Systemd/src/shared/ptyfwd.c
Lennart Poettering 95f1d6bfec run: exit early in --pty if service failed
This reworks systemd-run so that in --pty mode we watch the unit state
the way we do it in --wait mode. Whenever we notice that the service is
in failed or inactive state finish right-away, but first write all
unwritten characters we can read from the master TTY device.

This makes sure that when the TTY service fails before it opens the
slave PTY device we properly notice that and exit early, so that borked
start parameters result in immediate systemd-run failure. Previously,
we'd not notice this at all, as a PTY slave that never was opened won't
result in POLLHUP events, and we'd hence simply keep reading from it
forever.

In essence, --pty now enables the same unit watching logic that --wait
enables. However, unless --wait is specified we won#t show the final
summary, hence the effective difference should be pretty minimal.

Fixes: #3915
2017-02-03 11:51:57 +01:00

552 lines
18 KiB
C

/***
This file is part of systemd.
Copyright 2010-2013 Lennart Poettering
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see <http://www.gnu.org/licenses/>.
***/
#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sys/epoll.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <termios.h>
#include <unistd.h>
#include "sd-event.h"
#include "alloc-util.h"
#include "fd-util.h"
#include "log.h"
#include "macro.h"
#include "ptyfwd.h"
#include "time-util.h"
struct PTYForward {
sd_event *event;
int master;
PTYForwardFlags flags;
sd_event_source *stdin_event_source;
sd_event_source *stdout_event_source;
sd_event_source *master_event_source;
sd_event_source *sigwinch_event_source;
struct termios saved_stdin_attr;
struct termios saved_stdout_attr;
bool saved_stdin:1;
bool saved_stdout:1;
bool stdin_readable:1;
bool stdin_hangup:1;
bool stdout_writable:1;
bool stdout_hangup:1;
bool master_readable:1;
bool master_writable:1;
bool master_hangup:1;
bool read_from_master:1;
bool done:1;
bool drain:1;
bool last_char_set:1;
char last_char;
char in_buffer[LINE_MAX], out_buffer[LINE_MAX];
size_t in_buffer_full, out_buffer_full;
usec_t escape_timestamp;
unsigned escape_counter;
PTYForwardHandler handler;
void *userdata;
};
#define ESCAPE_USEC (1*USEC_PER_SEC)
static void pty_forward_disconnect(PTYForward *f) {
if (f) {
f->stdin_event_source = sd_event_source_unref(f->stdin_event_source);
f->stdout_event_source = sd_event_source_unref(f->stdout_event_source);
f->master_event_source = sd_event_source_unref(f->master_event_source);
f->sigwinch_event_source = sd_event_source_unref(f->sigwinch_event_source);
f->event = sd_event_unref(f->event);
if (f->saved_stdout)
tcsetattr(STDOUT_FILENO, TCSANOW, &f->saved_stdout_attr);
if (f->saved_stdin)
tcsetattr(STDIN_FILENO, TCSANOW, &f->saved_stdin_attr);
f->saved_stdout = f->saved_stdin = false;
}
/* STDIN/STDOUT should not be nonblocking normally, so let's unconditionally reset it */
fd_nonblock(STDIN_FILENO, false);
fd_nonblock(STDOUT_FILENO, false);
}
static int pty_forward_done(PTYForward *f, int rcode) {
_cleanup_(sd_event_unrefp) sd_event *e = NULL;
assert(f);
if (f->done)
return 0;
e = sd_event_ref(f->event);
f->done = true;
pty_forward_disconnect(f);
