Systemd/src/basic/cgroup-util.h

231 lines
9 KiB
C
Raw Normal View History

#pragma once
/***
This file is part of systemd.
Copyright 2010 Lennart Poettering
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see <http://www.gnu.org/licenses/>.
***/
#include <dirent.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <sys/types.h>
#include "def.h"
#include "hashmap.h"
#include "macro.h"
#include "set.h"
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
/* An enum of well known cgroup controllers */
typedef enum CGroupController {
CGROUP_CONTROLLER_CPU,
CGROUP_CONTROLLER_CPUACCT,
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
CGROUP_CONTROLLER_IO,
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
CGROUP_CONTROLLER_BLKIO,
CGROUP_CONTROLLER_MEMORY,
CGROUP_CONTROLLER_DEVICES,
CGROUP_CONTROLLER_PIDS,
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
_CGROUP_CONTROLLER_MAX,
_CGROUP_CONTROLLER_INVALID = -1,
} CGroupController;
#define CGROUP_CONTROLLER_TO_MASK(c) (1 << (c))
/* A bit mask of well known cgroup controllers */
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
typedef enum CGroupMask {
CGROUP_MASK_CPU = CGROUP_CONTROLLER_TO_MASK(CGROUP_CONTROLLER_CPU),
CGROUP_MASK_CPUACCT = CGROUP_CONTROLLER_TO_MASK(CGROUP_CONTROLLER_CPUACCT),
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
CGROUP_MASK_IO = CGROUP_CONTROLLER_TO_MASK(CGROUP_CONTROLLER_IO),
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
CGROUP_MASK_BLKIO = CGROUP_CONTROLLER_TO_MASK(CGROUP_CONTROLLER_BLKIO),
CGROUP_MASK_MEMORY = CGROUP_CONTROLLER_TO_MASK(CGROUP_CONTROLLER_MEMORY),
CGROUP_MASK_DEVICES = CGROUP_CONTROLLER_TO_MASK(CGROUP_CONTROLLER_DEVICES),
CGROUP_MASK_PIDS = CGROUP_CONTROLLER_TO_MASK(CGROUP_CONTROLLER_PIDS),
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
_CGROUP_MASK_ALL = CGROUP_CONTROLLER_TO_MASK(_CGROUP_CONTROLLER_MAX) - 1
} CGroupMask;
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
/* Special values for all weight knobs on unified hierarchy */
#define CGROUP_WEIGHT_INVALID ((uint64_t) -1)
#define CGROUP_WEIGHT_MIN UINT64_C(1)
#define CGROUP_WEIGHT_MAX UINT64_C(10000)
#define CGROUP_WEIGHT_DEFAULT UINT64_C(100)
#define CGROUP_LIMIT_MIN UINT64_C(0)
#define CGROUP_LIMIT_MAX ((uint64_t) -1)
static inline bool CGROUP_WEIGHT_IS_OK(uint64_t x) {
return
x == CGROUP_WEIGHT_INVALID ||
(x >= CGROUP_WEIGHT_MIN && x <= CGROUP_WEIGHT_MAX);
}
/* IO limits on unified hierarchy */
typedef enum CGroupIOLimitType {
CGROUP_IO_RBPS_MAX,
CGROUP_IO_WBPS_MAX,
CGROUP_IO_RIOPS_MAX,
CGROUP_IO_WIOPS_MAX,
_CGROUP_IO_LIMIT_TYPE_MAX,
_CGROUP_IO_LIMIT_TYPE_INVALID = -1
} CGroupIOLimitType;
extern const uint64_t cgroup_io_limit_defaults[_CGROUP_IO_LIMIT_TYPE_MAX];
const char* cgroup_io_limit_type_to_string(CGroupIOLimitType t) _const_;
CGroupIOLimitType cgroup_io_limit_type_from_string(const char *s) _pure_;
/* Special values for the cpu.shares attribute */
#define CGROUP_CPU_SHARES_INVALID ((uint64_t) -1)
#define CGROUP_CPU_SHARES_MIN UINT64_C(2)
#define CGROUP_CPU_SHARES_MAX UINT64_C(262144)
#define CGROUP_CPU_SHARES_DEFAULT UINT64_C(1024)
static inline bool CGROUP_CPU_SHARES_IS_OK(uint64_t x) {
return
x == CGROUP_CPU_SHARES_INVALID ||
(x >= CGROUP_CPU_SHARES_MIN && x <= CGROUP_CPU_SHARES_MAX);
}
/* Special values for the blkio.weight attribute */
#define CGROUP_BLKIO_WEIGHT_INVALID ((uint64_t) -1)
#define CGROUP_BLKIO_WEIGHT_MIN UINT64_C(10)
#define CGROUP_BLKIO_WEIGHT_MAX UINT64_C(1000)
#define CGROUP_BLKIO_WEIGHT_DEFAULT UINT64_C(500)
static inline bool CGROUP_BLKIO_WEIGHT_IS_OK(uint64_t x) {
return
x == CGROUP_BLKIO_WEIGHT_INVALID ||
(x >= CGROUP_BLKIO_WEIGHT_MIN && x <= CGROUP_BLKIO_WEIGHT_MAX);
}
/*
* General rules:
*
* We accept named hierarchies in the syntax "foo" and "name=foo".
*
* We expect that named hierarchies do not conflict in name with a
* kernel hierarchy, modulo the "name=" prefix.
