_weight != CGROUP_WEIGHT_INVALID ||
c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
c->io_device_weights ||
c->io_device_latencies ||
c->io_device_limits;
}
static bool cgroup_context_has_blockio_config(CGroupContext *c) {
return c->blockio_accounting ||
c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
c->blockio_device_weights ||
c->blockio_device_bandwidths;
}
static uint64_t cgroup_context_io_weight(CGroupContext *c, ManagerState state) {
if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
c->startup_io_weight != CGROUP_WEIGHT_INVALID)
return c->startup_io_weight;
else if (c->io_weight != CGROUP_WEIGHT_INVALID)
return c->io_weight;
else
return CGROUP_WEIGHT_DEFAULT;
}
static uint64_t cgroup_context_blkio_weight(CGroupContext *c, ManagerState state) {
if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
return c->startup_blockio_weight;
else if (c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
return c->blockio_weight;
else
return CGROUP_BLKIO_WEIGHT_DEFAULT;
}
static uint64_t cgroup_weight_blkio_to_io(uint64_t blkio_weight) {
return CLAMP(blkio_weight * CGROUP_WEIGHT_DEFAULT / CGROUP_BLKIO_WEIGHT_DEFAULT,
CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
}
static uint64_t cgroup_weight_io_to_blkio(uint64_t io_weight) {
return CLAMP(io_weight * CGROUP_BLKIO_WEIGHT_DEFAULT / CGROUP_WEIGHT_DEFAULT,
CGROUP_BLKIO_WEIGHT_MIN, CGROUP_BLKIO_WEIGHT_MAX);
}
static void cgroup_apply_io_device_weight(Unit *u, const char *dev_path, uint64_t io_weight) {
char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
dev_t dev;
int r;
r = lookup_block_device(dev_path, &dev);
if (r < 0)
return;
xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), io_weight);
(void) set_attribute_and_warn(u, "io", "io.weight", buf);
}
static void cgroup_apply_blkio_device_weight(Unit *u, const char *dev_path, uint64_t blkio_weight) {
char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
dev_t dev;
int r;
r = lookup_block_device(dev_path, &dev);
if (r < 0)
return;
xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), blkio_weight);
(void) set_attribute_and_warn(u, "blkio", "blkio.weight_device", buf);
}
static void cgroup_apply_io_device_latency(Unit *u, const char *dev_path, usec_t target) {
char buf[DECIMAL_STR_MAX(dev_t)*2+2+7+DECIMAL_STR_MAX(uint64_t)+1];
dev_t dev;
int r;
r = lookup_block_device(dev_path, &dev);
if (r < 0)
return;
if (target != USEC_INFINITY)
xsprintf(buf, "%u:%u target=%" PRIu64 "\n", major(dev), minor(dev), target);
else
xsprintf(buf, "%u:%u target=max\n", major(dev), minor(dev));
(void) set_attribute_and_warn(u, "io", "io.latency", buf);
}
static void cgroup_apply_io_device_limit(Unit *u, const char *dev_path, uint64_t *limits) {
char limit_bufs[_CGROUP_IO_LIMIT_TYPE_MAX][DECIMAL_STR_MAX(uint64_t)];
char buf[DECIMAL_STR_MAX(dev_t)*2+2+(6+DECIMAL_STR_MAX(uint64_t)+1)*4];
CGroupIOLimitType type;
dev_t dev;
int r;
r = lookup_block_device(dev_path, &dev);
if (r < 0)
return;
for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
if (limits[type] != cgroup_io_limit_defaults[type])
xsprintf(limit_bufs[type], "%" PRIu64, limits[type]);
else
xsprintf(limit_bufs[type], "%s", limits[type] == CGROUP_LIMIT_MAX ? "max" : "0");
xsprintf(buf, "%u:%u rbps=%s wbps=%s riops=%s wiops=%s\n", major(dev), minor(dev),
limit_bufs[CGROUP_IO_RBPS_MAX], limit_bufs[CGROUP_IO_WBPS_MAX],
limit_bufs[CGROUP_IO_RIOPS_MAX], limit_bufs[CGROUP_IO_WIOPS_MAX]);
(void) set_attribute_and_warn(u, "io", "io.max", buf);
}
static void cgroup_apply_blkio_device_limit(Unit *u, const char *dev_path, uint64_t rbps, uint64_t wbps) {
char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
dev_t dev;
int r;
r = lookup_block_device(dev_path, &dev);
if (r < 0)
return;
sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), rbps);
(void) set_attribute_and_warn(u, "blkio", "blkio.throttle.read_bps_device", buf);
sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), wbps);
(void) set_attribute_and_warn(u, "blkio", "blkio.throttle.write_bps_device", buf);
}
static bool cgroup_context_has_unified_memory_config(CGroupContext *c) {
return c->memory_min > 0 || c->memory_low > 0 || c->memory_high != CGROUP_LIMIT_MAX || c->memory_max != CGROUP_LIMIT_MAX || c->memory_swap_max != CGROUP_LIMIT_MAX;
}
static void cgroup_apply_unified_memory_limit(Unit *u, const char *file, uint64_t v) {
char buf[DECIMAL_STR_MAX(uint64_t) + 1] = "max\n";
if (v != CGROUP_LIMIT_MAX)
xsprintf(buf, "%" PRIu64 "\n", v);
(void) set_attribute_and_warn(u, "memory", file, buf);
}
static void cgroup_apply_firewall(Unit *u) {
assert(u);
/* Best-effort: let's apply IP firewalling and/or accounting if that's enabled */
if (bpf_firewall_compile(u) < 0)
return;
(void) bpf_firewall_install(u);
}
static void cgroup_context_apply(
Unit *u,
CGroupMask apply_mask,
ManagerState state) {
const char *path;
CGroupContext *c;
bool is_host_root, is_local_root;
int r;
assert(u);
/* Nothing to do? Exit early! */
if (apply_mask == 0)
return;
/* Some cgroup attributes are not supported on the host root cgroup, hence silently ignore them here. And other
* attributes should only be managed for cgroups further down the tree. */
is_local_root = unit_has_name(u, SPECIAL_ROOT_SLICE);
is_host_root = unit_has_host_root_cgroup(u);
assert_se(c = unit_get_cgroup_context(u));
assert_se(path = u->cgroup_path);
if (is_local_root) /* Make sure we don't try to display messages with an empty path. */
path = "/";
/* We generally ignore errors caused by read-only mounted
* cgroup trees (assuming we are running in a container then),
* and missing cgroups, i.e. EROFS and ENOENT. */
if (apply_mask & CGROUP_MASK_CPU) {
bool has_weight, has_shares;
has_weight = cgroup_context_has_cpu_weight(c);
has_shares = cgroup_context_has_cpu_shares(c);
if (cg_all_unified() > 0) {
/* In fully unified mode these attributes don't exist on the host cgroup root, and inside of
* containers we want to leave control of these to the container manager (and if delegation is
* used we couldn't even write to them if we wanted to). */
if (!is_local_root) {
uint64_t weight;
if (has_weight)
weight = cgroup_context_cpu_weight(c, state);
else if (has_shares) {
uint64_t shares;
shares = cgroup_context_cpu_shares(c, state);
weight = cgroup_cpu_shares_to_weight(shares);
log_cgroup_compat(u, "Applying [Startup]CPUShares %" PRIu64 " as [Startup]CPUWeight %" PRIu64 " on %s",
shares, weight, path);
} else
weight = CGROUP_WEIGHT_DEFAULT;
cgroup_apply_unified_cpu_weight(u, weight);
cgroup_apply_unified_cpu_quota(u, c->cpu_quota_per_sec_usec);
}
} else {
/* Setting the weight makes very little sense on the host root cgroup, as there are no other
* cgroups at this level. And for containers we want to leave management of this to the
* container manager */
if (!is_local_root) {
uint64_t shares;
if (has_weight) {
uint64_t weight;