if (f->handler)
return f->handler(f, rcode, f->userdata);
else
return sd_event_exit(e, rcode < 0 ? EXIT_FAILURE : rcode);
}
static bool look_for_escape(PTYForward *f, const char *buffer, size_t n) {
const char *p;
assert(f);
assert(buffer);
assert(n > 0);
for (p = buffer; p < buffer + n; p++) {
/* Check for ^] */
if (*p == 0x1D) {
usec_t nw = now(CLOCK_MONOTONIC);
if (f->escape_counter == 0 || nw > f->escape_timestamp + ESCAPE_USEC) {
f->escape_timestamp = nw;
f->escape_counter = 1;
} else {
(f->escape_counter)++;
if (f->escape_counter >= 3)
return true;
}
} else {
f->escape_timestamp = 0;
f->escape_counter = 0;
}
}
return false;
}
static bool ignore_vhangup(PTYForward *f) {
assert(f);
if (f->flags & PTY_FORWARD_IGNORE_VHANGUP)
return true;
if ((f->flags & PTY_FORWARD_IGNORE_INITIAL_VHANGUP) && !f->read_from_master)
return true;
return false;
}
static int shovel(PTYForward *f) {
ssize_t k;
assert(f);
while ((f->stdin_readable && f->in_buffer_full <= 0) ||
(f->master_writable && f->in_buffer_full > 0) ||
(f->master_readable && f->out_buffer_full <= 0) ||
(f->stdout_writable && f->out_buffer_full > 0)) {
if (f->stdin_readable && f->in_buffer_full < LINE_MAX) {
k = read(STDIN_FILENO, f->in_buffer + f->in_buffer_full, LINE_MAX - f->in_buffer_full);
if (k < 0) {
if (errno == EAGAIN)
f->stdin_readable = false;
else if (errno == EIO || errno == EPIPE || errno == ECONNRESET) {
f->stdin_readable = false;
f->stdin_hangup = true;
f->stdin_event_source = sd_event_source_unref(f->stdin_event_source);
} else {
log_error_errno(errno, "read(): %m");
return pty_forward_done(f, -errno);
}
} else if (k == 0) {
/* EOF on stdin */
f->stdin_readable = false;
f->stdin_hangup = true;
f->stdin_event_source = sd_event_source_unref(f->stdin_event_source);
} else {
/* Check if ^] has been pressed three times within one second. If we get this we quite
* immediately. */
if (look_for_escape(f, f->in_buffer + f->in_buffer_full, k))
return pty_forward_done(f, -ECANCELED);
f->in_buffer_full += (size_t) k;
}
}
if (f->master_writable && f->in_buffer_full > 0) {
k = write(f->master, f->in_buffer, f->in_buffer_full);
if (k < 0) {
if (errno == EAGAIN || errno == EIO)
f->master_writable = false;
else if (errno == EPIPE || errno == ECONNRESET) {
f->master_writable = f->master_readable = false;
f->master_hangup = true;
f->master_event_source = sd_event_source_unref(f->master_event_source);
} else {
log_error_errno(errno, "write(): %m");
return pty_forward_done(f, -errno);
}
} else {
assert(f->in_buffer_full >= (size_t) k);
memmove(f->in_buffer, f->in_buffer + k, f->in_buffer_full - k);
f->in_buffer_full -= k;
}
}
if (f->master_readable && f->out_buffer_full < LINE_MAX) {
k = read(f->master, f->out_buffer + f->out_buffer_full, LINE_MAX - f->out_buffer_full);
if (k < 0) {
/* Note that EIO on the master device
* might be caused by vhangup() or
* temporary closing of everything on
* the other side, we treat it like
* EAGAIN here and try again, unless
* ignore_vhangup is off. */
if (errno == EAGAIN || (errno == EIO && ignore_vhangup(f)))
f->master_readable = false;
else if (errno == EPIPE || errno == ECONNRESET || errno == EIO) {
f->master_readable = f->master_writable = false;
f->master_hangup = true;
