Systemd/src/cgtop/cgtop.c
Lennart Poettering 0c69794138 tree-wide: remove Lennart's copyright lines
These lines are generally out-of-date, incomplete and unnecessary. With
SPDX and git repository much more accurate and fine grained information
about licensing and authorship is available, hence let's drop the
per-file copyright notice. Of course, removing copyright lines of others
is problematic, hence this commit only removes my own lines and leaves
all others untouched. It might be nicer if sooner or later those could
go away too, making git the only and accurate source of authorship
information.
2018-06-14 10:20:20 +02:00

1132 lines
39 KiB
C

/* SPDX-License-Identifier: LGPL-2.1+ */
#include <alloca.h>
#include <errno.h>
#include <getopt.h>
#include <signal.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "sd-bus.h"
#include "alloc-util.h"
#include "bus-error.h"
#include "bus-util.h"
#include "cgroup-show.h"
#include "cgroup-util.h"
#include "fd-util.h"
#include "fileio.h"
#include "hashmap.h"
#include "parse-util.h"
#include "path-util.h"
#include "process-util.h"
#include "procfs-util.h"
#include "stdio-util.h"
#include "strv.h"
#include "terminal-util.h"
#include "unit-name.h"
#include "util.h"
#include "virt.h"
typedef struct Group {
char *path;
bool n_tasks_valid:1;
bool cpu_valid:1;
bool memory_valid:1;
bool io_valid:1;
uint64_t n_tasks;
unsigned cpu_iteration;
nsec_t cpu_usage;
nsec_t cpu_timestamp;
double cpu_fraction;
uint64_t memory;
unsigned io_iteration;
uint64_t io_input, io_output;
nsec_t io_timestamp;
uint64_t io_input_bps, io_output_bps;
} Group;
static unsigned arg_depth = 3;
static unsigned arg_iterations = (unsigned) -1;
static bool arg_batch = false;
static bool arg_raw = false;
static usec_t arg_delay = 1*USEC_PER_SEC;
static char* arg_machine = NULL;
static char* arg_root = NULL;
static bool arg_recursive = true;
static bool arg_recursive_unset = false;
static enum {
COUNT_PIDS,
COUNT_USERSPACE_PROCESSES,
COUNT_ALL_PROCESSES,
} arg_count = COUNT_PIDS;
static enum {
ORDER_PATH,
ORDER_TASKS,
ORDER_CPU,
ORDER_MEMORY,
ORDER_IO,
} arg_order = ORDER_CPU;
static enum {
CPU_PERCENT,
CPU_TIME,
} arg_cpu_type = CPU_PERCENT;
static void group_free(Group *g) {
assert(g);
free(g->path);
free(g);
}
static void group_hashmap_clear(Hashmap *h) {
hashmap_clear_with_destructor(h, group_free);
}
static void group_hashmap_free(Hashmap *h) {
group_hashmap_clear(h);
hashmap_free(h);
}
static const char *maybe_format_bytes(char *buf, size_t l, bool is_valid, uint64_t t) {
if (!is_valid)
return "-";
if (arg_raw) {
snprintf(buf, l, "%" PRIu64, t);
return buf;
}
return format_bytes(buf, l, t);
}
static bool is_root_cgroup(const char *path) {
/* Returns true if the specified path belongs to the root cgroup. The root cgroup is special on cgroupsv2 as it
* carries only very few attributes in order not to export multiple truth about system state as most
* information is available elsewhere in /proc anyway. We need to be able to deal with that, and need to get
* our data from different sources in that case.
*
* There's one extra complication in all of this, though 😣: if the path to the cgroup indicates we are in the
* root cgroup this might actually not be the case, because cgroup namespacing might be in effect
* (CLONE_NEWCGROUP). Since there's no nice way to distuingish a real cgroup root from a fake namespaced one we
* do an explicit container check here, under the assumption that CLONE_NEWCGROUP is generally used when
* container managers are used too.
