/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/ /*** This file is part of systemd. Copyright 2015 Lennart Poettering systemd is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. systemd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with systemd; If not, see . ***/ #include #include "alloc-util.h" #include "dns-domain.h" #include "resolved-dns-dnssec.h" #include "resolved-dns-packet.h" #include "string-table.h" /* Open question: * * How does the DNSSEC canonical form of a hostname with a label * containing a dot look like, the way DNS-SD does it? * * TODO: * * - Iterative validation * - NSEC proof of non-existance * - NSEC3 proof of non-existance * - Make trust anchor store read additional DS+DNSKEY data from disk * - wildcard zones compatibility * - multi-label zone compatibility * - DMSSEC cname/dname compatibility * - per-interface DNSSEC setting * - DSA support * - EC support? * * */ #define VERIFY_RRS_MAX 256 #define MAX_KEY_SIZE (32*1024) /* Permit a maximum clock skew of 1h 10min. This should be enough to deal with DST confusion */ #define SKEW_MAX (1*USEC_PER_HOUR + 10*USEC_PER_MINUTE) /* * The DNSSEC Chain of trust: * * Normal RRs are protected via RRSIG RRs in combination with DNSKEY RRs, all in the same zone * DNSKEY RRs are either protected like normal RRs, or via a DS from a zone "higher" up the tree * DS RRs are protected like normal RRs * * Example chain: * Normal RR → RRSIG/DNSKEY+ → DS → RRSIG/DNSKEY+ → DS → ... → DS → RRSIG/DNSKEY+ → DS */ static bool dnssec_algorithm_supported(int algorithm) { return IN_SET(algorithm, DNSSEC_ALGORITHM_RSASHA1, DNSSEC_ALGORITHM_RSASHA1_NSEC3_SHA1, DNSSEC_ALGORITHM_RSASHA256, DNSSEC_ALGORITHM_RSASHA512); } static bool dnssec_digest_supported(int digest) { return IN_SET(digest, DNSSEC_DIGEST_SHA1, DNSSEC_DIGEST_SHA256); } uint16_t dnssec_keytag(DnsResourceRecord *dnskey) { const uint8_t *p; uint32_t sum; size_t i; /* The algorithm from RFC 4034, Appendix B. */ assert(dnskey); assert(dnskey->key->type == DNS_TYPE_DNSKEY); sum = (uint32_t) dnskey->dnskey.flags + ((((uint32_t) dnskey->dnskey.protocol) << 8) + (uint32_t) dnskey->dnskey.algorithm); p = dnskey->dnskey.key; for (i = 0; i < dnskey->dnskey.key_size; i++) sum += (i & 1) == 0 ? (uint32_t) p[i] << 8 : (uint32_t) p[i]; sum += (sum >> 16) & UINT32_C(0xFFFF); return sum & UINT32_C(0xFFFF); } static int rr_compare(const void *a, const void *b) { DnsResourceRecord **x = (DnsResourceRecord**) a, **y = (DnsResourceRecord**) b; size_t m; int r; /* Let's order the RRs according to RFC 4034, Section 6.3 */ assert(x); assert(*x); assert((*x)->wire_format); assert(y); assert(*y); assert((*y)->wire_format); m = MIN((*x)->wire_format_size, (*y)->wire_format_size); r = memcmp((*x)->wire_format, (*y)->wire_format, m); if (r != 0) return r; if ((*x)->wire_format_size < (*y)->wire_format_size) return -1; else if ((*x)->wire_format_size > (*y)->wire_format_size) return 1; return 0; } static int dnssec_rsa_verify( const char *hash_algorithm, const void *signature, size_t signature_size, const void *data, size_t