f->master_event_source = sd_event_source_unref(f->master_event_source);
} else {
log_error_errno(errno, "read(): %m");
return pty_forward_done(f, -errno);
}
} else {
f->read_from_master = true;
f->out_buffer_full += (size_t) k;
}
}
if (f->stdout_writable && f->out_buffer_full > 0) {
k = write(STDOUT_FILENO, f->out_buffer, f->out_buffer_full);
if (k < 0) {
if (errno == EAGAIN)
f->stdout_writable = false;
else if (errno == EIO || errno == EPIPE || errno == ECONNRESET) {
f->stdout_writable = false;
f->stdout_hangup = true;
f->stdout_event_source = sd_event_source_unref(f->stdout_event_source);
} else {
log_error_errno(errno, "write(): %m");
return pty_forward_done(f, -errno);
}
} else {
if (k > 0) {
f->last_char = f->out_buffer[k-1];
f->last_char_set = true;
}
assert(f->out_buffer_full >= (size_t) k);
memmove(f->out_buffer, f->out_buffer + k, f->out_buffer_full - k);
f->out_buffer_full -= k;
}
}
}
if (f->stdin_hangup || f->stdout_hangup || f->master_hangup) {
/* Exit the loop if any side hung up and if there's
* nothing more to write or nothing we could write. */
if ((f->out_buffer_full <= 0 || f->stdout_hangup) &&
(f->in_buffer_full <= 0 || f->master_hangup))
return pty_forward_done(f, 0);
}
/* If we were asked to drain, and there's nothing more to handle from the master, then call the callback
* too. */
if (f->drain && f->out_buffer_full == 0 && !f->master_readable)
return pty_forward_done(f, 0);
return 0;
}
static int on_master_event(sd_event_source *e, int fd, uint32_t revents, void *userdata) {
PTYForward *f = userdata;
assert(f);
assert(e);
assert(e == f->master_event_source);
assert(fd >= 0);
assert(fd == f->master);
if (revents & (EPOLLIN|EPOLLHUP))
f->master_readable = true;
if (revents & (EPOLLOUT|EPOLLHUP))
f->master_writable = true;
return shovel(f);
}
static int on_stdin_event(sd_event_source *e, int fd, uint32_t revents, void *userdata) {
PTYForward *f = userdata;
assert(f);
assert(e);
assert(e == f->stdin_event_source);
assert(fd >= 0);
assert(fd == STDIN_FILENO);
if (revents & (EPOLLIN|EPOLLHUP))
f->stdin_readable = true;
return shovel(f);
}
static int on_stdout_event(sd_event_source *e, int fd, uint32_t revents, void *userdata) {
PTYForward *f = userdata;
assert(f);
assert(e);
assert(e == f->stdout_event_source);
assert(fd >= 0);
assert(fd == STDOUT_FILENO);
if (revents & (EPOLLOUT|EPOLLHUP))
f->stdout_writable = true;
return shovel(f);
}
static int on_sigwinch_event(sd_event_source *e, const struct signalfd_siginfo *si, void *userdata) {
PTYForward *f = userdata;
struct winsize ws;
assert(f);
assert(e);
assert(e == f->sigwinch_event_source);
/* The window size changed, let's forward that. */
if (ioctl(STDOUT_FILENO, TIOCGWINSZ, &ws) >= 0)
(void) ioctl(f->master, TIOCSWINSZ, &ws);
return 0;
}
int pty_forward_new(
sd_event *event,
int master,
PTYForwardFlags flags,
PTYForward **ret) {
_cleanup_(pty_forward_freep) PTYForward *f = NULL;
struct winsize ws;
int r;
f = new0(PTYForward, 1);
if (!f)
return -ENOMEM;
f->flags = flags;
if (event)
f->event = sd_event_ref(event);
else {
r = sd_event_default(&f->event);
if (r < 0)
return r;
}
if (!(flags & PTY_FORWARD_READ_ONLY)) {
r = fd_nonblock(STDIN_FILENO, true);
if (r < 0)
return r;
