Systemd/src/test/test-barrier.c
Zbigniew Jędrzejewski-Szmek 11a1589223 tree-wide: drop license boilerplate
Files which are installed as-is (any .service and other unit files, .conf
files, .policy files, etc), are left as is. My assumption is that SPDX
identifiers are not yet that well known, so it's better to retain the
extended header to avoid any doubt.

I also kept any copyright lines. We can probably remove them, but it'd nice to
obtain explicit acks from all involved authors before doing that.
2018-04-06 18:58:55 +02:00

459 lines
17 KiB
C

/* SPDX-License-Identifier: LGPL-2.1+ */
/***
This file is part of systemd.
Copyright 2014 David Herrmann <dh.herrmann@gmail.com>
***/
/*
* IPC barrier tests
* These tests verify the correct behavior of the IPC Barrier implementation.
* Note that the tests use alarm-timers to verify dead-locks and timeouts. These
* might not work on slow machines where 20ms are too short to perform specific
* operations (though, very unlikely). In case that turns out true, we have to
* increase it at the slightly cost of lengthen test-duration on other machines.
*/
#include <stdio.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <unistd.h>
#include "barrier.h"
#include "util.h"
/* 20ms to test deadlocks; All timings use multiples of this constant as
* alarm/sleep timers. If this timeout is too small for slow machines to perform
* the requested operations, we have to increase it. On an i7 this works fine
* with 1ms base-time, so 20ms should be just fine for everyone. */
#define BASE_TIME (20 * USEC_PER_MSEC)
static void set_alarm(usec_t usecs) {
struct itimerval v = { };
timeval_store(&v.it_value, usecs);
assert_se(setitimer(ITIMER_REAL, &v, NULL) >= 0);
}
static void sleep_for(usec_t usecs) {
/* stupid usleep() might fail if >1000000 */
assert_se(usecs < USEC_PER_SEC);
usleep(usecs);
}
#define TEST_BARRIER(_FUNCTION, _CHILD_CODE, _WAIT_CHILD, _PARENT_CODE, _WAIT_PARENT) \
static void _FUNCTION(void) { \
Barrier b = BARRIER_NULL; \
pid_t pid1, pid2; \
\
assert_se(barrier_create(&b) >= 0); \
assert_se(b.me > 0); \
assert_se(b.them > 0); \
assert_se(b.pipe[0] > 0); \
assert_se(b.pipe[1] > 0); \
\
pid1 = fork(); \
assert_se(pid1 >= 0); \
if (pid1 == 0) { \
barrier_set_role(&b, BARRIER_CHILD); \
{ _CHILD_CODE; } \
exit(42); \
} \
\
pid2 = fork(); \
assert_se(pid2 >= 0); \
if (pid2 == 0) { \
barrier_set_role(&b, BARRIER_PARENT); \
{ _PARENT_CODE; } \
exit(42); \
} \
\
barrier_destroy(&b); \
set_alarm(999999); \
{ _WAIT_CHILD; } \
{ _WAIT_PARENT; } \
set_alarm(0); \
}
#define TEST_BARRIER_WAIT_SUCCESS(_pid) \
({ \
int pidr, status; \
pidr = waitpid(_pid, &status, 0); \
assert_se(pidr == _pid); \
assert_se(WIFEXITED(status)); \
assert_se(WEXITSTATUS(status) == 42); \
})
#define TEST_BARRIER_WAIT_ALARM(_pid) \
({ \
int pidr, status; \
pidr = waitpid(_pid, &status, 0); \
assert_se(pidr == _pid); \
assert_se(WIFSIGNALED(status)); \
assert_se(WTERMSIG(status) == SIGALRM); \
})
/*
* Test basic sync points
* This places a barrier in both processes and waits synchronously for them.
* The timeout makes sure the sync works as expected. The sleep_for() on one side
* makes sure the exit of the parent does not overwrite previous barriers. Due
* to the sleep_for(), we know that the parent already exited, thus there's a
* pending HUP on the pipe. However, the barrier_sync() prefers reads on the
* eventfd, thus we can safely wait on the barrier.