*
* Note that checking for a container environment is kinda ugly, since in theory people could use cgtop from
* inside a container where cgroup namespacing is turned off to watch the host system. However, that's mostly a
* theoretic usecase, and if people actually try all they'll lose is accounting for the top-level cgroup. Which
* isn't too bad. */
if (detect_container() > 0)
return false;
return empty_or_root(path);
}
static int process(
const char *controller,
const char *path,
Hashmap *a,
Hashmap *b,
unsigned iteration,
Group **ret) {
Group *g;
int r, all_unified;
assert(controller);
assert(path);
assert(a);
all_unified = cg_all_unified();
if (all_unified < 0)
return all_unified;
g = hashmap_get(a, path);
if (!g) {
g = hashmap_get(b, path);
if (!g) {
g = new0(Group, 1);
if (!g)
return -ENOMEM;
g->path = strdup(path);
if (!g->path) {
group_free(g);
return -ENOMEM;
}
r = hashmap_put(a, g->path, g);
if (r < 0) {
group_free(g);
return r;
}
} else {
r = hashmap_move_one(a, b, path);
if (r < 0)
return r;
g->cpu_valid = g->memory_valid = g->io_valid = g->n_tasks_valid = false;
}
}
if (streq(controller, SYSTEMD_CGROUP_CONTROLLER) &&
IN_SET(arg_count, COUNT_ALL_PROCESSES, COUNT_USERSPACE_PROCESSES)) {
_cleanup_fclose_ FILE *f = NULL;
pid_t pid;
r = cg_enumerate_processes(controller, path, &f);
if (r == -ENOENT)
return 0;
if (r < 0)
return r;
g->n_tasks = 0;
while (cg_read_pid(f, &pid) > 0) {
if (arg_count == COUNT_USERSPACE_PROCESSES && is_kernel_thread(pid) > 0)
continue;
g->n_tasks++;
}
if (g->n_tasks > 0)
g->n_tasks_valid = true;
} else if (streq(controller, "pids") && arg_count == COUNT_PIDS) {
if (is_root_cgroup(path)) {
r = procfs_tasks_get_current(&g->n_tasks);
if (r < 0)
return r;
} else {
_cleanup_free_ char *p = NULL, *v = NULL;
r = cg_get_path(controller, path, "pids.current", &p);
if (r < 0)
return r;
r = read_one_line_file(p, &v);
if (r == -ENOENT)
return 0;
if (r < 0)
return r;
r = safe_atou64(v, &g->n_tasks);
if (r < 0)
return r;
}
if (g->n_tasks > 0)
g->n_tasks_valid = true;
} else if (STR_IN_SET(controller, "cpu", "cpuacct")) {
_cleanup_free_ char *p = NULL, *v = NULL;
uint64_t new_usage;
nsec_t timestamp;
if (is_root_cgroup(path)) {
r = procfs_cpu_get_usage(&new_usage);
if (r < 0)
return r;
} else if (all_unified) {
_cleanup_free_ char *val = NULL;
if (!streq(controller, "cpu"))
return 0;
r = cg_get_keyed_attribute("cpu", path, "cpu.stat", STRV_MAKE("usage_usec"), &val);
if (IN_SET(r, -ENOENT, -ENXIO))
return 0;
if (r < 0)
return r;
r = safe_atou64(val, &new_usage);
if (r < 0)
return r;
new_usage *= NSEC_PER_USEC;
} else {
if (!streq(controller, "cpuacct"))
return 0;
r = cg_get_path(controller, path, "cpuacct.usage", &p);
if (r < 0)
return r;
r = read_one_line_file(p, &v);
if (r == -ENOENT)
return 0;
if (r < 0)
return r;
r = safe_atou64(v, &new_usage);
if (r < 0)
return r;
}
timestamp = now_nsec(CLOCK_MONOTONIC);
