Systemd/src/basic/time-util.h
Lennart Poettering fe624c4c07 time-util: add triple timestamp object
We already have a double timestamp object that we use whenever we need both a
MONOTONIC and a REALTIME timestamp taken and stored. With this change we
also add a triple timestamp object that in addition stores a BOOTTIME
timestamp, which is useful for a few usecases.

Note that we keep dual_timestamp around, as it is useful in many cases where
triple_timestamp is not, in particular because retrieving the monotonic and
realtime timestamps is much cheaper on Linux that getting the boottime
timestamp.
2016-06-06 19:59:07 +02:00

179 lines
6.3 KiB
C

#pragma once
/***
This file is part of systemd.
Copyright 2010 Lennart Poettering
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see <http://www.gnu.org/licenses/>.
***/
#include <inttypes.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <time.h>
typedef uint64_t usec_t;
typedef uint64_t nsec_t;
#define NSEC_FMT "%" PRIu64
#define USEC_FMT "%" PRIu64
#include "macro.h"
typedef struct dual_timestamp {
usec_t realtime;
usec_t monotonic;
} dual_timestamp;
typedef struct triple_timestamp {
usec_t realtime;
usec_t monotonic;
usec_t boottime;
} triple_timestamp;
#define USEC_INFINITY ((usec_t) -1)
#define NSEC_INFINITY ((nsec_t) -1)
#define MSEC_PER_SEC 1000ULL
#define USEC_PER_SEC ((usec_t) 1000000ULL)
#define USEC_PER_MSEC ((usec_t) 1000ULL)
#define NSEC_PER_SEC ((nsec_t) 1000000000ULL)
#define NSEC_PER_MSEC ((nsec_t) 1000000ULL)
#define NSEC_PER_USEC ((nsec_t) 1000ULL)
#define USEC_PER_MINUTE ((usec_t) (60ULL*USEC_PER_SEC))
#define NSEC_PER_MINUTE ((nsec_t) (60ULL*NSEC_PER_SEC))
#define USEC_PER_HOUR ((usec_t) (60ULL*USEC_PER_MINUTE))
#define NSEC_PER_HOUR ((nsec_t) (60ULL*NSEC_PER_MINUTE))
#define USEC_PER_DAY ((usec_t) (24ULL*USEC_PER_HOUR))
#define NSEC_PER_DAY ((nsec_t) (24ULL*NSEC_PER_HOUR))
#define USEC_PER_WEEK ((usec_t) (7ULL*USEC_PER_DAY))
#define NSEC_PER_WEEK ((nsec_t) (7ULL*NSEC_PER_DAY))
#define USEC_PER_MONTH ((usec_t) (2629800ULL*USEC_PER_SEC))
#define NSEC_PER_MONTH ((nsec_t) (2629800ULL*NSEC_PER_SEC))
#define USEC_PER_YEAR ((usec_t) (31557600ULL*USEC_PER_SEC))
#define NSEC_PER_YEAR ((nsec_t) (31557600ULL*NSEC_PER_SEC))
#define FORMAT_TIMESTAMP_MAX ((4*4+1)+11+9+4+1) /* weekdays can be unicode */
#define FORMAT_TIMESTAMP_WIDTH 28 /* when outputting, assume this width */
#define FORMAT_TIMESTAMP_RELATIVE_MAX 256
#define FORMAT_TIMESPAN_MAX 64
#define TIME_T_MAX (time_t)((UINTMAX_C(1) << ((sizeof(time_t) << 3) - 1)) - 1)
#define DUAL_TIMESTAMP_NULL ((struct dual_timestamp) {})
#define TRIPLE_TIMESTAMP_NULL ((struct triple_timestamp) {})
usec_t now(clockid_t clock);
nsec_t now_nsec(clockid_t clock);
dual_timestamp* dual_timestamp_get(dual_timestamp *ts);
dual_timestamp* dual_timestamp_from_realtime(dual_timestamp *ts, usec_t u);
dual_timestamp* dual_timestamp_from_monotonic(dual_timestamp *ts, usec_t u);
dual_timestamp* dual_timestamp_from_boottime_or_monotonic(dual_timestamp *ts, usec_t u);
