Systemd/src/libsystemd/sd-bus/bus-internal.h
Lennart Poettering 1b630835df sd-bus: add API for connecting to a specific user's user bus of a specific container
This is unfortunately harder to implement than it sounds. The user's bus
is bound a to the user's lifecycle after all (i.e. only exists as long
as the user has at least one PAM session), and the path dynamically (at
least theoretically, in practice it's going to be the same always)
generated via $XDG_RUNTIME_DIR in /run/.

To fix this properly, we'll thus go through PAM before connecting to a
user bus. Which is hard since we cannot just link against libpam in the
container, since the container might have been compiled entirely
differently. So our way out is to use systemd-run from outside, which
invokes a transient unit that does PAM from outside, doing so via D-Bus.
Inside the transient unit we then invoke systemd-stdio-bridge which
forwards D-Bus from the user bus to us. The systemd-stdio-bridge makes
up the PAM session and thus we can sure tht the bus exists at least as
long as the bus connection is kept.

Or so say this differently: if you use "systemctl -M lennart@foobar"
now, the bus connection works like this:

        1. sd-bus on the host forks off:

                systemd-run -M foobar -PGq --wait -pUser=lennart -pPAMName=login systemd-stdio-bridge

        2. systemd-run gets a connection to the "foobar" container's
           system bus, and invokes the "systemd-stdio-bridge" binary as
           transient service inside a PAM session for the user "lennart"

        3. The systemd-stdio-bridge then proxies our D-Bus traffic to
           the user bus.

sd-bus (on host) → systemd-run (on host) → systemd-stdio-bridge (in container)

Complicated? Well, to some point yes, but otoh it's actually nice in
various other ways, primarily as it makes the -H and -M codepaths more
alike. In the -H case (i.e. connect to remote host via SSH) a very
similar three steps are used. The only difference is that instead of
"systemd-run" the "ssh" binary is used to invoke the stdio bridge in a
PAM session of some other system. Thus we get similar implementation and
isolation for similar operations.