weight = cgroup_context_cpu_weight(c, state);
shares = cgroup_cpu_weight_to_shares(weight);
log_cgroup_compat(u, "Applying [Startup]CPUWeight %" PRIu64 " as [Startup]CPUShares %" PRIu64 " on %s",
weight, shares, path);
} else if (has_shares)
shares = cgroup_context_cpu_shares(c, state);
else
shares = CGROUP_CPU_SHARES_DEFAULT;
cgroup_apply_legacy_cpu_shares(u, shares);
}
/* The "cpu" quota attribute is available on the host root, hence manage it there. But in
* containers let's leave this to the container manager. */
if (is_host_root || !is_local_root)
cgroup_apply_legacy_cpu_quota(u, c->cpu_quota_per_sec_usec);
}
}
/* The 'io' controller attributes are not exported on the host's root cgroup (being a pure cgroupsv2
* controller), and in case of containers we want to leave control of these attributes to the container manager
* (and we couldn't access that stuff anyway, even if we tried if proper delegation is used). */
if ((apply_mask & CGROUP_MASK_IO) && !is_local_root) {
char buf[8+DECIMAL_STR_MAX(uint64_t)+1];
bool has_io, has_blockio;
uint64_t weight;
has_io = cgroup_context_has_io_config(c);
has_blockio = cgroup_context_has_blockio_config(c);
if (has_io)
weight = cgroup_context_io_weight(c, state);
else if (has_blockio) {
uint64_t blkio_weight;
blkio_weight = cgroup_context_blkio_weight(c, state);
weight = cgroup_weight_blkio_to_io(blkio_weight);
log_cgroup_compat(u, "Applying [Startup]BlockIOWeight %" PRIu64 " as [Startup]IOWeight %" PRIu64,
blkio_weight, weight);
} else
weight = CGROUP_WEIGHT_DEFAULT;
xsprintf(buf, "default %" PRIu64 "\n", weight);
(void) set_attribute_and_warn(u, "io", "io.weight", buf);
if (has_io) {
CGroupIODeviceLatency *latency;
CGroupIODeviceLimit *limit;
CGroupIODeviceWeight *w;
LIST_FOREACH(device_weights, w, c->io_device_weights)
cgroup_apply_io_device_weight(u, w->path, w->weight);
LIST_FOREACH(device_limits, limit, c->io_device_limits)
cgroup_apply_io_device_limit(u, limit->path, limit->limits);
LIST_FOREACH(device_latencies, latency, c->io_device_latencies)
cgroup_apply_io_device_latency(u, latency->path, latency->target_usec);
} else if (has_blockio) {
CGroupBlockIODeviceWeight *w;
CGroupBlockIODeviceBandwidth *b;
LIST_FOREACH(device_weights, w, c->blockio_device_weights) {
weight = cgroup_weight_blkio_to_io(w->weight);
log_cgroup_compat(u, "Applying BlockIODeviceWeight %" PRIu64 " as IODeviceWeight %" PRIu64 " for %s",
w->weight, weight, w->path);
cgroup_apply_io_device_weight(u, w->path, weight);
}
LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
uint64_t limits[_CGROUP_IO_LIMIT_TYPE_MAX];
CGroupIOLimitType type;
for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
limits[type] = cgroup_io_limit_defaults[type];
limits[CGROUP_IO_RBPS_MAX] = b->rbps;
limits[CGROUP_IO_WBPS_MAX] = b->wbps;
log_cgroup_compat(u, "Applying BlockIO{Read|Write}Bandwidth %" PRIu64 " %" PRIu64 " as IO{Read|Write}BandwidthMax for %s",
b->rbps, b->wbps, b->path);
cgroup_apply_io_device_limit(u, b->path, limits);
}
}
}
if (apply_mask & CGROUP_MASK_BLKIO) {
bool has_io, has_blockio;
has_io = cgroup_context_has_io_config(c);
has_blockio = cgroup_context_has_blockio_config(c);
/* Applying a 'weight' never makes sense for the host root cgroup, and for containers this should be
* left to our container manager, too. */
if (!is_local_root) {
char buf[DECIMAL_STR_MAX(uint64_t)+1];
uint64_t weight;
if (has_io) {
uint64_t io_weight;
io_weight = cgroup_context_io_weight(c, state);
weight = cgroup_weight_io_to_blkio(cgroup_context_io_weight(c, state));
log_cgroup_compat(u, "Applying [Startup]IOWeight %" PRIu64 " as [Startup]BlockIOWeight %" PRIu64,
io_weight, weight);
} else if (has_blockio)
weight = cgroup_context_blkio_weight(c, state);
else
weight = CGROUP_BLKIO_WEIGHT_DEFAULT;
xsprintf(buf, "%" PRIu64 "\n", weight);
(void) set_attribute_and_warn(u, "blkio", "blkio.weight", buf);
if (has_io) {
CGroupIODeviceWeight *w;
LIST_FOREACH(device_weights, w, c->io_device_weights) {
weight = cgroup_weight_io_to_blkio(w->weight);
log_cgroup_compat(u, "Applying IODeviceWeight %" PRIu64 " as BlockIODeviceWeight %" PRIu64 " for %s",
w->weight, weight, w->path);
cgroup_apply_blkio_device_weight(u, w->path, weight);
}
} else if (has_blockio) {
CGroupBlockIODeviceWeight *w;
LIST_FOREACH(device_weights, w, c->blockio_device_weights)
cgroup_apply_blkio_device_weight(u, w->path, w->weight);
}
}
/* The bandwith limits are something that make sense to be applied to the host's root but not container
* roots, as there we want the container manager to handle it */
if (is_host_root || !is_local_root) {
if (has_io) {
CGroupIODeviceLimit *l;
LIST_FOREACH(device_limits, l, c->io_device_limits) {
log_cgroup_compat(u, "Applying IO{Read|Write}Bandwidth %" PRIu64 " %" PRIu64 " as BlockIO{Read|Write}BandwidthMax for %s",
l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX], l->path);
cgroup_apply_blkio_device_limit(u, l->path, l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX]);
}
} else if (has_blockio) {
CGroupBlockIODeviceBandwidth *b;
LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths)
cgroup_apply_blkio_device_limit(u, b->path, b->rbps, b->wbps);
}
}
}
if (apply_mask & CGROUP_MASK_MEMORY) {
if (cg_all_unified() > 0) {
/* In unified mode 'memory' attributes do not exist on the root cgroup. And if we run in a
* container we want to leave control to the container manager (and if proper delegation is
* used we couldn't even write to this if we wanted to. */
if (!is_local_root) {
uint64_t max, swap_max = CGROUP_LIMIT_MAX;
if (cgroup_context_has_unified_memory_config(c)) {
max = c->memory_max;
swap_max = c->memory_swap_max;
} else {
max = c->memory_limit;
if (max != CGROUP_LIMIT_MAX)
log_cgroup_compat(u, "Applying MemoryLimit=%" PRIu64 " as MemoryMax=", max);
}
cgroup_apply_unified_memory_limit(u, "memory.min", c->memory_min);
cgroup_apply_unified_memory_limit(u, "memory.low", c->memory_low);
cgroup_apply_unified_memory_limit(u, "memory.high", c->memory_high);
cgroup_apply_unified_memory_limit(u, "memory.max", max);
cgroup_apply_unified_memory_limit(u, "memory.swap.max", swap_max);
}
} else {
/* In legacy mode 'memory' exists on the host root, but in container mode we want to leave it
* to the container manager around us */
if (is_host_root || !is_local_root) {
char buf[DECIMAL_STR_MAX(uint64_t) + 1];
uint64_t val;
if (cgroup_context_has_unified_memory_config(c)) {
val = c->memory_max;
log_cgroup_compat(u, "Applying MemoryMax=%" PRIi64 " as MemoryLimit=", val);
} else
val = c->memory_limit;
if (val == CGROUP_LIMIT_MAX)
strncpy(buf, "-1\n", sizeof(buf));
else
xsprintf(buf, "%" PRIu64 "\n", val);
(void) set_attribute_and_warn(u, "memory", "memory.limit_in_bytes", buf);
}
}
}
/* On cgroupsv2 we can apply BPF everywhre. On cgroupsv1 we apply it everywhere except for the root of