if (g->cpu_iteration == iteration - 1 &&
(nsec_t) new_usage > g->cpu_usage) {
nsec_t x, y;
x = timestamp - g->cpu_timestamp;
if (x < 1)
x = 1;
y = (nsec_t) new_usage - g->cpu_usage;
g->cpu_fraction = (double) y / (double) x;
g->cpu_valid = true;
}
g->cpu_usage = (nsec_t) new_usage;
g->cpu_timestamp = timestamp;
g->cpu_iteration = iteration;
} else if (streq(controller, "memory")) {
if (is_root_cgroup(path)) {
r = procfs_memory_get_current(&g->memory);
if (r < 0)
return r;
} else {
_cleanup_free_ char *p = NULL, *v = NULL;
if (all_unified)
r = cg_get_path(controller, path, "memory.current", &p);
else
r = cg_get_path(controller, path, "memory.usage_in_bytes", &p);
if (r < 0)
return r;
r = read_one_line_file(p, &v);
if (r == -ENOENT)
return 0;
if (r < 0)
return r;
r = safe_atou64(v, &g->memory);
if (r < 0)
return r;
}
if (g->memory > 0)
g->memory_valid = true;
} else if ((streq(controller, "io") && all_unified) ||
(streq(controller, "blkio") && !all_unified)) {
_cleanup_fclose_ FILE *f = NULL;
_cleanup_free_ char *p = NULL;
uint64_t wr = 0, rd = 0;
nsec_t timestamp;
r = cg_get_path(controller, path, all_unified ? "io.stat" : "blkio.io_service_bytes", &p);
if (r < 0)
return r;
f = fopen(p, "re");
if (!f) {
if (errno == ENOENT)
return 0;
return -errno;
}
for (;;) {
char line[LINE_MAX], *l;
uint64_t k, *q;
if (!fgets(line, sizeof(line), f))
break;
/* Trim and skip the device */
l = strstrip(line);
l += strcspn(l, WHITESPACE);
l += strspn(l, WHITESPACE);
if (all_unified) {
while (!isempty(l)) {
if (sscanf(l, "rbytes=%" SCNu64, &k))
rd += k;
else if (sscanf(l, "wbytes=%" SCNu64, &k))
wr += k;
l += strcspn(l, WHITESPACE);
l += strspn(l, WHITESPACE);
}
} else {
if (first_word(l, "Read")) {
l += 4;
q = &rd;
} else if (first_word(l, "Write")) {
l += 5;
q = &wr;
} else
continue;
l += strspn(l, WHITESPACE);
r = safe_atou64(l, &k);
if (r < 0)
continue;
*q += k;
}
}
timestamp = now_nsec(CLOCK_MONOTONIC);
if (g->io_iteration == iteration - 1) {
uint64_t x, yr, yw;
x = (uint64_t) (timestamp - g->io_timestamp);
if (x < 1)
x = 1;
if (rd > g->io_input)
yr = rd - g->io_input;
else
yr = 0;
if (wr > g->io_output)
yw = wr - g->io_output;
else
yw = 0;
if (yr > 0 || yw > 0) {
g->io_input_bps = (yr * 1000000000ULL) / x;
g->io_output_bps = (yw * 1000000000ULL) / x;
g->io_valid = true;
}
}
g->io_input = rd;
g->io_output = wr;
g->io_timestamp = timestamp;
g->io_iteration = iteration;
}
if (ret)
*ret = g;
return 0;
}
static int refresh_one(
const char *controller,
const char *path,
Hashmap *a,
Hashmap *b,
unsigned iteration,
unsigned depth,
Group **ret) {
_cleanup_closedir_ DIR *d = NULL;
Group *ours = NULL;
int r;
assert(controller);
assert(path);
assert(a);
if (depth > arg_depth)
return 0;
r = process(controller, path, a, b, iteration, &ours);
if (r < 0)
return r;
r = cg_enumerate_subgroups(controller, path, &d);
if (r == -ENOENT)
return 0;
if (r < 0)
return r;