Fixes: #14580
2020-12-15 18:00:15 +01:00

417 lines
12 KiB
C

/* SPDX-License-Identifier: LGPL-2.1-or-later */
#pragma once
#include <pthread.h>
#include "sd-bus.h"
#include "bus-error.h"
#include "bus-kernel.h"
#include "bus-match.h"
#include "def.h"
#include "hashmap.h"
#include "list.h"
#include "prioq.h"
#include "socket-util.h"
#include "time-util.h"
/* Note that we use the new /run prefix here (instead of /var/run) since we require them to be aliases and
* that way we become independent of /var being mounted */
#define DEFAULT_SYSTEM_BUS_ADDRESS "unix:path=/run/dbus/system_bus_socket"
#define DEFAULT_USER_BUS_ADDRESS_FMT "unix:path=%s/bus"
struct reply_callback {
sd_bus_message_handler_t callback;
usec_t timeout_usec; /* this is a relative timeout until we reach the BUS_HELLO state, and an absolute one right after */
uint64_t cookie;
unsigned prioq_idx;
};
struct filter_callback {
sd_bus_message_handler_t callback;
unsigned last_iteration;
LIST_FIELDS(struct filter_callback, callbacks);
};
struct match_callback {
sd_bus_message_handler_t callback;
sd_bus_message_handler_t install_callback;
sd_bus_slot *install_slot; /* The AddMatch() call */
unsigned last_iteration;
/* Don't dispatch this slot with messages that arrived in any iteration before or at the this
* one. We use this to ensure that matches don't apply "retroactively" and thus can confuse the
* caller: matches will only match incoming messages from the moment on the match was installed. */
uint64_t after;
char *match_string;
struct bus_match_node *match_node;
};
struct node {
char *path;
struct node *parent;
LIST_HEAD(struct node, child);
LIST_FIELDS(struct node, siblings);
LIST_HEAD(struct node_callback, callbacks);
LIST_HEAD(struct node_vtable, vtables);
LIST_HEAD(struct node_enumerator, enumerators);
LIST_HEAD(struct node_object_manager, object_managers);
};
struct node_callback {
struct node *node;
bool is_fallback:1;
unsigned last_iteration;
sd_bus_message_handler_t callback;
LIST_FIELDS(struct node_callback, callbacks);
};
struct node_enumerator {
struct node *node;
sd_bus_node_enumerator_t callback;
unsigned last_iteration;
LIST_FIELDS(struct node_enumerator, enumerators);
};
struct node_object_manager {
struct node *node;
LIST_FIELDS(struct node_object_manager, object_managers);
};
struct node_vtable {
struct node *node;
bool is_fallback:1;
unsigned last_iteration;
char *interface;
const sd_bus_vtable *vtable;
sd_bus_object_find_t find;
LIST_FIELDS(struct node_vtable, vtables);
};
struct vtable_member {
const char *path;
const char *interface;
const char *member;
struct node_vtable *parent;
unsigned last_iteration;
const sd_bus_vtable *vtable;
};
typedef enum BusSlotType {
BUS_REPLY_CALLBACK,
BUS_FILTER_CALLBACK,
BUS_MATCH_CALLBACK,
BUS_NODE_CALLBACK,
BUS_NODE_ENUMERATOR,
BUS_NODE_VTABLE,
BUS_NODE_OBJECT_MANAGER,
_BUS_SLOT_INVALID = -1,
} BusSlotType;
struct sd_bus_slot {
unsigned n_ref;
BusSlotType type:5;
/* Slots can be "floating" or not. If they are not floating (the usual case) then they reference the bus object
* they are associated with. This means the bus object stays allocated at least as long as there is a slot
* around associated with it. If it is floating, then the slot's lifecycle is bound to the lifecycle of the
* bus: it will be disconnected from the bus when the bus is destroyed, and it keeping the slot reffed hence
* won't mean the bus stays reffed too. Internally this means the reference direction is reversed: floating
* slots objects are referenced by the bus object, and not vice versa. */
bool floating:1;
bool match_added:1;
sd_bus *bus;
void *userdata;
sd_bus_destroy_t destroy_callback;
char *description;
LIST_FIELDS(sd_bus_slot, slots);
union {
struct reply_callback reply_callback;
struct filter_callback filter_callback;
struct match_callback match_callback;
struct node_callback node_callback;
struct node_enumerator node_enumerator;
struct node_object_manager node_object_manager;
struct node_vtable node_vtable;
};
};
enum bus_state {
BUS_UNSET,
BUS_WATCH_BIND, /* waiting for the socket to appear via inotify */
BUS_OPENING, /* the kernel's connect() is still not ready */
BUS_AUTHENTICATING, /* we are currently in the "SASL" authorization phase of dbus */
BUS_HELLO, /* we are waiting for the Hello() response */
BUS_RUNNING,
BUS_CLOSING,
BUS_CLOSED,
_BUS_STATE_MAX,
};
static inline bool BUS_IS_OPEN(enum bus_state state) {
return state > BUS_UNSET && state < BUS_CLOSING;
}
enum bus_auth {
_BUS_AUTH_INVALID,
BUS_AUTH_EXTERNAL,
BUS_AUTH_ANONYMOUS
};
struct sd_bus {
unsigned n_ref;
enum bus_state state;
int input_fd, output_fd;
int inotify_fd;
int message_version;
int message_endian;
bool can_fds:1;
bool bus_client:1;
bool ucred_valid:1;
bool is_server:1;
bool anonymous_auth:1;
bool prefer_readv:1;
bool prefer_writev:1;
bool match_callbacks_modified:1;
bool filter_callbacks_modified:1;
bool nodes_modified:1;
bool trusted:1;
bool manual_peer_interface:1;
bool is_system:1;
bool is_user:1;
bool allow_interactive_authorization:1;
bool exit_on_disconnect:1;
bool exited:1;
bool exit_triggered:1;
bool is_local:1;
bool watch_bind:1;
bool is_monitor:1;
bool accept_fd:1;
bool attach_timestamp:1;
bool connected_signal:1;
bool close_on_exit:1;
signed int use_memfd:2;
void *rbuffer;
size_t rbuffer_size;
sd_bus_message **rqueue;
size_t rqueue_size;
size_t rqueue_allocated;