data_size, const void *exponent, size_t exponent_size, const void *modulus, size_t modulus_size) { gcry_sexp_t public_key_sexp = NULL, data_sexp = NULL, signature_sexp = NULL; gcry_mpi_t n = NULL, e = NULL, s = NULL; gcry_error_t ge; int r; assert(hash_algorithm); ge = gcry_mpi_scan(&s, GCRYMPI_FMT_USG, signature, signature_size, NULL); if (ge != 0) { r = -EIO; goto finish; } ge = gcry_mpi_scan(&e, GCRYMPI_FMT_USG, exponent, exponent_size, NULL); if (ge != 0) { r = -EIO; goto finish; } ge = gcry_mpi_scan(&n, GCRYMPI_FMT_USG, modulus, modulus_size, NULL); if (ge != 0) { r = -EIO; goto finish; } ge = gcry_sexp_build(&signature_sexp, NULL, "(sig-val (rsa (s %m)))", s); if (ge != 0) { r = -EIO; goto finish; } ge = gcry_sexp_build(&data_sexp, NULL, "(data (flags pkcs1) (hash %s %b))", hash_algorithm, (int) data_size, data); if (ge != 0) { r = -EIO; goto finish; } ge = gcry_sexp_build(&public_key_sexp, NULL, "(public-key (rsa (n %m) (e %m)))", n, e); if (ge != 0) { r = -EIO; goto finish; } ge = gcry_pk_verify(signature_sexp, data_sexp, public_key_sexp); if (ge == GPG_ERR_BAD_SIGNATURE) r = 0; else if (ge != 0) r = -EIO; else r = 1; finish: if (e) gcry_mpi_release(e); if (n) gcry_mpi_release(n); if (s) gcry_mpi_release(s); if (public_key_sexp) gcry_sexp_release(public_key_sexp); if (signature_sexp) gcry_sexp_release(signature_sexp); if (data_sexp) gcry_sexp_release(data_sexp); return r; } static void md_add_uint8(gcry_md_hd_t md, uint8_t v) { gcry_md_write(md, &v, sizeof(v)); } static void md_add_uint16(gcry_md_hd_t md, uint16_t v) { v = htobe16(v); gcry_md_write(md, &v, sizeof(v)); } static void md_add_uint32(gcry_md_hd_t md, uint32_t v) { v = htobe32(v); gcry_md_write(md, &v, sizeof(v)); } static int dnssec_rrsig_expired(DnsResourceRecord *rrsig, usec_t realtime) { usec_t expiration, inception, skew; assert(rrsig); assert(rrsig->key->type == DNS_TYPE_RRSIG); if (realtime == USEC_INFINITY) realtime = now(CLOCK_REALTIME); expiration = rrsig->rrsig.expiration * USEC_PER_SEC; inception = rrsig->rrsig.inception * USEC_PER_SEC; if (inception > expiration) return -EKEYREJECTED; /* Permit a certain amount of clock skew of 10% of the valid * time range. This takes inspiration from unbound's * resolver. */ skew = (expiration - inception) / 10; if (skew > SKEW_MAX) skew = SKEW_MAX; if (inception < skew) inception = 0; else inception -= skew; if (expiration + skew < expiration) expiration = USEC_INFINITY; else expiration += skew; return realtime < inception || realtime > expiration; } int dnssec_verify_rrset( DnsAnswer *a, DnsResourceKey *key, DnsResourceRecord *rrsig, DnsResourceRecord *dnskey, usec_t realtime) { uint8_t wire_format_name[DNS_WIRE_FOMAT_HOSTNAME_MAX]; size_t exponent_size, modulus_size, hash_size; void *exponent, *modulus, *hash; DnsResourceRecord **list, *rr; gcry_md_hd_t md = NULL; size_t k, n = 0; int r; assert(key); assert(rrsig); assert(dnskey); assert(rrsig->key->type == DNS_TYPE_RRSIG); assert(dnskey->key->type == DNS_TYPE_DNSKEY); /* Verifies the the RRSet matching the specified "key" in "a", * using