* containers, where we leave this to the manager */
if ((apply_mask & (CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES)) &&
(is_host_root || cg_all_unified() > 0 || !is_local_root)) {
_cleanup_(bpf_program_unrefp) BPFProgram *prog = NULL;
CGroupDeviceAllow *a;
if (cg_all_unified() > 0) {
r = cgroup_init_device_bpf(&prog, c->device_policy, c->device_allow);
if (r < 0)
log_unit_warning_errno(u, r, "Failed to initialize device control bpf program: %m");
} else {
/* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL
* here. */
if (c->device_allow || c->device_policy != CGROUP_AUTO)
r = cg_set_attribute("devices", path, "devices.deny", "a");
else
r = cg_set_attribute("devices", path, "devices.allow", "a");
if (r < 0)
log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to reset devices.allow/devices.deny: %m");
}
if (c->device_policy == CGROUP_CLOSED ||
(c->device_policy == CGROUP_AUTO && c->device_allow)) {
static const char auto_devices[] =
"/dev/null\0" "rwm\0"
"/dev/zero\0" "rwm\0"
"/dev/full\0" "rwm\0"
"/dev/random\0" "rwm\0"
"/dev/urandom\0" "rwm\0"
"/dev/tty\0" "rwm\0"
"/dev/ptmx\0" "rwm\0"
/* Allow /run/systemd/inaccessible/{chr,blk} devices for mapping InaccessiblePaths */
"-/run/systemd/inaccessible/chr\0" "rwm\0"
"-/run/systemd/inaccessible/blk\0" "rwm\0";
const char *x, *y;
NULSTR_FOREACH_PAIR(x, y, auto_devices)
(void) whitelist_device(prog, path, x, y);
/* PTS (/dev/pts) devices may not be duplicated, but accessed */
(void) whitelist_major(prog, path, "pts", 'c', "rw");
}
LIST_FOREACH(device_allow, a, c->device_allow) {
char acc[4], *val;
unsigned k = 0;
if (a->r)
acc[k++] = 'r';
if (a->w)
acc[k++] = 'w';
if (a->m)
acc[k++] = 'm';
if (k == 0)
continue;
acc[k++] = 0;
if (path_startswith(a->path, "/dev/"))
(void) whitelist_device(prog, path, a->path, acc);
else if ((val = startswith(a->path, "block-")))
(void) whitelist_major(prog, path, val, 'b', acc);
else if ((val = startswith(a->path, "char-")))
(void) whitelist_major(prog, path, val, 'c', acc);
else
log_unit_debug(u, "Ignoring device %s while writing cgroup attribute.", a->path);
}
r = cgroup_apply_device_bpf(u, prog, c->device_policy, c->device_allow);
if (r < 0) {
static bool warned = false;
log_full_errno(warned ? LOG_DEBUG : LOG_WARNING, r,
"Unit %s configures device ACL, but the local system doesn't seem to support the BPF-based device controller.\n"
"Proceeding WITHOUT applying ACL (all devices will be accessible)!\n"
"(This warning is only shown for the first loaded unit using device ACL.)", u->id);
warned = true;
}
}
if (apply_mask & CGROUP_MASK_PIDS) {
if (is_host_root) {
/* So, the "pids" controller does not expose anything on the root cgroup, in order not to
* replicate knobs exposed elsewhere needlessly. We abstract this away here however, and when
* the knobs of the root cgroup are modified propagate this to the relevant sysctls. There's a
* non-obvious asymmetry however: unlike the cgroup properties we don't really want to take
* exclusive ownership of the sysctls, but we still want to honour things if the user sets
* limits. Hence we employ sort of a one-way strategy: when the user sets a bounded limit
* through us it counts. When the user afterwards unsets it again (i.e. sets it to unbounded)
* it also counts. But if the user never set a limit through us (i.e. we are the default of
* "unbounded") we leave things unmodified. For this we manage a global boolean that we turn on
* the first time we set a limit. Note that this boolean is flushed out on manager reload,
* which is desirable so that there's an offical way to release control of the sysctl from
* systemd: set the limit to unbounded and reload. */
if (c->tasks_max != CGROUP_LIMIT_MAX) {
u->manager->sysctl_pid_max_changed = true;
r = procfs_tasks_set_limit(c->tasks_max);
} else if (u->manager->sysctl_pid_max_changed)
r = procfs_tasks_set_limit(TASKS_MAX);
else
r = 0;
if (r < 0)
log_unit_full(u, LOG_LEVEL_CGROUP_WRITE(r), r,
"Failed to write to tasks limit sysctls: %m");
}
/* The attribute itself is not available on the host root cgroup, and in the container case we want to
* leave it for the container manager. */
if (!is_local_root) {
if (c->tasks_max != CGROUP_LIMIT_MAX) {
char buf[DECIMAL_STR_MAX(uint64_t) + 2];
sprintf(buf, "%" PRIu64 "\n", c->tasks_max);
(void) set_attribute_and_warn(u, "pids", "pids.max", buf);
} else
(void) set_attribute_and_warn(u, "pids", "pids.max", "max\n");
}
}
if (apply_mask & CGROUP_MASK_BPF_FIREWALL)
cgroup_apply_firewall(u);
}
static bool unit_get_needs_bpf_firewall(Unit *u) {
CGroupContext *c;
Unit *p;
assert(u);
c = unit_get_cgroup_context(u);
if (!c)
return false;
if (c->ip_accounting ||
c->ip_address_allow ||
c->ip_address_deny)
return true;
/* If any parent slice has an IP access list defined, it applies too */
for (p = UNIT_DEREF(u->slice); p; p = UNIT_DEREF(p->slice)) {
c = unit_get_cgroup_context(p);
if (!c)
return false;
if (c->ip_address_allow ||
c->ip_address_deny)
return true;
}
return false;
}
static CGroupMask cgroup_context_get_mask(CGroupContext *c) {
CGroupMask mask = 0;
/* Figure out which controllers we need, based on the cgroup context object */
if (c->cpu_accounting)
mask |= get_cpu_accounting_mask();
if (cgroup_context_has_cpu_weight(c) ||
cgroup_context_has_cpu_shares(c) ||
c->cpu_quota_per_sec_usec != USEC_INFINITY)
mask |= CGROUP_MASK_CPU;
if (cgroup_context_has_io_config(c) || cgroup_context_has_blockio_config(c))
mask |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
if (c->memory_accounting ||
c->memory_limit != CGROUP_LIMIT_MAX ||
cgroup_context_has_unified_memory_config(c))
mask |= CGROUP_MASK_MEMORY;
if (c->device_allow ||
c->device_policy != CGROUP_AUTO)
mask |= CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES;
if (c->tasks_accounting ||
c->tasks_max != CGROUP_LIMIT_MAX)
mask |= CGROUP_MASK_PIDS;
return CGROUP_MASK_EXTEND_JOINED(mask);
}
static CGroupMask unit_get_bpf_mask(Unit *u) {
CGroupMask mask = 0;
/* Figure out which controllers we need, based on the cgroup context, possibly taking into account children
* too. */
if (unit_get_needs_bpf_firewall(u))
mask |= CGROUP_MASK_BPF_FIREWALL;
return mask;
}
CGroupMask unit_get_own_mask(Unit *u) {
CGroupContext *c;
/* Returns the mask of controllers the unit needs for itself. If a unit is not properly loaded, return an empty
* mask, as we shouldn't reflect it in the cgroup hierarchy then. */
if (u->load_state != UNIT_LOADED)
return 0;
c = unit_get_cgroup_context(u);
if (!c)
return 0;
return cgroup_context_get_mask(c) | unit_get_bpf_mask(u) | unit_get_delegate_mask(u);
}
CGroupMask unit_get_delegate_mask(Unit *u) {
CGroupContext *c;
/* If delegation is turned on, then turn on selected controllers, unless we are on the legacy hierarchy and the
* process we fork into is known to drop privileges, and hence shouldn't get access to the controllers.