sd_bus_message **wqueue;
size_t wqueue_size;
size_t windex;
size_t wqueue_allocated;
uint64_t cookie;
uint64_t read_counter; /* A counter for each incoming msg */
char *unique_name;
uint64_t unique_id;
struct bus_match_node match_callbacks;
Prioq *reply_callbacks_prioq;
OrderedHashmap *reply_callbacks;
LIST_HEAD(struct filter_callback, filter_callbacks);
Hashmap *nodes;
Hashmap *vtable_methods;
Hashmap *vtable_properties;
union sockaddr_union sockaddr;
socklen_t sockaddr_size;
pid_t nspid;
char *machine;
sd_id128_t server_id;
char *address;
unsigned address_index;
int last_connect_error;
enum bus_auth auth;
unsigned auth_index;
struct iovec auth_iovec[3];
size_t auth_rbegin;
char *auth_buffer;
usec_t auth_timeout;
struct ucred ucred;
char *label;
gid_t *groups;
size_t n_groups;
uint64_t creds_mask;
int *fds;
size_t n_fds;
char *exec_path;
char **exec_argv;
/* We do locking around the memfd cache, since we want to
* allow people to process a sd_bus_message in a different
* thread then it was generated on and free it there. Since
* adding something to the memfd cache might happen when a
* message is released, we hence need to protect this bit with
* a mutex. */
pthread_mutex_t memfd_cache_mutex;
struct memfd_cache memfd_cache[MEMFD_CACHE_MAX];
unsigned n_memfd_cache;
pid_t original_pid;
pid_t busexec_pid;
unsigned iteration_counter;
sd_event_source *input_io_event_source;
sd_event_source *output_io_event_source;
sd_event_source *time_event_source;
sd_event_source *quit_event_source;
sd_event_source *inotify_event_source;
sd_event *event;
int event_priority;
pid_t tid;
sd_bus_message *current_message;
sd_bus_slot *current_slot;
sd_bus_message_handler_t current_handler;
void *current_userdata;
sd_bus **default_bus_ptr;
char *description;
char *patch_sender;
sd_bus_track *track_queue;
LIST_HEAD(sd_bus_slot, slots);
LIST_HEAD(sd_bus_track, tracks);
int *inotify_watches;
size_t n_inotify_watches;
/* zero means use value specified by $SYSTEMD_BUS_TIMEOUT= environment variable or built-in default */
usec_t method_call_timeout;
};
/* For method calls we timeout at 25s, like in the D-Bus reference implementation */
#define BUS_DEFAULT_TIMEOUT ((usec_t) (25 * USEC_PER_SEC))
/* For the authentication phase we grant 90s, to provide extra room during boot, when RNGs and such are not filled up
* with enough entropy yet and might delay the boot */
#define BUS_AUTH_TIMEOUT ((usec_t) DEFAULT_TIMEOUT_USEC)
#define BUS_WQUEUE_MAX (384*1024)
#define BUS_RQUEUE_MAX (384*1024)
#define BUS_MESSAGE_SIZE_MAX (128*1024*1024)
#define BUS_AUTH_SIZE_MAX (64*1024)
/* Note that the D-Bus specification states that bus paths shall have no size limit. We enforce here one
* anyway, since truly unbounded strings are a security problem. The limit we pick is relatively large however,
* to not clash unnecessarily with real-life applications. */
#define BUS_PATH_SIZE_MAX (64*1024)
#define BUS_CONTAINER_DEPTH 128
/* Defined by the specification as maximum size of an array in bytes */
#define BUS_ARRAY_MAX_SIZE 67108864
#define BUS_FDS_MAX 1024
#define BUS_EXEC_ARGV_MAX 256
bool interface_name_is_valid(const char *p) _pure_;
bool service_name_is_valid(const char *p) _pure_;
bool member_name_is_valid(const char *p) _pure_;
bool object_path_is_valid(const char *p) _pure_;
char *object_path_startswith(const char *a, const char *b) _pure_;
bool namespace_complex_pattern(const char *pattern, const char *value) _pure_;
bool path_complex_pattern(const char *pattern, const char *value) _pure_;
bool namespace_simple_pattern(const char *pattern, const char *value) _pure_;
bool path_simple_pattern(const char *pattern, const char *value) _pure_;
int bus_message_type_from_string(const char *s, uint8_t *u) _pure_;
const char *bus_message_type_to_string(uint8_t u) _pure_;
#define error_name_is_valid interface_name_is_valid
sd_bus *bus_resolve(sd_bus *bus);
int bus_ensure_running(sd_bus *bus);
int bus_start_running(sd_bus *bus);
int bus_next_address(sd_bus *bus);
int bus_seal_synthetic_message(sd_bus *b, sd_bus_message *m);
int bus_rqueue_make_room(sd_bus *bus);
bool bus_pid_changed(sd_bus *bus);
char *bus_address_escape(const char *v);
int bus_attach_io_events(sd_bus *b);
int bus_attach_inotify_event(sd_bus *b);
void bus_close_inotify_fd(sd_bus *b);
void bus_close_io_fds(sd_bus *b);
#define OBJECT_PATH_FOREACH_PREFIX(prefix, path) \
for (char *_slash = ({ strcpy((prefix), (path)); streq((prefix), "/") ? NULL : strrchr((prefix), '/'); }) ; \
_slash && ((_slash[(_slash) == (prefix)] = 0), true); \
_slash = streq((prefix), "/") ? NULL : strrchr((prefix), '/'))
/* If we are invoking callbacks of a bus object, ensure unreffing the
* bus from the callback doesn't destroy the object we are working on */
#define BUS_DONT_DESTROY(bus) \
_cleanup_(sd_bus_unrefp) _unused_ sd_bus *_dont_destroy_##bus = sd_bus_ref(bus)
int bus_set_address_system(sd_bus *bus);
int bus_set_address_user(sd_bus *bus);
int bus_set_address_system_remote(sd_bus *b, const char *host);
int bus_set_address_machine(sd_bus *b, bool user, const char *machine);
int bus_maybe_reply_error(sd_bus_message *m, int r, sd_bus_error *error);
#define bus_assert_return(expr, r, error) \
do { \
if (!assert_log(expr, #expr)) \
return sd_bus_error_set_errno(error, r); \
} while (false)
void bus_enter_closing(sd_bus *bus);
void bus_set_state(sd_bus *bus, enum bus_state state);