for (;;) {
_cleanup_free_ char *fn = NULL, *p = NULL;
Group *child = NULL;
r = cg_read_subgroup(d, &fn);
if (r < 0)
return r;
if (r == 0)
break;
p = strjoin(path, "/", fn);
if (!p)
return -ENOMEM;
path_simplify(p, false);
r = refresh_one(controller, p, a, b, iteration, depth + 1, &child);
if (r < 0)
return r;
if (arg_recursive &&
IN_SET(arg_count, COUNT_ALL_PROCESSES, COUNT_USERSPACE_PROCESSES) &&
child &&
child->n_tasks_valid &&
streq(controller, SYSTEMD_CGROUP_CONTROLLER)) {
/* Recursively sum up processes */
if (ours->n_tasks_valid)
ours->n_tasks += child->n_tasks;
else {
ours->n_tasks = child->n_tasks;
ours->n_tasks_valid = true;
}
}
}
if (ret)
*ret = ours;
return 1;
}
static int refresh(const char *root, Hashmap *a, Hashmap *b, unsigned iteration) {
int r;
assert(a);
r = refresh_one(SYSTEMD_CGROUP_CONTROLLER, root, a, b, iteration, 0, NULL);
if (r < 0)
return r;
r = refresh_one("cpu", root, a, b, iteration, 0, NULL);
if (r < 0)
return r;
r = refresh_one("cpuacct", root, a, b, iteration, 0, NULL);
if (r < 0)
return r;
r = refresh_one("memory", root, a, b, iteration, 0, NULL);
if (r < 0)
return r;
r = refresh_one("io", root, a, b, iteration, 0, NULL);
if (r < 0)
return r;
r = refresh_one("blkio", root, a, b, iteration, 0, NULL);
if (r < 0)
return r;
r = refresh_one("pids", root, a, b, iteration, 0, NULL);
if (r < 0)
return r;
return 0;
}
static int group_compare(const void*a, const void *b) {
const Group *x = *(Group**)a, *y = *(Group**)b;
if (arg_order != ORDER_TASKS || arg_recursive) {
/* Let's make sure that the parent is always before
* the child. Except when ordering by tasks and
* recursive summing is off, since that is actually
* not accumulative for all children. */
if (path_startswith(empty_to_root(y->path), empty_to_root(x->path)))
return -1;
if (path_startswith(empty_to_root(x->path), empty_to_root(y->path)))
return 1;
}
switch (arg_order) {
case ORDER_PATH:
break;
case ORDER_CPU:
if (arg_cpu_type == CPU_PERCENT) {
if (x->cpu_valid && y->cpu_valid) {
if (x->cpu_fraction > y->cpu_fraction)
return -1;
else if (x->cpu_fraction < y->cpu_fraction)
return 1;
} else if (x->cpu_valid)
return -1;
else if (y->cpu_valid)
return 1;
} else {
if (x->cpu_usage > y->cpu_usage)
return -1;
else if (x->cpu_usage < y->cpu_usage)
return 1;
}
break;
case ORDER_TASKS:
if (x->n_tasks_valid && y->n_tasks_valid) {
if (x->n_tasks > y->n_tasks)
return -1;
else if (x->n_tasks < y->n_tasks)
return 1;
} else if (x->n_tasks_valid)
return -1;
else if (y->n_tasks_valid)
return 1;
break;
case ORDER_MEMORY:
if (x->memory_valid && y->memory_valid) {
if (x->memory > y->memory)
return -1;
else if (x->memory < y->memory)
return 1;
} else if (x->memory_valid)
return -1;
else if (y->memory_valid)
return 1;
break;
case ORDER_IO:
if (x->io_valid && y->io_valid) {
if (x->io_input_bps + x->io_output_bps > y->io_input_bps + y->io_output_bps)
return -1;