*
* Note that on the unified hierarchy it is safe to delegate controllers to unprivileged services. */
if (!unit_cgroup_delegate(u))
return 0;
if (cg_all_unified() <= 0) {
ExecContext *e;
e = unit_get_exec_context(u);
if (e && !exec_context_maintains_privileges(e))
return 0;
}
assert_se(c = unit_get_cgroup_context(u));
return CGROUP_MASK_EXTEND_JOINED(c->delegate_controllers);
}
CGroupMask unit_get_members_mask(Unit *u) {
assert(u);
/* Returns the mask of controllers all of the unit's children require, merged */
if (u->cgroup_members_mask_valid)
return u->cgroup_members_mask; /* Use cached value if possible */
u->cgroup_members_mask = 0;
if (u->type == UNIT_SLICE) {
void *v;
Unit *member;
Iterator i;
HASHMAP_FOREACH_KEY(v, member, u->dependencies[UNIT_BEFORE], i) {
if (member == u)
continue;
if (UNIT_DEREF(member->slice) != u)
continue;
u->cgroup_members_mask |= unit_get_subtree_mask(member); /* note that this calls ourselves again, for the children */
}
}
u->cgroup_members_mask_valid = true;
return u->cgroup_members_mask;
}
CGroupMask unit_get_siblings_mask(Unit *u) {
assert(u);
/* Returns the mask of controllers all of the unit's siblings
* require, i.e. the members mask of the unit's parent slice
* if there is one. */
if (UNIT_ISSET(u->slice))
return unit_get_members_mask(UNIT_DEREF(u->slice));
return unit_get_subtree_mask(u); /* we are the top-level slice */
}
CGroupMask unit_get_subtree_mask(Unit *u) {
/* Returns the mask of this subtree, meaning of the group
* itself and its children. */
return unit_get_own_mask(u) | unit_get_members_mask(u);
}
CGroupMask unit_get_target_mask(Unit *u) {
CGroupMask mask;
/* This returns the cgroup mask of all controllers to enable
* for a specific cgroup, i.e. everything it needs itself,
* plus all that its children need, plus all that its siblings
* need. This is primarily useful on the legacy cgroup
* hierarchy, where we need to duplicate each cgroup in each
* hierarchy that shall be enabled for it. */
mask = unit_get_own_mask(u) | unit_get_members_mask(u) | unit_get_siblings_mask(u);
mask &= u->manager->cgroup_supported;
return mask;
}
CGroupMask unit_get_enable_mask(Unit *u) {
CGroupMask mask;
/* This returns the cgroup mask of all controllers to enable
* for the children of a specific cgroup. This is primarily
* useful for the unified cgroup hierarchy, where each cgroup
* controls which controllers are enabled for its children. */
mask = unit_get_members_mask(u);
mask &= u->manager->cgroup_supported;
return mask;
}
void unit_invalidate_cgroup_members_masks(Unit *u) {
assert(u);
/* Recurse invalidate the member masks cache all the way up the tree */
u->cgroup_members_mask_valid = false;
if (UNIT_ISSET(u->slice))
unit_invalidate_cgroup_members_masks(UNIT_DEREF(u->slice));
}
const char *unit_get_realized_cgroup_path(Unit *u, CGroupMask mask) {
/* Returns the realized cgroup path of the specified unit where all specified controllers are available. */
while (u) {
if (u->cgroup_path &&
u->cgroup_realized &&
FLAGS_SET(u->cgroup_realized_mask, mask))
return u->cgroup_path;
u = UNIT_DEREF(u->slice);
}
return NULL;
}
static const char *migrate_callback(CGroupMask mask, void *userdata) {
return unit_get_realized_cgroup_path(userdata, mask);
}
char *unit_default_cgroup_path(Unit *u) {
_cleanup_free_ char *escaped = NULL, *slice = NULL;
int r;
assert(u);
if (unit_has_name(u, SPECIAL_ROOT_SLICE))
return strdup(u->manager->cgroup_root);
if (UNIT_ISSET(u->slice) && !unit_has_name(UNIT_DEREF(u->slice), SPECIAL_ROOT_SLICE)) {
r = cg_slice_to_path(UNIT_DEREF(u->slice)->id, &slice);
if (r < 0)
return NULL;
}
escaped = cg_escape(u->id);
if (!escaped)
return NULL;
if (slice)
return strjoin(u->manager->cgroup_root, "/", slice, "/",
escaped);
else
return strjoin(u->manager->cgroup_root, "/", escaped);
}
int unit_set_cgroup_path(Unit *u, const char *path) {
_cleanup_free_ char *p = NULL;
int r;
assert(u);
if (path) {
p = strdup(path);
if (!p)
return -ENOMEM;
} else
p = NULL;
if (streq_ptr(u->cgroup_path, p))
return 0;
if (p) {
r = hashmap_put(u->manager->cgroup_unit, p, u);
if (r < 0)
return r;
}
unit_release_cgroup(u);
u->cgroup_path = TAKE_PTR(p);
return 1;
}
int unit_watch_cgroup(Unit *u) {
_cleanup_free_ char *events = NULL;
int r;
assert(u);
if (!u->cgroup_path)
return 0;
if (u->cgroup_inotify_wd >= 0)
return 0;
/* Only applies to the unified hierarchy */
r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
if (r < 0)
return log_error_errno(r, "Failed to determine whether the name=systemd hierarchy is unified: %m");
if (r == 0)
return 0;
/* Don't watch the root slice, it's pointless. */
if (unit_has_name(u, SPECIAL_ROOT_SLICE))
return 0;
r = hashmap_ensure_allocated(&u->manager->cgroup_inotify_wd_unit, &trivial_hash_ops);
if (r < 0)
return log_oom();
r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events", &events);
if (r < 0)
return log_oom();
u->cgroup_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
if (u->cgroup_inotify_wd < 0) {
if (errno == ENOENT) /* If the directory is already
* gone we don't need to track
* it, so this is not an error */
return 0;
return log_unit_error_errno(u, errno, "Failed to add inotify watch descriptor for control group %s: %m", u->cgroup_path);
}
r = hashmap_put(u->manager->cgroup_inotify_wd_unit, INT_TO_PTR(u->cgroup_inotify_wd), u);
if (r < 0)
return log_unit_error_errno(u, r, "Failed to add inotify watch descriptor to hash map: %m");
return 0;
}
int unit_pick_cgroup_path(Unit *u) {
_cleanup_free_ char *path = NULL;
int r;
assert(u);
if (u->cgroup_path)
return 0;
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return -EINVAL;
path = unit_default_cgroup_path(u);
if (!path)
return log_oom();
r = unit_set_cgroup_path(u, path);
if (r == -EEXIST)
return log_unit_error_errno(u, r, "Control group %s exists already.", path);
if (r < 0)
return log_unit_error_errno(u, r, "Failed to set unit's control group path to %s: %m", path);
return 0;
}
static int unit_create_cgroup(
Unit *u,
CGroupMask target_mask,
CGroupMask enable_mask) {
bool created;
int r;
assert(u);
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return 0;
/* Figure out our cgroup path */
r = unit_pick_cgroup_path(u);
if (r < 0)
return r;
/* First, create our own group */
r = cg_create_everywhere(u->manager->cgroup_supported, target_mask, u->cgroup_path);
if (r < 0)
return log_unit_error_errno(u, r, "Failed to create cgroup %s: %m", u->cgroup_path);
created = r;
/* Start watching it */
(void) unit_watch_cgroup(u);
/* Preserve enabled controllers in delegated units, adjust others. */
if (created || !u->cgroup_realized || !unit_cgroup_delegate(u)) {
CGroupMask result_mask = 0;
/* Enable all controllers we need */
r = cg_enable_everywhere(u->manager->cgroup_supported, enable_mask, u->cgroup_path, &result_mask);
if (r < 0)
log_unit_warning_errno(u, r, "Failed to enable/disable controllers on cgroup %s, ignoring: %m", u->cgroup_path);
/* If we just turned off a controller, this might release the controller for our parent too, let's
* enqueue the parent for re-realization in that case again. */
if (UNIT_ISSET(u->slice)) {
CGroupMask turned_off;
turned_off = (u->cgroup_realized ? u->cgroup_enabled_mask & ~result_mask : 0);
if (turned_off != 0) {
Unit *parent;
/* Force the parent to propagate the enable mask to the kernel again, by invalidating
* the controller we just turned off. */
for (parent = UNIT_DEREF(u->slice); parent; parent = UNIT_DEREF(parent->slice))
unit_invalidate_cgroup(parent, turned_off);
}
}
/* Remember what's actually enabled now */
u->cgroup_enabled_mask = result_mask;
}
/* Keep track that this is now realized */
u->cgroup_realized = true;
u->cgroup_realized_mask = target_mask;
if (u->type != UNIT_SLICE && !unit_cgroup_delegate(u)) {
/* Then, possibly move things over, but not if
* subgroups may contain processes, which is the case
* for slice and delegation units. */
r = cg_migrate_everywhere(u->manager->cgroup_supported, u->cgroup_path, u->cgroup_path, migrate_callback, u);
if (r < 0)
log_unit_warning_errno(u, r, "Failed to migrate cgroup from to %s, ignoring: %m", u->cgroup_path);