*
* We always generate "normalized" controller names, i.e. without the
* "name=" prefix.
*
* We require absolute cgroup paths. When returning, we will always
* generate paths with multiple adjacent / removed.
*/
int cg_enumerate_processes(const char *controller, const char *path, FILE **_f);
int cg_read_pid(FILE *f, pid_t *_pid);
int cg_read_event(const char *controller, const char *path, const char *event,
char **val);
int cg_enumerate_subgroups(const char *controller, const char *path, DIR **_d);
int cg_read_subgroup(DIR *d, char **fn);
int cg_kill(const char *controller, const char *path, int sig, bool sigcont, bool ignore_self, Set *s);
int cg_kill_recursive(const char *controller, const char *path, int sig, bool sigcont, bool ignore_self, bool remove, Set *s);
int cg_migrate(const char *cfrom, const char *pfrom, const char *cto, const char *pto, bool ignore_self);
int cg_migrate_recursive(const char *cfrom, const char *pfrom, const char *cto, const char *pto, bool ignore_self, bool remove);
int cg_migrate_recursive_fallback(const char *cfrom, const char *pfrom, const char *cto, const char *pto, bool ignore_self, bool rem);
int cg_split_spec(const char *spec, char **controller, char **path);
int cg_mangle_path(const char *path, char **result);
int cg_get_path(const char *controller, const char *path, const char *suffix, char **fs);
int cg_get_path_and_check(const char *controller, const char *path, const char *suffix, char **fs);
int cg_pid_get_path(const char *controller, pid_t pid, char **path);
int cg_trim(const char *controller, const char *path, bool delete_root);
int cg_rmdir(const char *controller, const char *path);
int cg_create(const char *controller, const char *path);
int cg_attach(const char *controller, const char *path, pid_t pid);
int cg_attach_fallback(const char *controller, const char *path, pid_t pid);
int cg_create_and_attach(const char *controller, const char *path, pid_t pid);
int cg_set_attribute(const char *controller, const char *path, const char *attribute, const char *value);
int cg_get_attribute(const char *controller, const char *path, const char *attribute, char **ret);
int cg_set_group_access(const char *controller, const char *path, mode_t mode, uid_t uid, gid_t gid);
int cg_set_task_access(const char *controller, const char *path, mode_t mode, uid_t uid, gid_t gid);
int cg_install_release_agent(const char *controller, const char *agent);
int cg_uninstall_release_agent(const char *controller);
int cg_is_empty(const char *controller, const char *path);
int cg_is_empty_recursive(const char *controller, const char *path);
int cg_get_root_path(char **path);
int cg_path_get_session(const char *path, char **session);
int cg_path_get_owner_uid(const char *path, uid_t *uid);
int cg_path_get_unit(const char *path, char **unit);
int cg_path_get_user_unit(const char *path, char **unit);
int cg_path_get_machine_name(const char *path, char **machine);
int cg_path_get_slice(const char *path, char **slice);
int cg_path_get_user_slice(const char *path, char **slice);
int cg_shift_path(const char *cgroup, const char *cached_root, const char **shifted);
int cg_pid_get_path_shifted(pid_t pid, const char *cached_root, char **cgroup);
int cg_pid_get_session(pid_t pid, char **session);
int cg_pid_get_owner_uid(pid_t pid, uid_t *uid);
int cg_pid_get_unit(pid_t pid, char **unit);
int cg_pid_get_user_unit(pid_t pid, char **unit);
int cg_pid_get_machine_name(pid_t pid, char **machine);
int cg_pid_get_slice(pid_t pid, char **slice);
int cg_pid_get_user_slice(pid_t pid, char **slice);
int cg_path_decode_unit(const char *cgroup, char **unit);
char *cg_escape(const char *p);
char *cg_unescape(const char *p) _pure_;
bool cg_controller_is_valid(const char *p);
int cg_slice_to_path(const char *unit, char **ret);
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
typedef const char* (*cg_migrate_callback_t)(CGroupMask mask, void *userdata);
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
int cg_create_everywhere(CGroupMask supported, CGroupMask mask, const char *path);
int cg_attach_everywhere(CGroupMask supported, const char *path, pid_t pid, cg_migrate_callback_t callback, void *userdata);
int cg_attach_many_everywhere(CGroupMask supported, const char *path, Set* pids, cg_migrate_callback_t callback, void *userdata);
int cg_migrate_everywhere(CGroupMask supported, const char *from, const char *to, cg_migrate_callback_t callback, void *userdata);
int cg_trim_everywhere(CGroupMask supported, const char *path, bool delete_root);
int cg_enable_everywhere(CGroupMask supported, CGroupMask mask, const char *p);
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
int cg_mask_supported(CGroupMask *ret);
int cg_kernel_controllers(Set *controllers);
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
bool cg_ns_supported(void);
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
int cg_unified(void);
void cg_unified_flush(void);
bool cg_is_unified_wanted(void);
bool cg_is_legacy_wanted(void);
const char* cgroup_controller_to_string(CGroupController c) _const_;
CGroupController cgroup_controller_from_string(const char *s) _pure_;
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
int cg_weight_parse(const char *s, uint64_t *ret);
int cg_cpu_shares_parse(const char *s, uint64_t *ret);
int cg_blkio_weight_parse(const char *s, uint64_t *ret);