else if (x->io_input_bps + x->io_output_bps < y->io_input_bps + y->io_output_bps)
return 1;
} else if (x->io_valid)
return -1;
else if (y->io_valid)
return 1;
}
return path_compare(x->path, y->path);
}
static void display(Hashmap *a) {
Iterator i;
Group *g;
Group **array;
signed path_columns;
unsigned rows, n = 0, j, maxtcpu = 0, maxtpath = 3; /* 3 for ellipsize() to work properly */
char buffer[MAX3(21, FORMAT_BYTES_MAX, FORMAT_TIMESPAN_MAX)];
assert(a);
if (!terminal_is_dumb())
fputs(ANSI_HOME_CLEAR, stdout);
array = newa(Group*, hashmap_size(a));
HASHMAP_FOREACH(g, a, i)
if (g->n_tasks_valid || g->cpu_valid || g->memory_valid || g->io_valid)
array[n++] = g;
qsort_safe(array, n, sizeof(Group*), group_compare);
/* Find the longest names in one run */
for (j = 0; j < n; j++) {
unsigned cputlen, pathtlen;
format_timespan(buffer, sizeof(buffer), (usec_t) (array[j]->cpu_usage / NSEC_PER_USEC), 0);
cputlen = strlen(buffer);
maxtcpu = MAX(maxtcpu, cputlen);
pathtlen = strlen(array[j]->path);
maxtpath = MAX(maxtpath, pathtlen);
}
if (arg_cpu_type == CPU_PERCENT)
xsprintf(buffer, "%6s", "%CPU");
else
xsprintf(buffer, "%*s", maxtcpu, "CPU Time");
rows = lines();
if (rows <= 10)
rows = 10;
if (on_tty()) {
const char *on, *off;
path_columns = columns() - 36 - strlen(buffer);
if (path_columns < 10)
path_columns = 10;
on = ansi_highlight_underline();
off = ansi_underline();
printf("%s%s%-*s%s %s%7s%s %s%s%s %s%8s%s %s%8s%s %s%8s%s%s\n",
ansi_underline(),
arg_order == ORDER_PATH ? on : "", path_columns, "Control Group",
arg_order == ORDER_PATH ? off : "",
arg_order == ORDER_TASKS ? on : "", arg_count == COUNT_PIDS ? "Tasks" : arg_count == COUNT_USERSPACE_PROCESSES ? "Procs" : "Proc+",
arg_order == ORDER_TASKS ? off : "",
arg_order == ORDER_CPU ? on : "", buffer,
arg_order == ORDER_CPU ? off : "",
arg_order == ORDER_MEMORY ? on : "", "Memory",
arg_order == ORDER_MEMORY ? off : "",
arg_order == ORDER_IO ? on : "", "Input/s",
arg_order == ORDER_IO ? off : "",
arg_order == ORDER_IO ? on : "", "Output/s",
arg_order == ORDER_IO ? off : "",
ansi_normal());
} else
path_columns = maxtpath;
for (j = 0; j < n; j++) {
_cleanup_free_ char *ellipsized = NULL;
const char *path;
if (on_tty() && j + 6 > rows)
break;
g = array[j];
path = empty_to_root(g->path);
ellipsized = ellipsize(path, path_columns, 33);
printf("%-*s", path_columns, ellipsized ?: path);
if (g->n_tasks_valid)
printf(" %7" PRIu64, g->n_tasks);
else
fputs(" -", stdout);
if (arg_cpu_type == CPU_PERCENT) {
if (g->cpu_valid)
printf(" %6.1f", g->cpu_fraction*100);
else
fputs(" -", stdout);
} else
printf(" %*s", maxtcpu, format_timespan(buffer, sizeof(buffer), (usec_t) (g->cpu_usage / NSEC_PER_USEC), 0));
printf(" %8s", maybe_format_bytes(buffer, sizeof(buffer), g->memory_valid, g->memory));
printf(" %8s", maybe_format_bytes(buffer, sizeof(buffer), g->io_valid, g->io_input_bps));