}
return 0;
}
static int unit_attach_pid_to_cgroup_via_bus(Unit *u, pid_t pid, const char *suffix_path) {
_cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
char *pp;
int r;
assert(u);
if (MANAGER_IS_SYSTEM(u->manager))
return -EINVAL;
if (!u->manager->system_bus)
return -EIO;
if (!u->cgroup_path)
return -EINVAL;
/* Determine this unit's cgroup path relative to our cgroup root */
pp = path_startswith(u->cgroup_path, u->manager->cgroup_root);
if (!pp)
return -EINVAL;
pp = strjoina("/", pp, suffix_path);
path_simplify(pp, false);
r = sd_bus_call_method(u->manager->system_bus,
"org.freedesktop.systemd1",
"/org/freedesktop/systemd1",
"org.freedesktop.systemd1.Manager",
"AttachProcessesToUnit",
&error, NULL,
"ssau",
NULL /* empty unit name means client's unit, i.e. us */, pp, 1, (uint32_t) pid);
if (r < 0)
return log_unit_debug_errno(u, r, "Failed to attach unit process " PID_FMT " via the bus: %s", pid, bus_error_message(&error, r));
return 0;
}
int unit_attach_pids_to_cgroup(Unit *u, Set *pids, const char *suffix_path) {
CGroupMask delegated_mask;
const char *p;
Iterator i;
void *pidp;
int r, q;
assert(u);
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return -EINVAL;
if (set_isempty(pids))
return 0;
r = unit_realize_cgroup(u);
if (r < 0)
return r;
if (isempty(suffix_path))
p = u->cgroup_path;
else
p = strjoina(u->cgroup_path, "/", suffix_path);
delegated_mask = unit_get_delegate_mask(u);
r = 0;
SET_FOREACH(pidp, pids, i) {
pid_t pid = PTR_TO_PID(pidp);
CGroupController c;
/* First, attach the PID to the main cgroup hierarchy */
q = cg_attach(SYSTEMD_CGROUP_CONTROLLER, p, pid);
if (q < 0) {
log_unit_debug_errno(u, q, "Couldn't move process " PID_FMT " to requested cgroup '%s': %m", pid, p);
if (MANAGER_IS_USER(u->manager) && IN_SET(q, -EPERM, -EACCES)) {
int z;
/* If we are in a user instance, and we can't move the process ourselves due to
* permission problems, let's ask the system instance about it instead. Since it's more
* privileged it might be able to move the process across the leaves of a subtree who's
* top node is not owned by us. */
z = unit_attach_pid_to_cgroup_via_bus(u, pid, suffix_path);
if (z < 0)
log_unit_debug_errno(u, z, "Couldn't move process " PID_FMT " to requested cgroup '%s' via the system bus either: %m", pid, p);
else
continue; /* When the bus thing worked via the bus we are fully done for this PID. */
}
if (r >= 0)
r = q; /* Remember first error */
continue;
}
q = cg_all_unified();
if (q < 0)
return q;
if (q > 0)
continue;
/* In the legacy hierarchy, attach the process to the request cgroup if possible, and if not to the
* innermost realized one */
for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
const char *realized;
if (!(u->manager->cgroup_supported & bit))
continue;
/* If this controller is delegated and realized, honour the caller's request for the cgroup suffix. */
if (delegated_mask & u->cgroup_realized_mask & bit) {
q = cg_attach(cgroup_controller_to_string(c), p, pid);
if (q >= 0)
continue; /* Success! */
log_unit_debug_errno(u, q, "Failed to attach PID " PID_FMT " to requested cgroup %s in controller %s, falling back to unit's cgroup: %m",
pid, p, cgroup_controller_to_string(c));
}
/* So this controller is either not delegate or realized, or something else weird happened. In
* that case let's attach the PID at least to the closest cgroup up the tree that is
* realized. */
realized = unit_get_realized_cgroup_path(u, bit);
if (!realized)
continue; /* Not even realized in the root slice? Then let's not bother */
q = cg_attach(cgroup_controller_to_string(c), realized, pid);
if (q < 0)
log_unit_debug_errno(u, q, "Failed to attach PID " PID_FMT " to realized cgroup %s in controller %s, ignoring: %m",
pid, realized, cgroup_controller_to_string(c));
}
}
return r;
}
static void cgroup_xattr_apply(Unit *u) {
char ids[SD_ID128_STRING_MAX];
int r;
assert(u);
if (!MANAGER_IS_SYSTEM(u->manager))
return;
if (sd_id128_is_null(u->invocation_id))
return;
r = cg_set_xattr(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
"trusted.invocation_id",
sd_id128_to_string(u->invocation_id, ids), 32,
0);
if (r < 0)
log_unit_debug_errno(u, r, "Failed to set invocation ID on control group %s, ignoring: %m", u->cgroup_path);
}
static bool unit_has_mask_realized(
Unit *u,
CGroupMask target_mask,
CGroupMask enable_mask) {
assert(u);
/* Returns true if this unit is fully realized. We check four things:
*
* 1. Whether the cgroup was created at all
* 2. Whether the cgroup was created in all the hierarchies we need it to be created in (in case of cgroupsv1)
* 3. Whether the cgroup has all the right controllers enabled (in case of cgroupsv2)
* 4. Whether the invalidation mask is currently zero
*
* If you wonder why we mask the target realization and enable mask with CGROUP_MASK_V1/CGROUP_MASK_V2: note
* that there are three sets of bitmasks: CGROUP_MASK_V1 (for real cgroupv1 controllers), CGROUP_MASK_V2 (for
* real cgroupv2 controllers) and CGROUP_MASK_BPF (for BPF-based pseudo-controllers). Now, cgroup_realized_mask
* is only matters for cgroupsv1 controllers, and cgroup_enabled_mask only used for cgroupsv2, and if they
* differ in the others, we don't really care. (After all, the cgroup_enabled_mask tracks with controllers are
* enabled through cgroup.subtree_control, and since the BPF pseudo-controllers don't show up there, they
* simply don't matter. */
return u->cgroup_realized &&
((u->cgroup_realized_mask ^ target_mask) & CGROUP_MASK_V1) == 0 &&
((u->cgroup_enabled_mask ^ enable_mask) & CGROUP_MASK_V2) == 0 &&
u->cgroup_invalidated_mask == 0;
}
void unit_add_to_cgroup_realize_queue(Unit *u) {
assert(u);
if (u->in_cgroup_realize_queue)
return;
LIST_PREPEND(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
u->in_cgroup_realize_queue = true;
}
static void unit_remove_from_cgroup_realize_queue(Unit *u) {
assert(u);
if (!u->in_cgroup_realize_queue)
return;
LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
u->in_cgroup_realize_queue = false;
}
/* Check if necessary controllers and attributes for a unit are in place.
*
* If so, do nothing.
* If not, create paths, move processes over, and set attributes.
*
* Returns 0 on success and < 0 on failure. */
static int unit_realize_cgroup_now(Unit *u, ManagerState state) {
CGroupMask target_mask, enable_mask;
int r;
assert(u);
unit_remove_from_cgroup_realize_queue(u);
target_mask = unit_get_target_mask(u);
enable_mask = unit_get_enable_mask(u);
if (unit_has_mask_realized(u, target_mask, enable_mask))
return 0;
/* First, realize parents */
if (UNIT_ISSET(u->slice)) {
r = unit_realize_cgroup_now(UNIT_DEREF(u->slice), state);
if (r < 0)
return r;
}
/* And then do the real work */
r = unit_create_cgroup(u, target_mask, enable_mask);
if (r < 0)
return r;
/* Finally, apply the necessary attributes. */
cgroup_context_apply(u, target_mask, state);
cgroup_xattr_apply(u);
/* Now, reset the invalidation mask */
u->cgroup_invalidated_mask = 0;
return 0;
}
unsigned manager_dispatch_cgroup_realize_queue(Manager *m) {
ManagerState state;
unsigned n = 0;
Unit *i;
int r;
assert(m);
state = manager_state(m);
while ((i = m->cgroup_realize_queue)) {
assert(i->in_cgroup_realize_queue);
if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(i))) {
/* Maybe things changed, and the unit is not actually active anymore? */
unit_remove_from_cgroup_realize_queue(i);
continue;
}
r = unit_realize_cgroup_now(i, state);
if (r < 0)
log_warning_errno(r, "Failed to realize cgroups for queued unit %s, ignoring: %m", i->id);
n++;
}
return n;
}
static void unit_add_siblings_to_cgroup_realize_queue(Unit *u) {
Unit *slice;
/* This adds the siblings of the specified unit and the
* siblings of all parent units to the cgroup queue. (But
* neither the specified unit itself nor the parents.) */
while ((slice = UNIT_DEREF(u->slice))) {
Iterator i;
Unit *m;
void *v;
HASHMAP_FOREACH_KEY(v, m, u->dependencies[UNIT_BEFORE], i) {
if (m == u)
continue;
/* Skip units that have a dependency on the slice
* but aren't actually in it. */
if (UNIT_DEREF(m->slice) != slice)
continue;