r = fd_nonblock(STDOUT_FILENO, true);
if (r < 0)
return r;
}
r = fd_nonblock(master, true);
if (r < 0)
return r;
f->master = master;
if (ioctl(STDOUT_FILENO, TIOCGWINSZ, &ws) >= 0)
(void) ioctl(master, TIOCSWINSZ, &ws);
if (!(flags & PTY_FORWARD_READ_ONLY)) {
if (tcgetattr(STDIN_FILENO, &f->saved_stdin_attr) >= 0) {
struct termios raw_stdin_attr;
f->saved_stdin = true;
raw_stdin_attr = f->saved_stdin_attr;
cfmakeraw(&raw_stdin_attr);
raw_stdin_attr.c_oflag = f->saved_stdin_attr.c_oflag;
tcsetattr(STDIN_FILENO, TCSANOW, &raw_stdin_attr);
}
if (tcgetattr(STDOUT_FILENO, &f->saved_stdout_attr) >= 0) {
struct termios raw_stdout_attr;
f->saved_stdout = true;
raw_stdout_attr = f->saved_stdout_attr;
cfmakeraw(&raw_stdout_attr);
raw_stdout_attr.c_iflag = f->saved_stdout_attr.c_iflag;
raw_stdout_attr.c_lflag = f->saved_stdout_attr.c_lflag;
tcsetattr(STDOUT_FILENO, TCSANOW, &raw_stdout_attr);
}
r = sd_event_add_io(f->event, &f->stdin_event_source, STDIN_FILENO, EPOLLIN|EPOLLET, on_stdin_event, f);
if (r < 0 && r != -EPERM)
return r;
if (r >= 0)
(void) sd_event_source_set_description(f->stdin_event_source, "ptyfwd-stdin");
}
r = sd_event_add_io(f->event, &f->stdout_event_source, STDOUT_FILENO, EPOLLOUT|EPOLLET, on_stdout_event, f);
if (r == -EPERM)
/* stdout without epoll support. Likely redirected to regular file. */
f->stdout_writable = true;
else if (r < 0)
return r;
else
(void) sd_event_source_set_description(f->stdout_event_source, "ptyfwd-stdout");
r = sd_event_add_io(f->event, &f->master_event_source, master, EPOLLIN|EPOLLOUT|EPOLLET, on_master_event, f);
if (r < 0)
return r;
(void) sd_event_source_set_description(f->master_event_source, "ptyfwd-master");
r = sd_event_add_signal(f->event, &f->sigwinch_event_source, SIGWINCH, on_sigwinch_event, f);
if (r < 0)
return r;
(void) sd_event_source_set_description(f->sigwinch_event_source, "ptyfwd-sigwinch");
*ret = f;
f = NULL;
return 0;
}
PTYForward *pty_forward_free(PTYForward *f) {
pty_forward_disconnect(f);
return mfree(f);
}
int pty_forward_get_last_char(PTYForward *f, char *ch) {
assert(f);
assert(ch);
if (!f->last_char_set)
return -ENXIO;
*ch = f->last_char;
return 0;
}
int pty_forward_set_ignore_vhangup(PTYForward *f, bool b) {
int r;
assert(f);
if (!!(f->flags & PTY_FORWARD_IGNORE_VHANGUP) == b)
return 0;
SET_FLAG(f->flags, PTY_FORWARD_IGNORE_VHANGUP, b);
if (!ignore_vhangup(f)) {
/* We shall now react to vhangup()s? Let's check
* immediately if we might be in one */
f->master_readable = true;
r = shovel(f);
if (r < 0)
return r;
}
return 0;
}
bool pty_forward_get_ignore_vhangup(PTYForward *f) {
assert(f);
return !!(f->flags & PTY_FORWARD_IGNORE_VHANGUP);
}
bool pty_forward_is_done(PTYForward *f) {
assert(f);
return f->done;
}
void pty_forward_set_handler(PTYForward *f, PTYForwardHandler cb, void *userdata) {
assert(f);
f->handler = cb;
f->userdata = userdata;
}
bool pty_forward_drain(PTYForward *f) {
assert(f);
/* Starts draining the forwarder. Specifically:
*
* - Returns true if there are no unprocessed bytes from the pty, false otherwise
*
* - Makes sure the handler function is called the next time the number of unprocessed bytes hits zero
*/
f->drain = true;
return f->out_buffer_full == 0 && !f->master_readable;
}