printf(" %8s", maybe_format_bytes(buffer, sizeof(buffer), g->io_valid, g->io_output_bps));
putchar('\n');
}
}
static void help(void) {
printf("%s [OPTIONS...] [CGROUP]\n\n"
"Show top control groups by their resource usage.\n\n"
" -h --help Show this help\n"
" --version Show package version\n"
" -p --order=path Order by path\n"
" -t --order=tasks Order by number of tasks/processes\n"
" -c --order=cpu Order by CPU load (default)\n"
" -m --order=memory Order by memory load\n"
" -i --order=io Order by IO load\n"
" -r --raw Provide raw (not human-readable) numbers\n"
" --cpu=percentage Show CPU usage as percentage (default)\n"
" --cpu=time Show CPU usage as time\n"
" -P Count userspace processes instead of tasks (excl. kernel)\n"
" -k Count all processes instead of tasks (incl. kernel)\n"
" --recursive=BOOL Sum up process count recursively\n"
" -d --delay=DELAY Delay between updates\n"
" -n --iterations=N Run for N iterations before exiting\n"
" -1 Shortcut for --iterations=1\n"
" -b --batch Run in batch mode, accepting no input\n"
" --depth=DEPTH Maximum traversal depth (default: %u)\n"
" -M --machine= Show container\n"
, program_invocation_short_name, arg_depth);
}
static int parse_argv(int argc, char *argv[]) {
enum {
ARG_VERSION = 0x100,
ARG_DEPTH,
ARG_CPU_TYPE,
ARG_ORDER,
ARG_RECURSIVE,
};
static const struct option options[] = {
{ "help", no_argument, NULL, 'h' },
{ "version", no_argument, NULL, ARG_VERSION },
{ "delay", required_argument, NULL, 'd' },
{ "iterations", required_argument, NULL, 'n' },
{ "batch", no_argument, NULL, 'b' },
{ "raw", no_argument, NULL, 'r' },
{ "depth", required_argument, NULL, ARG_DEPTH },
{ "cpu", optional_argument, NULL, ARG_CPU_TYPE },
{ "order", required_argument, NULL, ARG_ORDER },
{ "recursive", required_argument, NULL, ARG_RECURSIVE },
{ "machine", required_argument, NULL, 'M' },
{}
};
int c, r;
assert(argc >= 1);
assert(argv);
while ((c = getopt_long(argc, argv, "hptcmin:brd:kPM:1", options, NULL)) >= 0)
switch (c) {
case 'h':
help();
return 0;
case ARG_VERSION:
return version();
case ARG_CPU_TYPE:
if (optarg) {
if (streq(optarg, "time"))
arg_cpu_type = CPU_TIME;
else if (streq(optarg, "percentage"))
arg_cpu_type = CPU_PERCENT;
else {
log_error("Unknown argument to --cpu=: %s", optarg);
return -EINVAL;
}
} else
arg_cpu_type = CPU_TIME;
break;
case ARG_DEPTH:
r = safe_atou(optarg, &arg_depth);
if (r < 0)
return log_error_errno(r, "Failed to parse depth parameter: %s", optarg);
break;
case 'd':
r = parse_sec(optarg, &arg_delay);
if (r < 0 || arg_delay <= 0) {
log_error("Failed to parse delay parameter: %s", optarg);
return -EINVAL;
}
break;
case 'n':
r = safe_atou(optarg, &arg_iterations);
if (r < 0)
return log_error_errno(r, "Failed to parse iterations parameter: %s", optarg);
break;
case '1':
arg_iterations = 1;
break;
case 'b':
arg_batch = true;
break;
case 'r':
arg_raw = true;
break;
case 'p':
arg_order = ORDER_PATH;