/* No point in doing cgroup application for units
* without active processes. */
if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(m)))
continue;
/* If the unit doesn't need any new controllers
* and has current ones realized, it doesn't need
* any changes. */
if (unit_has_mask_realized(m,
unit_get_target_mask(m),
unit_get_enable_mask(m)))
continue;
unit_add_to_cgroup_realize_queue(m);
}
u = slice;
}
}
int unit_realize_cgroup(Unit *u) {
assert(u);
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return 0;
/* So, here's the deal: when realizing the cgroups for this
* unit, we need to first create all parents, but there's more
* actually: for the weight-based controllers we also need to
* make sure that all our siblings (i.e. units that are in the
* same slice as we are) have cgroups, too. Otherwise, things
* would become very uneven as each of their processes would
* get as much resources as all our group together. This call
* will synchronously create the parent cgroups, but will
* defer work on the siblings to the next event loop
* iteration. */
/* Add all sibling slices to the cgroup queue. */
unit_add_siblings_to_cgroup_realize_queue(u);
/* And realize this one now (and apply the values) */
return unit_realize_cgroup_now(u, manager_state(u->manager));
}
void unit_release_cgroup(Unit *u) {
assert(u);
/* Forgets all cgroup details for this cgroup — but does *not* destroy the cgroup. This is hence OK to call
* when we close down everything for reexecution, where we really want to leave the cgroup in place. */
if (u->cgroup_path) {
(void) hashmap_remove(u->manager->cgroup_unit, u->cgroup_path);
u->cgroup_path = mfree(u->cgroup_path);
}
if (u->cgroup_inotify_wd >= 0) {
if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_inotify_wd) < 0)
log_unit_debug_errno(u, errno, "Failed to remove cgroup inotify watch %i for %s, ignoring: %m", u->cgroup_inotify_wd, u->id);
(void) hashmap_remove(u->manager->cgroup_inotify_wd_unit, INT_TO_PTR(u->cgroup_inotify_wd));
u->cgroup_inotify_wd = -1;
}
}
void unit_prune_cgroup(Unit *u) {
int r;
bool is_root_slice;
assert(u);
/* Removes the cgroup, if empty and possible, and stops watching it. */
if (!u->cgroup_path)
return;
(void) unit_get_cpu_usage(u, NULL); /* Cache the last CPU usage value before we destroy the cgroup */
is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
r = cg_trim_everywhere(u->manager->cgroup_supported, u->cgroup_path, !is_root_slice);
if (r < 0) {
log_unit_debug_errno(u, r, "Failed to destroy cgroup %s, ignoring: %m", u->cgroup_path);
return;
}
if (is_root_slice)
return;
unit_release_cgroup(u);
u->cgroup_realized = false;
u->cgroup_realized_mask = 0;
u->cgroup_enabled_mask = 0;
u->bpf_device_control_installed = bpf_program_unref(u->bpf_device_control_installed);
}
int unit_search_main_pid(Unit *u, pid_t *ret) {
_cleanup_fclose_ FILE *f = NULL;
pid_t pid = 0, npid, mypid;
int r;
assert(u);
assert(ret);
if (!u->cgroup_path)
return -ENXIO;
r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, &f);
if (r < 0)
return r;
mypid = getpid_cached();
while (cg_read_pid(f, &npid) > 0) {
pid_t ppid;
if (npid == pid)
continue;
/* Ignore processes that aren't our kids */
if (get_process_ppid(npid, &ppid) >= 0 && ppid != mypid)
continue;
if (pid != 0)
/* Dang, there's more than one daemonized PID
in this group, so we don't know what process
is the main process. */
return -ENODATA;
pid = npid;
}
*ret = pid;
return 0;
}
static int unit_watch_pids_in_path(Unit *u, const char *path) {
_cleanup_closedir_ DIR *d = NULL;
_cleanup_fclose_ FILE *f = NULL;
int ret = 0, r;
assert(u);
assert(path);
r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, path, &f);
if (r < 0)
ret = r;
else {
pid_t pid;
while ((r = cg_read_pid(f, &pid)) > 0) {
r = unit_watch_pid(u, pid);
if (r < 0 && ret >= 0)
ret = r;
}
if (r < 0 && ret >= 0)
ret = r;
}
r = cg_enumerate_subgroups(SYSTEMD_CGROUP_CONTROLLER, path, &d);
if (r < 0) {
if (ret >= 0)
ret = r;
} else {
char *fn;
while ((r = cg_read_subgroup(d, &fn)) > 0) {
_cleanup_free_ char *p = NULL;
p = strjoin(path, "/", fn);
free(fn);
if (!p)
return -ENOMEM;
r = unit_watch_pids_in_path(u, p);
if (r < 0 && ret >= 0)
ret = r;
}
if (r < 0 && ret >= 0)
ret = r;
}
return ret;
}
int unit_synthesize_cgroup_empty_event(Unit *u) {
int r;
assert(u);
/* Enqueue a synthetic cgroup empty event if this unit doesn't watch any PIDs anymore. This is compatibility
* support for non-unified systems where notifications aren't reliable, and hence need to take whatever we can
* get as notification source as soon as we stopped having any useful PIDs to watch for. */
if (!u->cgroup_path)
return -ENOENT;
r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
if (r < 0)
return r;
if (r > 0) /* On unified we have reliable notifications, and don't need this */
return 0;
if (!set_isempty(u->pids))
return 0;
unit_add_to_cgroup_empty_queue(u);
return 0;
}
int unit_watch_all_pids(Unit *u) {
int r;
assert(u);
/* Adds all PIDs from our cgroup to the set of PIDs we
* watch. This is a fallback logic for cases where we do not
* get reliable cgroup empty notifications: we try to use
* SIGCHLD as replacement. */
if (!u->cgroup_path)
return -ENOENT;
r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
if (r < 0)
return r;
if (r > 0) /* On unified we can use proper notifications */
return 0;
return unit_watch_pids_in_path(u, u->cgroup_path);
}
static int on_cgroup_empty_event(sd_event_source *s, void *userdata) {
Manager *m = userdata;
Unit *u;
int r;
assert(s);
assert(m);
u = m->cgroup_empty_queue;
if (!u)
return 0;
assert(u->in_cgroup_empty_queue);
u->in_cgroup_empty_queue = false;
LIST_REMOVE(cgroup_empty_queue, m->cgroup_empty_queue, u);
if (m->cgroup_empty_queue) {
/* More stuff queued, let's make sure we remain enabled */
r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
if (r < 0)
log_debug_errno(r, "Failed to reenable cgroup empty event source, ignoring: %m");
}
unit_add_to_gc_queue(u);
if (UNIT_VTABLE(u)->notify_cgroup_empty)
UNIT_VTABLE(u)->notify_cgroup_empty(u);
return 0;
}
void unit_add_to_cgroup_empty_queue(Unit *u) {
int r;
assert(u);
/* Note that there are four different ways how cgroup empty events reach us:
*
* 1. On the unified hierarchy we get an inotify event on the cgroup
*
* 2. On the legacy hierarchy, when running in system mode, we get a datagram on the cgroup agent socket
*
* 3. On the legacy hierarchy, when running in user mode, we get a D-Bus signal on the system bus
*
* 4. On the legacy hierarchy, in service units we start watching all processes of the cgroup for SIGCHLD as
* soon as we get one SIGCHLD, to deal with unreliable cgroup notifications.
*
* Regardless which way we got the notification, we'll verify it here, and then add it to a separate
* queue. This queue will be dispatched at a lower priority than the SIGCHLD handler, so that we always use
* SIGCHLD if we can get it first, and only use the cgroup empty notifications if there's no SIGCHLD pending
* (which might happen if the cgroup doesn't contain processes that are our own child, which is typically the
* case for scope units). */
if (u->in_cgroup_empty_queue)
return;
/* Let's verify that the cgroup is really empty */
if (!u->cgroup_path)
return;
r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
if (r < 0) {
log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", u->cgroup_path);
return;
}
if (r == 0)
return;
LIST_PREPEND(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
u->in_cgroup_empty_queue = true;
/* Trigger the defer event */
r = sd_event_source_set_enabled(u->manager->cgroup_empty_event_source, SD_EVENT_ONESHOT);
if (r < 0)
log_debug_errno(r, "Failed to enable cgroup empty event source: %m");
}
static int on_cgroup_inotify_event(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
Manager *m = userdata;
assert(s);
assert(fd >= 0);
assert(m);
for (;;) {
union inotify_event_buffer buffer;
struct inotify_event *e;
ssize_t l;
l = read(fd, &buffer, sizeof(buffer));
if (l < 0) {
if (IN_SET(errno, EINTR, EAGAIN))
return 0;
return log_error_errno(errno, "Failed to read control group inotify events: %m");