*/
TEST_BARRIER(test_barrier_sync,
({
set_alarm(BASE_TIME * 10);
assert_se(barrier_place(&b));
sleep_for(BASE_TIME * 2);
assert_se(barrier_sync(&b));
}),
TEST_BARRIER_WAIT_SUCCESS(pid1),
({
set_alarm(BASE_TIME * 10);
assert_se(barrier_place(&b));
assert_se(barrier_sync(&b));
}),
TEST_BARRIER_WAIT_SUCCESS(pid2));
/*
* Test wait_next()
* This places a barrier in the parent and syncs on it. The child sleeps while
* the parent places the barrier and then waits for a barrier. The wait will
* succeed as the child hasn't read the parent's barrier, yet. The following
* barrier and sync synchronize the exit.
*/
TEST_BARRIER(test_barrier_wait_next,
({
sleep_for(BASE_TIME);
set_alarm(BASE_TIME * 10);
assert_se(barrier_wait_next(&b));
assert_se(barrier_place(&b));
assert_se(barrier_sync(&b));
}),
TEST_BARRIER_WAIT_SUCCESS(pid1),
({
set_alarm(BASE_TIME * 4);
assert_se(barrier_place(&b));
assert_se(barrier_sync(&b));
}),
TEST_BARRIER_WAIT_SUCCESS(pid2));
/*
* Test wait_next() multiple times
* This places two barriers in the parent and waits for the child to exit. The
* child sleeps 20ms so both barriers _should_ be in place. It then waits for
* the parent to place the next barrier twice. The first call will fetch both
* barriers and return. However, the second call will stall as the parent does
* not place a 3rd barrier (the sleep caught two barriers). wait_next() is does
* not look at barrier-links so this stall is expected. Thus this test times
* out.
*/
TEST_BARRIER(test_barrier_wait_next_twice,
({
sleep_for(BASE_TIME);
set_alarm(BASE_TIME);
assert_se(barrier_wait_next(&b));
assert_se(barrier_wait_next(&b));
assert_se(0);
}),
TEST_BARRIER_WAIT_ALARM(pid1),
({
set_alarm(BASE_TIME * 10);
assert_se(barrier_place(&b));
assert_se(barrier_place(&b));
sleep_for(BASE_TIME * 4);
}),
TEST_BARRIER_WAIT_SUCCESS(pid2));
/*
* Test wait_next() with local barriers
* This is the same as test_barrier_wait_next_twice, but places local barriers
* between both waits. This does not have any effect on the wait so it times out
* like the other test.
*/
TEST_BARRIER(test_barrier_wait_next_twice_local,
({
sleep_for(BASE_TIME);
set_alarm(BASE_TIME);
assert_se(barrier_wait_next(&b));
assert_se(barrier_place(&b));
assert_se(barrier_place(&b));
assert_se(barrier_wait_next(&b));
assert_se(0);
}),
TEST_BARRIER_WAIT_ALARM(pid1),
({
set_alarm(BASE_TIME * 10);
assert_se(barrier_place(&b));
assert_se(barrier_place(&b));
sleep_for(BASE_TIME * 4);
}),
TEST_BARRIER_WAIT_SUCCESS(pid2));
/*
* Test wait_next() with sync_next()
* This is again the same as test_barrier_wait_next_twice but uses a
* synced wait as the second wait. This works just fine because the local state
* has no barriers placed, therefore, the remote is always in sync.
*/
TEST_BARRIER(test_barrier_wait_next_twice_sync,
({
sleep_for(BASE_TIME);
set_alarm(BASE_TIME);
assert_se(barrier_wait_next(&b));
assert_se(barrier_sync_next(&b));
}),
TEST_BARRIER_WAIT_SUCCESS(pid1),
({
set_alarm(BASE_TIME * 10);
assert_se(barrier_place(&b));
assert_se(barrier_place(&b));
}),
TEST_BARRIER_WAIT_SUCCESS(pid2));
/*
* Test wait_next() with sync_next() and local barriers
* This is again the same as test_barrier_wait_next_twice_local but uses a
* synced wait as the second wait. This works just fine because the local state
* is in sync with the remote.