the signature "rrsig" and the key "dnskey". It's * assumed the RRSIG and DNSKEY match. */ if (!dnssec_algorithm_supported(rrsig->rrsig.algorithm)) return -EOPNOTSUPP; if (a->n_rrs > VERIFY_RRS_MAX) return -E2BIG; r = dnssec_rrsig_expired(rrsig, realtime); if (r < 0) return r; if (r > 0) return DNSSEC_SIGNATURE_EXPIRED; /* Collect all relevant RRs in a single array, so that we can look at the RRset */ list = newa(DnsResourceRecord *, a->n_rrs); DNS_ANSWER_FOREACH(rr, a) { r = dns_resource_key_equal(key, rr->key); if (r < 0) return r; if (r == 0) continue; /* We need the wire format for ordering, and digest calculation */ r = dns_resource_record_to_wire_format(rr, true); if (r < 0) return r; list[n++] = rr; } if (n <= 0) return -ENODATA; /* Bring the RRs into canonical order */ qsort_safe(list, n, sizeof(DnsResourceRecord), rr_compare); /* OK, the RRs are now in canonical order. Let's calculate the digest */ switch (rrsig->rrsig.algorithm) { case DNSSEC_ALGORITHM_RSASHA1: case DNSSEC_ALGORITHM_RSASHA1_NSEC3_SHA1: gcry_md_open(&md, GCRY_MD_SHA1, 0); hash_size = 20; break; case DNSSEC_ALGORITHM_RSASHA256: gcry_md_open(&md, GCRY_MD_SHA256, 0); hash_size = 32; break; case DNSSEC_ALGORITHM_RSASHA512: gcry_md_open(&md, GCRY_MD_SHA512, 0); hash_size = 64; break; default: assert_not_reached("Unknown digest"); } if (!md) return -EIO; md_add_uint16(md, rrsig->rrsig.type_covered); md_add_uint8(md, rrsig->rrsig.algorithm); md_add_uint8(md, rrsig->rrsig.labels); md_add_uint32(md, rrsig->rrsig.original_ttl); md_add_uint32(md, rrsig->rrsig.expiration); md_add_uint32(md, rrsig->rrsig.inception); md_add_uint16(md, rrsig->rrsig.key_tag); r = dns_name_to_wire_format(rrsig->rrsig.signer, wire_format_name, sizeof(wire_format_name), true); if (r < 0) goto finish; gcry_md_write(md, wire_format_name, r); for (k = 0; k < n; k++) { size_t l; rr = list[k]; r = dns_name_to_wire_format(DNS_RESOURCE_KEY_NAME(rr->key), wire_format_name, sizeof(wire_format_name), true); if (r < 0) goto finish; gcry_md_write(md, wire_format_name, r); md_add_uint16(md, rr->key->type); md_add_uint16(md, rr->key->class); md_add_uint32(md, rrsig->rrsig.original_ttl); assert(rr->wire_format_rdata_offset <= rr->wire_format_size); l = rr->wire_format_size - rr->wire_format_rdata_offset; assert(l <= 0xFFFF); md_add_uint16(md, (uint16_t) l); gcry_md_write(md, (uint8_t*) rr->wire_format + rr->wire_format_rdata_offset, l); } hash = gcry_md_read(md, 0); if (!hash) { r = -EIO; goto finish; } if (*(uint8_t*) dnskey->dnskey.key == 0) { /* exponent is > 255 bytes long */ exponent = (uint8_t*) dnskey->dnskey.key + 3; exponent_size = ((size_t) (((uint8_t*) dnskey->dnskey.key)[0]) << 8) | ((size_t) ((uint8_t*) dnskey->dnskey.key)[1]); if (exponent_size < 256) { r = -EINVAL; goto finish; } if (3 + exponent_size >= dnskey->dnskey.key_size) { r = -EINVAL; goto finish; } modulus = (uint8_t*) dnskey->dnskey.key + 3 + exponent_size; modulus_size = dnskey->dnskey.key_size - 3 - exponent_size; } else { /* exponent is <= 255 bytes long */ exponent = (uint8_t*) dnskey->dnskey.key + 1; exponent_size = (size_t) ((uint8_t*) dnskey->dnskey.key)[0]; if (exponent_size <= 0) { r = -EINVAL; goto finish; } if (1 + exponent_size >= dnskey->dnskey.key_size) { r = -EINVAL; goto finish; } modulus = (uint8_t*) dnskey->dnskey.key + 1 + exponent_size; modulus_size = dnskey->dnskey.key_size - 1 - exponent_size; } r = dnssec_rsa_verify( gcry_md_algo_name(gcry_md_get_algo(md)), rrsig->rrsig.signature, rrsig->rrsig.signature_size, hash, hash_size, exponent, exponent_size, modulus, modulus_size); if (r < 0) goto finish; r = r ? DNSSEC_VERIFIED : DNSSEC_INVALID; finish: gcry_md_close(md); return r; } int dnssec_rrsig_match_dnskey(DnsResourceRecord *rrsig, DnsResourceRecord *dnskey) { assert(rrsig); assert(dnskey); /* Checks if the specified DNSKEY RR matches the key used for * the signature in the specified RRSIG RR */ if (rrsig->key->type != DNS_TYPE_RRSIG) return -EINVAL; if (dnskey->key->type != DNS_TYPE_DNSKEY) return 0; if (dnskey->key->class != rrsig->key->class) return 0; if ((dnskey->dnskey.flags & DNSKEY_FLAG_ZONE_KEY) == 0) return 0; if (dnskey->dnskey.protocol != 3) return 0; if (dnskey->dnskey.algorithm != rrsig->rrsig.algorithm) return 0; if (dnssec_keytag(dnskey) != rrsig->rrsig.key_tag) return 0; return dns_name_equal(DNS_RESOURCE_KEY_NAME(dnskey->key), DNS_RESOURCE_KEY_NAME(rrsig->key)); } int dnssec_key_match_rrsig(DnsResourceKey *key, DnsResourceRecord *rrsig) { assert(key); assert(rrsig); /* Checks if the specified RRSIG RR protects the RRSet of the specified RR key. */ if (rrsig->key->type != DNS_TYPE_RRSIG) return 0; if (rrsig->key->class != key->class) return 0; if (rrsig->rrsig.type_covered != key->type) return 0; return dns_name_equal(DNS_RESOURCE_KEY_NAME(rrsig->key), DNS_RESOURCE_KEY_NAME(key)); } int dnssec_verify_rrset_search( DnsAnswer *a, DnsResourceKey *key, DnsAnswer *validated_dnskeys, usec_t realtime) { bool found_rrsig = false, found_dnskey = false; DnsResourceRecord *rrsig; int r; assert(key); /* Verifies all RRs from "a" that match the key "key", against DNSKEY RRs in "validated_dnskeys" */ if (!a || a->n_rrs <= 0) return -ENODATA; /* Iterate through each RRSIG RR. */ DNS_ANSWER_FOREACH(rrsig, a) { DnsResourceRecord *dnskey; r = dnssec_key_match_rrsig(key, rrsig); if (r < 0) return r; if (r == 0) continue; found_rrsig = true; DNS_ANSWER_FOREACH(dnskey, validated_dnskeys) { r = dnssec_rrsig_match_dnskey(rrsig, dnskey); if (r < 0) return r; if (r == 0) continue; found_dnskey = true; /* Take the time here, if it isn't set yet, so * that we do all validations with the same * time. */ if (realtime == USEC_INFINITY) realtime = now(CLOCK_REALTIME); /* Yay, we found a matching RRSIG with a matching * DNSKEY, awesome. Now let's verify all entries of * the RRSet against the RRSIG and DNSKEY * combination. */ r = dnssec_verify_rrset(a, key, rrsig, dnskey, realtime); if (r < 0 && r != EOPNOTSUPP) return r; if (r == DNSSEC_VERIFIED) return DNSSEC_VERIFIED; /* If the signature is invalid, or done using an unsupported algorithm, let's try another key and/or signature. After all they key_tags and