}
FOREACH_INOTIFY_EVENT(e, buffer, l) {
Unit *u;
if (e->wd < 0)
/* Queue overflow has no watch descriptor */
continue;
if (e->mask & IN_IGNORED)
/* The watch was just removed */
continue;
u = hashmap_get(m->cgroup_inotify_wd_unit, INT_TO_PTR(e->wd));
if (!u) /* Not that inotify might deliver
* events for a watch even after it
* was removed, because it was queued
* before the removal. Let's ignore
* this here safely. */
continue;
unit_add_to_cgroup_empty_queue(u);
}
}
}
static int cg_bpf_mask_supported(CGroupMask *ret) {
CGroupMask mask = 0;
int r;
/* BPF-based firewall */
r = bpf_firewall_supported();
if (r > 0)
mask |= CGROUP_MASK_BPF_FIREWALL;
/* BPF-based device access control */
r = bpf_devices_supported();
if (r > 0)
mask |= CGROUP_MASK_BPF_DEVICES;
*ret = mask;
return 0;
}
int manager_setup_cgroup(Manager *m) {
_cleanup_free_ char *path = NULL;
const char *scope_path;
CGroupController c;
int r, all_unified;
CGroupMask mask;
char *e;
assert(m);
/* 1. Determine hierarchy */
m->cgroup_root = mfree(m->cgroup_root);
r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 0, &m->cgroup_root);
if (r < 0)
return log_error_errno(r, "Cannot determine cgroup we are running in: %m");
/* Chop off the init scope, if we are already located in it */
e = endswith(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
/* LEGACY: Also chop off the system slice if we are in
* it. This is to support live upgrades from older systemd
* versions where PID 1 was moved there. Also see
* cg_get_root_path(). */
if (!e && MANAGER_IS_SYSTEM(m)) {
e = endswith(m->cgroup_root, "/" SPECIAL_SYSTEM_SLICE);
if (!e)
e = endswith(m->cgroup_root, "/system"); /* even more legacy */
}
if (e)
*e = 0;
/* And make sure to store away the root value without trailing slash, even for the root dir, so that we can
* easily prepend it everywhere. */
delete_trailing_chars(m->cgroup_root, "/");
/* 2. Show data */
r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, NULL, &path);
if (r < 0)
return log_error_errno(r, "Cannot find cgroup mount point: %m");
r = cg_unified_flush();
if (r < 0)
return log_error_errno(r, "Couldn't determine if we are running in the unified hierarchy: %m");
all_unified = cg_all_unified();
if (all_unified < 0)
return log_error_errno(all_unified, "Couldn't determine whether we are in all unified mode: %m");
if (all_unified > 0)
log_debug("Unified cgroup hierarchy is located at %s.", path);
else {
r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
if (r < 0)
return log_error_errno(r, "Failed to determine whether systemd's own controller is in unified mode: %m");
if (r > 0)
log_debug("Unified cgroup hierarchy is located at %s. Controllers are on legacy hierarchies.", path);
else
log_debug("Using cgroup controller " SYSTEMD_CGROUP_CONTROLLER_LEGACY ". File system hierarchy is at %s.", path);
}
/* 3. Allocate cgroup empty defer event source */
m->cgroup_empty_event_source = sd_event_source_unref(m->cgroup_empty_event_source);
r = sd_event_add_defer(m->event, &m->cgroup_empty_event_source, on_cgroup_empty_event, m);
if (r < 0)
return log_error_errno(r, "Failed to create cgroup empty event source: %m");
r = sd_event_source_set_priority(m->cgroup_empty_event_source, SD_EVENT_PRIORITY_NORMAL-5);
if (r < 0)
return log_error_errno(r, "Failed to set priority of cgroup empty event source: %m");
r = sd_event_source_set_enabled(m->cgroup_empty_event_source, SD_EVENT_OFF);
if (r < 0)
return log_error_errno(r, "Failed to disable cgroup empty event source: %m");
(void) sd_event_source_set_description(m->cgroup_empty_event_source, "cgroup-empty");
/* 4. Install notifier inotify object, or agent */
if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) {
/* In the unified hierarchy we can get cgroup empty notifications via inotify. */
m->cgroup_inotify_event_source = sd_event_source_unref(m->cgroup_inotify_event_source);
safe_close(m->cgroup_inotify_fd);
m->cgroup_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC);
if (m->cgroup_inotify_fd < 0)
return log_error_errno(errno, "Failed to create control group inotify object: %m");
r = sd_event_add_io(m->event, &m->cgroup_inotify_event_source, m->cgroup_inotify_fd, EPOLLIN, on_cgroup_inotify_event, m);
if (r < 0)
return log_error_errno(r, "Failed to watch control group inotify object: %m");
/* Process cgroup empty notifications early, but after service notifications and SIGCHLD. Also
* see handling of cgroup agent notifications, for the classic cgroup hierarchy support. */
r = sd_event_source_set_priority(m->cgroup_inotify_event_source, SD_EVENT_PRIORITY_NORMAL-4);
if (r < 0)
return log_error_errno(r, "Failed to set priority of inotify event source: %m");
(void) sd_event_source_set_description(m->cgroup_inotify_event_source, "cgroup-inotify");
} else if (MANAGER_IS_SYSTEM(m) && manager_owns_host_root_cgroup(m) && !MANAGER_IS_TEST_RUN(m)) {
/* On the legacy hierarchy we only get notifications via cgroup agents. (Which isn't really reliable,
* since it does not generate events when control groups with children run empty. */
r = cg_install_release_agent(SYSTEMD_CGROUP_CONTROLLER, SYSTEMD_CGROUP_AGENT_PATH);
if (r < 0)
log_warning_errno(r, "Failed to install release agent, ignoring: %m");
else if (r > 0)
log_debug("Installed release agent.");
else if (r == 0)
log_debug("Release agent already installed.");
}
/* 5. Make sure we are in the special "init.scope" unit in the root slice. */
scope_path = strjoina(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
r = cg_create_and_attach(SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
if (r >= 0) {
/* Also, move all other userspace processes remaining in the root cgroup into that scope. */
r = cg_migrate(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
if (r < 0)
log_warning_errno(r, "Couldn't move remaining userspace processes, ignoring: %m");
/* 6. And pin it, so that it cannot be unmounted */
safe_close(m->pin_cgroupfs_fd);
m->pin_cgroupfs_fd = open(path, O_RDONLY|O_CLOEXEC|O_DIRECTORY|O_NOCTTY|O_NONBLOCK);
if (m->pin_cgroupfs_fd < 0)
return log_error_errno(errno, "Failed to open pin file: %m");
} else if (!MANAGER_IS_TEST_RUN(m))
return log_error_errno(r, "Failed to create %s control group: %m", scope_path);
/* 7. Always enable hierarchical support if it exists... */
if (!all_unified && !MANAGER_IS_TEST_RUN(m))
(void) cg_set_attribute("memory", "/", "memory.use_hierarchy", "1");
/* 8. Figure out which controllers are supported */
r = cg_mask_supported(&m->cgroup_supported);
if (r < 0)
return log_error_errno(r, "Failed to determine supported controllers: %m");
/* 9. Figure out which bpf-based pseudo-controllers are supported */
r = cg_bpf_mask_supported(&mask);
if (r < 0)
return log_error_errno(r, "Failed to determine supported bpf-based pseudo-controllers: %m");
m->cgroup_supported |= mask;
/* 10. Log which controllers are supported */
for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++)
log_debug("Controller '%s' supported: %s", cgroup_controller_to_string(c), yes_no(m->cgroup_supported & CGROUP_CONTROLLER_TO_MASK(c)));
return 0;
}
void manager_shutdown_cgroup(Manager *m, bool delete) {
assert(m);
/* We can't really delete the group, since we are in it. But
* let's trim it. */
if (delete && m->cgroup_root && m->test_run_flags != MANAGER_TEST_RUN_MINIMAL)
(void) cg_trim(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, false);
m->cgroup_empty_event_source = sd_event_source_unref(m->cgroup_empty_event_source);
m->cgroup_inotify_wd_unit = hashmap_free(m->cgroup_inotify_wd_unit);
m->cgroup_inotify_event_source = sd_event_source_unref(m->cgroup_inotify_event_source);
m->cgroup_inotify_fd = safe_close(m->cgroup_inotify_fd);
m->pin_cgroupfs_fd = safe_close(m->pin_cgroupfs_fd);
m->cgroup_root = mfree(m->cgroup_root);
}
Unit* manager_get_unit_by_cgroup(Manager *m, const char *cgroup) {
char *p;
Unit *u;
assert(m);
assert(cgroup);
u = hashmap_get(m->cgroup_unit, cgroup);
if (u)
return u;
p = strdupa(cgroup);
for (;;) {
char *e;
e = strrchr(p, '/');
if (!e || e == p)
return hashmap_get(m->cgroup_unit, SPECIAL_ROOT_SLICE);