*/
TEST_BARRIER(test_barrier_wait_next_twice_local_sync,
({
sleep_for(BASE_TIME);
set_alarm(BASE_TIME);
assert_se(barrier_wait_next(&b));
assert_se(barrier_place(&b));
assert_se(barrier_place(&b));
assert_se(barrier_sync_next(&b));
}),
TEST_BARRIER_WAIT_SUCCESS(pid1),
({
set_alarm(BASE_TIME * 10);
assert_se(barrier_place(&b));
assert_se(barrier_place(&b));
}),
TEST_BARRIER_WAIT_SUCCESS(pid2));
/*
* Test sync_next() and sync()
* This tests sync_*() synchronizations and makes sure they work fine if the
* local state is behind the remote state.
*/
TEST_BARRIER(test_barrier_sync_next,
({
set_alarm(BASE_TIME * 10);
assert_se(barrier_sync_next(&b));
assert_se(barrier_sync(&b));
assert_se(barrier_place(&b));
assert_se(barrier_place(&b));
assert_se(barrier_sync_next(&b));
assert_se(barrier_sync_next(&b));
assert_se(barrier_sync(&b));
}),
TEST_BARRIER_WAIT_SUCCESS(pid1),
({
set_alarm(BASE_TIME * 10);
sleep_for(BASE_TIME);
assert_se(barrier_place(&b));
assert_se(barrier_place(&b));
assert_se(barrier_sync(&b));
}),
TEST_BARRIER_WAIT_SUCCESS(pid2));
/*
* Test sync_next() and sync() with local barriers
* This tests timeouts if sync_*() is used if local barriers are placed but the
* remote didn't place any.
*/
TEST_BARRIER(test_barrier_sync_next_local,
({
set_alarm(BASE_TIME);
assert_se(barrier_place(&b));
assert_se(barrier_sync_next(&b));
assert_se(0);
}),
TEST_BARRIER_WAIT_ALARM(pid1),
({
sleep_for(BASE_TIME * 2);
}),
TEST_BARRIER_WAIT_SUCCESS(pid2));
/*
* Test sync_next() and sync() with local barriers and abortion
* This is the same as test_barrier_sync_next_local but aborts the sync in the
* parent. Therefore, the sync_next() succeeds just fine due to the abortion.
*/
TEST_BARRIER(test_barrier_sync_next_local_abort,
({
set_alarm(BASE_TIME * 10);
assert_se(barrier_place(&b));
assert_se(!barrier_sync_next(&b));
}),
TEST_BARRIER_WAIT_SUCCESS(pid1),
({
assert_se(barrier_abort(&b));
}),
TEST_BARRIER_WAIT_SUCCESS(pid2));
/*
* Test matched wait_abortion()
* This runs wait_abortion() with remote abortion.
*/
TEST_BARRIER(test_barrier_wait_abortion,
({
set_alarm(BASE_TIME * 10);
assert_se(barrier_wait_abortion(&b));
}),
TEST_BARRIER_WAIT_SUCCESS(pid1),
({
assert_se(barrier_abort(&b));
}),
TEST_BARRIER_WAIT_SUCCESS(pid2));
/*
* Test unmatched wait_abortion()
* This runs wait_abortion() without any remote abortion going on. It thus must
* timeout.
*/
TEST_BARRIER(test_barrier_wait_abortion_unmatched,
({
set_alarm(BASE_TIME);
assert_se(barrier_wait_abortion(&b));
assert_se(0);
}),
TEST_BARRIER_WAIT_ALARM(pid1),
({
sleep_for(BASE_TIME * 2);
}),
TEST_BARRIER_WAIT_SUCCESS(pid2));
/*
* Test matched wait_abortion() with local abortion
* This runs wait_abortion() with local and remote abortion.