break;
case 't':
arg_order = ORDER_TASKS;
break;
case 'c':
arg_order = ORDER_CPU;
break;
case 'm':
arg_order = ORDER_MEMORY;
break;
case 'i':
arg_order = ORDER_IO;
break;
case ARG_ORDER:
if (streq(optarg, "path"))
arg_order = ORDER_PATH;
else if (streq(optarg, "tasks"))
arg_order = ORDER_TASKS;
else if (streq(optarg, "cpu"))
arg_order = ORDER_CPU;
else if (streq(optarg, "memory"))
arg_order = ORDER_MEMORY;
else if (streq(optarg, "io"))
arg_order = ORDER_IO;
else {
log_error("Invalid argument to --order=: %s", optarg);
return -EINVAL;
}
break;
case 'k':
arg_count = COUNT_ALL_PROCESSES;
break;
case 'P':
arg_count = COUNT_USERSPACE_PROCESSES;
break;
case ARG_RECURSIVE:
r = parse_boolean(optarg);
if (r < 0)
return log_error_errno(r, "Failed to parse --recursive= argument: %s", optarg);
arg_recursive = r;
arg_recursive_unset = r == 0;
break;
case 'M':
arg_machine = optarg;
break;
case '?':
return -EINVAL;
default:
assert_not_reached("Unhandled option");
}
if (optind == argc - 1)
arg_root = argv[optind];
else if (optind < argc) {
log_error("Too many arguments.");
return -EINVAL;
}
return 1;
}
static const char* counting_what(void) {
if (arg_count == COUNT_PIDS)
return "tasks";
else if (arg_count == COUNT_ALL_PROCESSES)
return "all processes (incl. kernel)";
else
return "userspace processes (excl. kernel)";
}
int main(int argc, char *argv[]) {
int r;
Hashmap *a = NULL, *b = NULL;
unsigned iteration = 0;
usec_t last_refresh = 0;
bool quit = false, immediate_refresh = false;
_cleanup_free_ char *root = NULL;
CGroupMask mask;
log_parse_environment();
log_open();
r = parse_argv(argc, argv);
if (r <= 0)
goto finish;
r = cg_mask_supported(&mask);
if (r < 0) {
log_error_errno(r, "Failed to determine supported controllers: %m");
goto finish;
}
arg_count = (mask & CGROUP_MASK_PIDS) ? COUNT_PIDS : COUNT_USERSPACE_PROCESSES;
if (arg_recursive_unset && arg_count == COUNT_PIDS) {
log_error("Non-recursive counting is only supported when counting processes, not tasks. Use -P or -k.");
return -EINVAL;
}
r = show_cgroup_get_path_and_warn(arg_machine, arg_root, &root);
if (r < 0) {
log_error_errno(r, "Failed to get root control group path: %m");
goto finish;
} else
log_debug("Cgroup path: %s", root);
a = hashmap_new(&path_hash_ops);
b = hashmap_new(&path_hash_ops);
if (!a || !b) {
r = log_oom();
goto finish;
}
signal(SIGWINCH, columns_lines_cache_reset);
if (arg_iterations == (unsigned) -1)
arg_iterations = on_tty() ? 0 : 1;
while (!quit) {
Hashmap *c;
usec_t t;
char key;
char h[FORMAT_TIMESPAN_MAX];
t = now(CLOCK_MONOTONIC);
if (t >= last_refresh + arg_delay || immediate_refresh) {
r = refresh(root, a, b, iteration++);
if (r < 0) {
log_error_errno(r, "Failed to refresh: %m");
goto finish;
}
group_hashmap_clear(b);
c = a;
a = b;
b = c;
last_refresh = t;
immediate_refresh = false;
}
display(b);
if (arg_iterations && iteration >= arg_iterations)