triple_timestamp* triple_timestamp_get(triple_timestamp *ts);
triple_timestamp* triple_timestamp_from_realtime(triple_timestamp *ts, usec_t u);
#define DUAL_TIMESTAMP_HAS_CLOCK(clock) \
IN_SET(clock, CLOCK_REALTIME, CLOCK_REALTIME_ALARM, CLOCK_MONOTONIC)
#define TRIPLE_TIMESTAMP_HAS_CLOCK(clock) \
IN_SET(clock, CLOCK_REALTIME, CLOCK_REALTIME_ALARM, CLOCK_MONOTONIC, CLOCK_BOOTTIME, CLOCK_BOOTTIME_ALARM)
static inline bool dual_timestamp_is_set(dual_timestamp *ts) {
return ((ts->realtime > 0 && ts->realtime != USEC_INFINITY) ||
(ts->monotonic > 0 && ts->monotonic != USEC_INFINITY));
}
static inline bool triple_timestamp_is_set(triple_timestamp *ts) {
return ((ts->realtime > 0 && ts->realtime != USEC_INFINITY) ||
(ts->monotonic > 0 && ts->monotonic != USEC_INFINITY) ||
(ts->boottime > 0 && ts->boottime != USEC_INFINITY));
}
usec_t triple_timestamp_by_clock(triple_timestamp *ts, clockid_t clock);
usec_t timespec_load(const struct timespec *ts) _pure_;
struct timespec *timespec_store(struct timespec *ts, usec_t u);
usec_t timeval_load(const struct timeval *tv) _pure_;
struct timeval *timeval_store(struct timeval *tv, usec_t u);
char *format_timestamp(char *buf, size_t l, usec_t t);
char *format_timestamp_utc(char *buf, size_t l, usec_t t);
char *format_timestamp_us(char *buf, size_t l, usec_t t);
char *format_timestamp_us_utc(char *buf, size_t l, usec_t t);
char *format_timestamp_relative(char *buf, size_t l, usec_t t);
char *format_timespan(char *buf, size_t l, usec_t t, usec_t accuracy);
void dual_timestamp_serialize(FILE *f, const char *name, dual_timestamp *t);
int dual_timestamp_deserialize(const char *value, dual_timestamp *t);
int timestamp_deserialize(const char *value, usec_t *timestamp);
int parse_timestamp(const char *t, usec_t *usec);
int parse_sec(const char *t, usec_t *usec);
int parse_time(const char *t, usec_t *usec, usec_t default_unit);
int parse_nsec(const char *t, nsec_t *nsec);
bool ntp_synced(void);
int get_timezones(char ***l);
bool timezone_is_valid(const char *name);
bool clock_boottime_supported(void);
bool clock_supported(clockid_t clock);
clockid_t clock_boottime_or_monotonic(void);
#define xstrftime(buf, fmt, tm) \
assert_message_se(strftime(buf, ELEMENTSOF(buf), fmt, tm) > 0, \
"xstrftime: " #buf "[] must be big enough")
int get_timezone(char **timezone);
time_t mktime_or_timegm(struct tm *tm, bool utc);
struct tm *localtime_or_gmtime_r(const time_t *t, struct tm *tm, bool utc);
unsigned long usec_to_jiffies(usec_t usec);
static inline usec_t usec_add(usec_t a, usec_t b) {
usec_t c;
/* Adds two time values, and makes sure USEC_INFINITY as input results as USEC_INFINITY in output, and doesn't
* overflow. */
c = a + b;
if (c < a || c < b) /* overflow check */
return USEC_INFINITY;
return c;
}
static inline usec_t usec_sub(usec_t timestamp, int64_t delta) {
if (delta < 0)
return usec_add(timestamp, (usec_t) (-delta));
if (timestamp == USEC_INFINITY) /* Make sure infinity doesn't degrade */
return USEC_INFINITY;
if (timestamp < (usec_t) delta)
return 0;
return timestamp - delta;
}