*e = 0;
u = hashmap_get(m->cgroup_unit, p);
if (u)
return u;
}
}
Unit *manager_get_unit_by_pid_cgroup(Manager *m, pid_t pid) {
_cleanup_free_ char *cgroup = NULL;
assert(m);
if (!pid_is_valid(pid))
return NULL;
if (cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &cgroup) < 0)
return NULL;
return manager_get_unit_by_cgroup(m, cgroup);
}
Unit *manager_get_unit_by_pid(Manager *m, pid_t pid) {
Unit *u, **array;
assert(m);
/* Note that a process might be owned by multiple units, we return only one here, which is good enough for most
* cases, though not strictly correct. We prefer the one reported by cgroup membership, as that's the most
* relevant one as children of the process will be assigned to that one, too, before all else. */
if (!pid_is_valid(pid))
return NULL;
if (pid == getpid_cached())
return hashmap_get(m->units, SPECIAL_INIT_SCOPE);
u = manager_get_unit_by_pid_cgroup(m, pid);
if (u)
return u;
u = hashmap_get(m->watch_pids, PID_TO_PTR(pid));
if (u)
return u;
array = hashmap_get(m->watch_pids, PID_TO_PTR(-pid));
if (array)
return array[0];
return NULL;
}
int manager_notify_cgroup_empty(Manager *m, const char *cgroup) {
Unit *u;
assert(m);
assert(cgroup);
/* Called on the legacy hierarchy whenever we get an explicit cgroup notification from the cgroup agent process
* or from the --system instance */
log_debug("Got cgroup empty notification for: %s", cgroup);
u = manager_get_unit_by_cgroup(m, cgroup);
if (!u)
return 0;
unit_add_to_cgroup_empty_queue(u);
return 1;
}
int unit_get_memory_current(Unit *u, uint64_t *ret) {
_cleanup_free_ char *v = NULL;
int r;
assert(u);
assert(ret);
if (!UNIT_CGROUP_BOOL(u, memory_accounting))
return -ENODATA;
if (!u->cgroup_path)
return -ENODATA;
/* The root cgroup doesn't expose this information, let's get it from /proc instead */
if (unit_has_host_root_cgroup(u))
return procfs_memory_get_current(ret);
if ((u->cgroup_realized_mask & CGROUP_MASK_MEMORY) == 0)
return -ENODATA;
r = cg_all_unified();
if (r < 0)
return r;
if (r > 0)
r = cg_get_attribute("memory", u->cgroup_path, "memory.current", &v);
else
r = cg_get_attribute("memory", u->cgroup_path, "memory.usage_in_bytes", &v);
if (r == -ENOENT)
return -ENODATA;
if (r < 0)
return r;
return safe_atou64(v, ret);
}
int unit_get_tasks_current(Unit *u, uint64_t *ret) {
_cleanup_free_ char *v = NULL;
int r;
assert(u);
assert(ret);
if (!UNIT_CGROUP_BOOL(u, tasks_accounting))
return -ENODATA;
if (!u->cgroup_path)
return -ENODATA;
/* The root cgroup doesn't expose this information, let's get it from /proc instead */
if (unit_has_host_root_cgroup(u))
return procfs_tasks_get_current(ret);
if ((u->cgroup_realized_mask & CGROUP_MASK_PIDS) == 0)
return -ENODATA;
r = cg_get_attribute("pids", u->cgroup_path, "pids.current", &v);
if (r == -ENOENT)
return -ENODATA;
if (r < 0)
return r;
return safe_atou64(v, ret);
}
static int unit_get_cpu_usage_raw(Unit *u, nsec_t *ret) {
_cleanup_free_ char *v = NULL;
uint64_t ns;
int r;
assert(u);
assert(ret);
if (!u->cgroup_path)
return -ENODATA;
/* The root cgroup doesn't expose this information, let's get it from /proc instead */
if (unit_has_host_root_cgroup(u))
return procfs_cpu_get_usage(ret);
r = cg_all_unified();
if (r < 0)
return r;
/* Requisite controllers for CPU accounting are not enabled */
if ((get_cpu_accounting_mask() & ~u->cgroup_realized_mask) != 0)
return -ENODATA;
if (r > 0) {
_cleanup_free_ char *val = NULL;
uint64_t us;
r = cg_get_keyed_attribute("cpu", u->cgroup_path, "cpu.stat", STRV_MAKE("usage_usec"), &val);
if (r < 0)
return r;
if (IN_SET(r, -ENOENT, -ENXIO))
return -ENODATA;
r = safe_atou64(val, &us);
if (r < 0)
return r;
ns = us * NSEC_PER_USEC;
} else {
r = cg_get_attribute("cpuacct", u->cgroup_path, "cpuacct.usage", &v);
if (r == -ENOENT)
return -ENODATA;
if (r < 0)
return r;
r = safe_atou64(v, &ns);
if (r < 0)
return r;
}
*ret = ns;
return 0;
}
int unit_get_cpu_usage(Unit *u, nsec_t *ret) {
nsec_t ns;
int r;
assert(u);
/* Retrieve the current CPU usage counter. This will subtract the CPU counter taken when the unit was
* started. If the cgroup has been removed already, returns the last cached value. To cache the value, simply
* call this function with a NULL return value. */
if (!UNIT_CGROUP_BOOL(u, cpu_accounting))
return -ENODATA;
r = unit_get_cpu_usage_raw(u, &ns);
if (r == -ENODATA && u->cpu_usage_last != NSEC_INFINITY) {
/* If we can't get the CPU usage anymore (because the cgroup was already removed, for example), use our
* cached value. */
if (ret)
*ret = u->cpu_usage_last;
return 0;
}
if (r < 0)
return r;
if (ns > u->cpu_usage_base)
ns -= u->cpu_usage_base;
else
ns = 0;
u->cpu_usage_last = ns;
if (ret)
*ret = ns;
return 0;
}
int unit_get_ip_accounting(
Unit *u,
CGroupIPAccountingMetric metric,
uint64_t *ret) {
uint64_t value;
int fd, r;
assert(u);
assert(metric >= 0);
assert(metric < _CGROUP_IP_ACCOUNTING_METRIC_MAX);
assert(ret);
if (!UNIT_CGROUP_BOOL(u, ip_accounting))
return -ENODATA;
fd = IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_INGRESS_PACKETS) ?
u->ip_accounting_ingress_map_fd :
u->ip_accounting_egress_map_fd;
if (fd < 0)
return -ENODATA;
if (IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
r = bpf_firewall_read_accounting(fd, &value, NULL);
else
r = bpf_firewall_read_accounting(fd, NULL, &value);
if (r < 0)
return r;
/* Add in additional metrics from a previous runtime. Note that when reexecing/reloading the daemon we compile
* all BPF programs and maps anew, but serialize the old counters. When deserializing we store them in the
* ip_accounting_extra[] field, and add them in here transparently. */
*ret = value + u->ip_accounting_extra[metric];
return r;
}
int unit_reset_cpu_accounting(Unit *u) {
nsec_t ns;
int r;
assert(u);
u->cpu_usage_last = NSEC_INFINITY;
r = unit_get_cpu_usage_raw(u, &ns);
if (r < 0) {
u->cpu_usage_base = 0;
return r;
}
u->cpu_usage_base = ns;
return 0;
}
int unit_reset_ip_accounting(Unit *u) {
int r = 0, q = 0;
assert(u);
if (u->ip_accounting_ingress_map_fd >= 0)
r = bpf_firewall_reset_accounting(u->ip_accounting_ingress_map_fd);
if (u->ip_accounting_egress_map_fd >= 0)
q = bpf_firewall_reset_accounting(u->ip_accounting_egress_map_fd);
zero(u->ip_accounting_extra);
return r < 0 ? r : q;
}
void unit_invalidate_cgroup(Unit *u, CGroupMask m) {
assert(u);
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return;
if (m == 0)
return;
/* always invalidate compat pairs together */
if (m & (CGROUP_MASK_IO | CGROUP_MASK_BLKIO))
m |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
if (m & (CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT))
m |= CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT;
if (FLAGS_SET(u->cgroup_invalidated_mask, m)) /* NOP? */
return;
u->cgroup_invalidated_mask |= m;
unit_add_to_cgroup_realize_queue(u);
}
void unit_invalidate_cgroup_bpf(Unit *u) {
assert(u);
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return;
if (u->cgroup_invalidated_mask & CGROUP_MASK_BPF_FIREWALL) /* NOP? */
return;
u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
unit_add_to_cgroup_realize_queue(u);
/* If we are a slice unit, we also need to put compile a new BPF program for all our children, as the IP access
* list of our children includes our own. */
if (u->type == UNIT_SLICE) {
Unit *member;
Iterator i;
void *v;
HASHMAP_FOREACH_KEY(v, member, u->dependencies[UNIT_BEFORE], i) {
if (member == u)
continue;
if (UNIT_DEREF(member->slice) != u)
continue;
unit_invalidate_cgroup_bpf(member);
}
}
}
bool unit_cgroup_delegate(Unit *u) {
CGroupContext *c;
assert(u);
if (!UNIT_VTABLE(u)->can_delegate)
return false;
c = unit_get_cgroup_context(u);
if (!c)
return false;
return c->delegate;
}
void manager_invalidate_startup_units(Manager *m) {
Iterator i;
Unit *u;
assert(m);
SET_FOREACH(u, m->startup_units, i)
unit_invalidate_cgroup(u, CGROUP_MASK_CPU|CGROUP_MASK_IO|CGROUP_MASK_BLKIO);
}
static const char* const cgroup_device_policy_table[_CGROUP_DEVICE_POLICY_MAX] = {
[CGROUP_AUTO] = "auto",
[CGROUP_CLOSED] = "closed",
[CGROUP_STRICT] = "strict",
};
DEFINE_STRING_TABLE_LOOKUP(cgroup_device_policy, CGroupDevicePolicy);