break;
if (!on_tty()) /* non-TTY: Empty newline as delimiter between polls */
fputs("\n", stdout);
fflush(stdout);
if (arg_batch)
(void) usleep(last_refresh + arg_delay - t);
else {
r = read_one_char(stdin, &key, last_refresh + arg_delay - t, NULL);
if (r == -ETIMEDOUT)
continue;
if (r < 0) {
log_error_errno(r, "Couldn't read key: %m");
goto finish;
}
}
if (on_tty()) { /* TTY: Clear any user keystroke */
fputs("\r \r", stdout);
fflush(stdout);
}
if (arg_batch)
continue;
switch (key) {
case ' ':
immediate_refresh = true;
break;
case 'q':
quit = true;
break;
case 'p':
arg_order = ORDER_PATH;
break;
case 't':
arg_order = ORDER_TASKS;
break;
case 'c':
arg_order = ORDER_CPU;
break;
case 'm':
arg_order = ORDER_MEMORY;
break;
case 'i':
arg_order = ORDER_IO;
break;
case '%':
arg_cpu_type = arg_cpu_type == CPU_TIME ? CPU_PERCENT : CPU_TIME;
break;
case 'k':
arg_count = arg_count != COUNT_ALL_PROCESSES ? COUNT_ALL_PROCESSES : COUNT_PIDS;
fprintf(stdout, "\nCounting: %s.", counting_what());
fflush(stdout);
sleep(1);
break;
case 'P':
arg_count = arg_count != COUNT_USERSPACE_PROCESSES ? COUNT_USERSPACE_PROCESSES : COUNT_PIDS;
fprintf(stdout, "\nCounting: %s.", counting_what());
fflush(stdout);
sleep(1);
break;
case 'r':
if (arg_count == COUNT_PIDS)
fprintf(stdout, "\n\aCannot toggle recursive counting, not available in task counting mode.");
else {
arg_recursive = !arg_recursive;
fprintf(stdout, "\nRecursive process counting: %s", yes_no(arg_recursive));
}
fflush(stdout);
sleep(1);
break;
case '+':
if (arg_delay < USEC_PER_SEC)
arg_delay += USEC_PER_MSEC*250;
else
arg_delay += USEC_PER_SEC;
fprintf(stdout, "\nIncreased delay to %s.", format_timespan(h, sizeof(h), arg_delay, 0));
fflush(stdout);
sleep(1);
break;
case '-':
if (arg_delay <= USEC_PER_MSEC*500)
arg_delay = USEC_PER_MSEC*250;
else if (arg_delay < USEC_PER_MSEC*1250)
arg_delay -= USEC_PER_MSEC*250;
else
arg_delay -= USEC_PER_SEC;
fprintf(stdout, "\nDecreased delay to %s.", format_timespan(h, sizeof(h), arg_delay, 0));
fflush(stdout);
sleep(1);
break;
case '?':
case 'h':
#define ON ANSI_HIGHLIGHT
#define OFF ANSI_NORMAL
fprintf(stdout,
"\t<" ON "p" OFF "> By path; <" ON "t" OFF "> By tasks/procs; <" ON "c" OFF "> By CPU; <" ON "m" OFF "> By memory; <" ON "i" OFF "> By I/O\n"
"\t<" ON "+" OFF "> Inc. delay; <" ON "-" OFF "> Dec. delay; <" ON "%%" OFF "> Toggle time; <" ON "SPACE" OFF "> Refresh\n"
"\t<" ON "P" OFF "> Toggle count userspace processes; <" ON "k" OFF "> Toggle count all processes\n"
"\t<" ON "r" OFF "> Count processes recursively; <" ON "q" OFF "> Quit");
fflush(stdout);
sleep(3);
break;
default:
if (key < ' ')
fprintf(stdout, "\nUnknown key '\\x%x'. Ignoring.", key);
else
fprintf(stdout, "\nUnknown key '%c'. Ignoring.", key);
fflush(stdout);
sleep(1);
break;
}
}
r = 0;
finish:
group_hashmap_free(a);
group_hashmap_free(b);
return r < 0 ? EXIT_FAILURE : EXIT_SUCCESS;
}