*/
TEST_BARRIER(test_barrier_wait_abortion_local,
({
set_alarm(BASE_TIME * 10);
assert_se(barrier_abort(&b));
assert_se(!barrier_wait_abortion(&b));
}),
TEST_BARRIER_WAIT_SUCCESS(pid1),
({
assert_se(barrier_abort(&b));
}),
TEST_BARRIER_WAIT_SUCCESS(pid2));
/*
* Test unmatched wait_abortion() with local abortion
* This runs wait_abortion() with only local abortion. This must time out.
*/
TEST_BARRIER(test_barrier_wait_abortion_local_unmatched,
({
set_alarm(BASE_TIME);
assert_se(barrier_abort(&b));
assert_se(!barrier_wait_abortion(&b));
assert_se(0);
}),
TEST_BARRIER_WAIT_ALARM(pid1),
({
sleep_for(BASE_TIME * 2);
}),
TEST_BARRIER_WAIT_SUCCESS(pid2));
/*
* Test child exit
* Place barrier and sync with the child. The child only exits()s, which should
* cause an implicit abortion and wake the parent.
*/
TEST_BARRIER(test_barrier_exit,
({
}),
TEST_BARRIER_WAIT_SUCCESS(pid1),
({
set_alarm(BASE_TIME * 10);
assert_se(barrier_place(&b));
assert_se(!barrier_sync(&b));
}),
TEST_BARRIER_WAIT_SUCCESS(pid2));
/*
* Test child exit with sleep
* Same as test_barrier_exit but verifies the test really works due to the
* child-exit. We add a usleep() which triggers the alarm in the parent and
* causes the test to time out.
*/
TEST_BARRIER(test_barrier_no_exit,
({
sleep_for(BASE_TIME * 2);
}),
TEST_BARRIER_WAIT_SUCCESS(pid1),
({
set_alarm(BASE_TIME);
assert_se(barrier_place(&b));
assert_se(!barrier_sync(&b));
}),
TEST_BARRIER_WAIT_ALARM(pid2));
/*
* Test pending exit against sync
* The parent places a barrier *and* exits. The 20ms wait in the child
* guarantees both are pending. However, our logic prefers pending barriers over
* pending exit-abortions (unlike normal abortions), thus the wait_next() must
* succeed, same for the sync_next() as our local barrier-count is smaller than
* the remote. Once we place a barrier our count is equal, so the sync still
* succeeds. Only if we place one more barrier, we're ahead of the remote, thus
* we will fail due to HUP on the pipe.
*/
TEST_BARRIER(test_barrier_pending_exit,
({
set_alarm(BASE_TIME * 4);
sleep_for(BASE_TIME * 2);
assert_se(barrier_wait_next(&b));
assert_se(barrier_sync_next(&b));
assert_se(barrier_place(&b));
assert_se(barrier_sync_next(&b));
assert_se(barrier_place(&b));
assert_se(!barrier_sync_next(&b));
}),
TEST_BARRIER_WAIT_SUCCESS(pid1),
({
assert_se(barrier_place(&b));
}),
TEST_BARRIER_WAIT_SUCCESS(pid2));
int main(int argc, char *argv[]) {
/*
* This test uses real-time alarms and sleeps to test for CPU races
* explicitly. This is highly fragile if your system is under load. We
* already increased the BASE_TIME value to make the tests more robust,
* but that just makes the test take significantly longer. Hence,
* disable the test by default, so it will not break CI.
*/
if (argc < 2)
return EXIT_TEST_SKIP;
log_parse_environment();
log_open();
test_barrier_sync();
test_barrier_wait_next();
test_barrier_wait_next_twice();
test_barrier_wait_next_twice_sync();
test_barrier_wait_next_twice_local();
test_barrier_wait_next_twice_local_sync();
test_barrier_sync_next();
test_barrier_sync_next_local();
test_barrier_sync_next_local_abort();
test_barrier_wait_abortion();
test_barrier_wait_abortion_unmatched();
test_barrier_wait_abortion_local();
test_barrier_wait_abortion_local_unmatched();
test_barrier_exit();
test_barrier_no_exit();
test_barrier_pending_exit();
return 0;
}