Systemd/src/resolve/resolved-dns-answer.h
Lennart Poettering 92aea95e16 resolved: make sure DNS_ANSWER_FOREACH() can be nested
Change the iterator counter so that a different varable is used for each
invocation of the macro, so that it may be nested.
2015-12-02 20:43:11 +01:00

83 lines
3.5 KiB
C

/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/
#pragma once
/***
This file is part of systemd.
Copyright 2014 Lennart Poettering
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see <http://www.gnu.org/licenses/>.
***/
typedef struct DnsAnswer DnsAnswer;
typedef struct DnsAnswerItem DnsAnswerItem;
#include "macro.h"
#include "resolved-dns-rr.h"
/* A simple array of resource records. We keep track of the
* originating ifindex for each RR where that makes sense, so that we
* can qualify A and AAAA RRs referring to a local link with the
* right ifindex. */
struct DnsAnswerItem {
DnsResourceRecord *rr;
int ifindex;
};
struct DnsAnswer {
unsigned n_ref;
unsigned n_rrs, n_allocated;
DnsAnswerItem items[0];
};
DnsAnswer *dns_answer_new(unsigned n);
DnsAnswer *dns_answer_ref(DnsAnswer *a);
DnsAnswer *dns_answer_unref(DnsAnswer *a);
int dns_answer_add(DnsAnswer *a, DnsResourceRecord *rr, int ifindex);
int dns_answer_add_soa(DnsAnswer *a, const char *name, uint32_t ttl);
int dns_answer_contains(DnsAnswer *a, DnsResourceKey *key);
int dns_answer_match_soa(DnsResourceKey *key, DnsResourceKey *soa);
int dns_answer_find_soa(DnsAnswer *a, DnsResourceKey *key, DnsResourceRecord **ret);
DnsAnswer *dns_answer_merge(DnsAnswer *a, DnsAnswer *b);
void dns_answer_order_by_scope(DnsAnswer *a, bool prefer_link_local);
int dns_answer_reserve(DnsAnswer **a, unsigned n_free);
DEFINE_TRIVIAL_CLEANUP_FUNC(DnsAnswer*, dns_answer_unref);
#define _DNS_ANSWER_FOREACH(q, kk, a) \
for (unsigned UNIQ_T(i, q) = ({ \
(kk) = ((a) && (a)->n_rrs > 0) ? (a)->items[0].rr : NULL; \
0; \
}); \
(a) && (UNIQ_T(i, q) < (a)->n_rrs); \
UNIQ_T(i, q)++, (kk) = (UNIQ_T(i, q) < (a)->n_rrs ? (a)->items[UNIQ_T(i, q)].rr : NULL))
#define DNS_ANSWER_FOREACH(kk, a) _DNS_ANSWER_FOREACH(UNIQ, kk, a)
#define _DNS_ANSWER_FOREACH_IFINDEX(q, kk, ifindex, a) \
for (unsigned UNIQ_T(i, q) = ({ \
(kk) = ((a) && (a)->n_rrs > 0) ? (a)->items[0].rr : NULL; \
(ifindex) = ((a) && (a)->n_rrs > 0) ? (a)->items[0].ifindex : 0; \
0; \
}); \
(a) && (UNIQ_T(i, q) < (a)->n_rrs); \
UNIQ_T(i, q)++, (kk) = ((UNIQ_T(i, q) < (a)->n_rrs) ? (a)->items[UNIQ_T(i, q)].rr : NULL), (ifindex) = ((UNIQ_T(i, q) < (a)->n_rrs) ? (a)->items[UNIQ_T(i, q)].ifindex : 0))
#define DNS_ANSWER_FOREACH_IFINDEX(kk, ifindex, a) _DNS_ANSWER_FOREACH_IFINDEX(UNIQ, kk, ifindex, a)