stuff are not unique, and might be shared by multiple keys. */ } } if (found_dnskey) return DNSSEC_INVALID; if (found_rrsig) return DNSSEC_MISSING_KEY; return DNSSEC_NO_SIGNATURE; } int dnssec_canonicalize(const char *n, char *buffer, size_t buffer_max) { size_t c = 0; int r; /* Converts the specified hostname into DNSSEC canonicalized * form. */ if (buffer_max < 2) return -ENOBUFS; for (;;) { size_t i; r = dns_label_unescape(&n, buffer, buffer_max); if (r < 0) return r; if (r == 0) break; if (r > 0) { int k; /* DNSSEC validation is always done on the ASCII version of the label */ k = dns_label_apply_idna(buffer, r, buffer, buffer_max); if (k < 0) return k; if (k > 0) r = k; } if (buffer_max < (size_t) r + 2) return -ENOBUFS; /* The DNSSEC canonical form is not clear on what to * do with dots appearing in labels, the way DNS-SD * does it. Refuse it for now. */ if (memchr(buffer, '.', r)) return -EINVAL; for (i = 0; i < (size_t) r; i ++) { if (buffer[i] >= 'A' && buffer[i] <= 'Z') buffer[i] = buffer[i] - 'A' + 'a'; } buffer[r] = '.'; buffer += r + 1; c += r + 1; buffer_max -= r + 1; } if (c <= 0) { /* Not even a single label: this is the root domain name */ assert(buffer_max > 2); buffer[0] = '.'; buffer[1] = 0; return 1; } return (int) c; } int dnssec_verify_dnskey(DnsResourceRecord *dnskey, DnsResourceRecord *ds) { gcry_md_hd_t md = NULL; char owner_name[DNSSEC_CANONICAL_HOSTNAME_MAX]; void *result; int r; assert(dnskey); assert(ds); /* Implements DNSKEY verification by a DS, according to RFC 4035, section 5.2 */ if (dnskey->key->type != DNS_TYPE_DNSKEY) return -EINVAL; if (ds->key->type != DNS_TYPE_DS) return -EINVAL; if ((dnskey->dnskey.flags & DNSKEY_FLAG_ZONE_KEY) == 0) return -EKEYREJECTED; if (dnskey->dnskey.protocol != 3) return -EKEYREJECTED; if (!dnssec_algorithm_supported(dnskey->dnskey.algorithm)) return -EOPNOTSUPP; if (!dnssec_digest_supported(ds->ds.digest_type)) return -EOPNOTSUPP; if (dnskey->dnskey.algorithm != ds->ds.algorithm) return 0; if (dnssec_keytag(dnskey) != ds->ds.key_tag) return 0; switch (ds->ds.digest_type) { case DNSSEC_DIGEST_SHA1: if (ds->ds.digest_size != 20) return 0; gcry_md_open(&md, GCRY_MD_SHA1, 0); break; case DNSSEC_DIGEST_SHA256: if (ds->ds.digest_size != 32) return 0; gcry_md_open(&md, GCRY_MD_SHA256, 0); break; default: assert_not_reached("Unknown digest"); } if (!md) return -EIO; r = dnssec_canonicalize(DNS_RESOURCE_KEY_NAME(dnskey->key), owner_name, sizeof(owner_name)); if (r < 0) goto finish; gcry_md_write(md, owner_name, r); md_add_uint16(md, dnskey->dnskey.flags); md_add_uint8(md, dnskey->dnskey.protocol); md_add_uint8(md, dnskey->dnskey.algorithm); gcry_md_write(md, dnskey->dnskey.key, dnskey->dnskey.key_size); result = gcry_md_read(md, 0); if (!result) { r = -EIO; goto finish; } r = memcmp(result, ds->ds.digest, ds->ds.digest_size) != 0; finish: gcry_md_close(md); return r; } static const char* const dnssec_mode_table[_DNSSEC_MODE_MAX] = { [DNSSEC_NO] = "no", [DNSSEC_TRUST] = "trust", [DNSSEC_YES] = "yes", }; DEFINE_STRING_TABLE_LOOKUP(dnssec_mode, DnssecMode);