glibc/math/math-narrow.h

399 lines
13 KiB
C
Raw Normal View History

Add build infrastructure for narrowing libm functions. TS 18661-1 defines libm functions that carry out an operation (+ - * / sqrt fma) on their arguments and return a result rounded to a (usually) narrower type, as if the original result were computed to infinite precision and then rounded directly to the result type without any intermediate rounding to the argument type. For example, fadd, faddl and daddl for addition. These are the last remaining TS 18661-1 functions left to be added to glibc. TS 18661-3 extends this to corresponding functions for _FloatN and _FloatNx types. As functions parametrized by two rather than one varying floating-point types, these functions require infrastructure in glibc that was not required for previous libm functions. This patch provides such infrastructure - excluding test support, and actual function implementations, which will be in subsequent patches. Declaring the functions uses a header bits/mathcalls-narrow.h, which is included many times, for each relevant pair of types. This will end up containing macro calls of the form __MATHCALL_NARROW (__MATHCALL_NAME (add), __MATHCALL_REDIR_NAME (add), 2); for each family of narrowing functions. (The structure of this macro call, with the calls to __MATHCALL_NAME and __MATHCALL_REDIR_NAME there rather than in the definition of __MATHCALL_NARROW, arises from the names such as "add" *not* themselves being reserved identifiers - meaning it's necessary to avoid any indirection that would result in a user-defined "add" macro being expanded.) Whereas for existing functions declaring long double functions is disabled if _LIBC in the case where they alias double functions, to facilitate defining the long double functions as aliases of the double ones, there is no such logic for the narrowing functions in this patch. Rather, the files defining such functions are expected to use #define to hide the original declarations of the alias names, to avoid errors about defining aliases with incompatible types. math/Makefile support is added for building the functions (listed in libm-narrow-fns, currently empty) for all relevant pairs of types. An internal header math-narrow.h is added for macros shared between multiple function implementations - currently a ROUND_TO_ODD macro to facilitate writing functions using the round-to-odd implementation approach, and alias macros to create all the required function aliases. libc_feholdexcept_setroundf128 and libc_feupdateenv_testf128 are added for use when required (only for x86_64). float128_private.h support is added for ldbl-128 narrowing functions to be used for _Float128. Certain things are specifically omitted from this patch and the immediate followups. tgmath.h support is deferred; there remain unresolved questions about how the type-generic macros for these functions are supposed to work, especially in the case of arguments of integer type. The math.h / bits/mathcalls-narrow.h logic, and the logic for determining what functions / aliases to define, will need some adjustments to support the sqrt and fma functions, where e.g. f32xsqrtf64 can just be an alias for sqrt rather than a separate function. TS 18661-1 defines FP_FAST_* macros but no support is included for defining them (they won't in general be true without architecture-specific optimized function versions). For each of the function groups (add sub mul div sqrt fma) there are always six functions present (e.g. fadd, faddl, daddl, f32addf64, f32addf32x, f32xaddf64). When _Float64x and _Float128 are supported, there are seven more (e.g. f32addf64x, f32addf128, f64addf64x, f64addf128, f32xaddf64x, f32xaddf128, f64xaddf128). In addition, in the ldbl-opt case there are function names such as __nldbl_daddl (an alias for f32xaddf64, which is not a reserved name in TS 18661-1, only in TS 18661-3), for calls to daddl to be mapped to in the -mlong-double-64 case. (Calls to faddl just get mapped to fadd, and for sqrt and fma there won't be __nldbl_* functions because dsqrtl and dfmal can just be mapped to sqrt and fma with -mlong-double-64.) While there are six or thirteen functions present in each group (plus __nldbl_* names only as an ABI, not an API), not all are distinct; they fall in various groups of aliases. There are two distinct versions built if long double has the same format as double; four if they have distinct formats but there is no _Float64x or _Float128 support; five if long double has binary128 format; seven when _Float128 is distinct from long double. Architecture-specific optimized versions are possible, but not included in my patches. For example, IA64 generally supports narrowing the result of most floating-point instructions; Power ISA 2.07 (POWER8) supports double values as arguments to float instructions, with the results narrowed as expected; Power ISA 3 (POWER9) supports round-to-odd for float128 instructions, so meaning that approach can be used without needing to set and restore the rounding mode and test "inexact". I intend to leave any such optimized versions to the architecture maintainers. Generally in such cases it would also make sense for calls to these functions to be expanded inline (given -fno-math-errno); I put a suggestion for TS 18661-1 built-in functions at <https://gcc.gnu.org/wiki/SummerOfCode>. Tested for x86_64 (this patch in isolation, as well as testing for various configurations in conjunction with further patches). * math/bits/mathcalls-narrow.h: New file. * include/bits/mathcalls-narrow.h: Likewise. * math/math-narrow.h: Likewise. * math/math.h (__MATHCALL_NARROW_ARGS_1): New macro. (__MATHCALL_NARROW_ARGS_2): Likewise. (__MATHCALL_NARROW_ARGS_3): Likewise. (__MATHCALL_NARROW_NORMAL): Likewise. (__MATHCALL_NARROW_REDIR): Likewise. (__MATHCALL_NARROW): Likewise. [__GLIBC_USE (IEC_60559_BFP_EXT)]: Repeatedly include <bits/mathcalls-narrow.h> with _Mret_, _Marg_ and __MATHCALL_NAME defined. [__GLIBC_USE (IEC_60559_TYPES_EXT)]: Likewise. * math/Makefile (headers): Add bits/mathcalls-narrow.h. (libm-narrow-fns): New variable. (libm-narrow-types-basic): Likewise. (libm-narrow-types-ldouble-yes): Likewise. (libm-narrow-types-float128-yes): Likewise. (libm-narrow-types-float128-alias-yes): Likewise. (libm-narrow-types): Likewise. (libm-routines): Add narrowing functions. * sysdeps/i386/fpu/fenv_private.h [__x86_64__] (libc_feholdexcept_setroundf128): New macro. [__x86_64__] (libc_feupdateenv_testf128): Likewise. * sysdeps/ieee754/float128/float128_private.h: Include <math/math-narrow.h>. [libc_feholdexcept_setroundf128] (libc_feholdexcept_setroundl): Undefine and redefine. [libc_feupdateenv_testf128] (libc_feupdateenv_testl): Likewise. (libm_alias_float_ldouble): Undefine and redefine. (libm_alias_double_ldouble): Likewise.
2018-02-09 22:18:52 +01:00
/* Helper macros for functions returning a narrower type.
Copyright (C) 2018-2022 Free Software Foundation, Inc.
Add build infrastructure for narrowing libm functions. TS 18661-1 defines libm functions that carry out an operation (+ - * / sqrt fma) on their arguments and return a result rounded to a (usually) narrower type, as if the original result were computed to infinite precision and then rounded directly to the result type without any intermediate rounding to the argument type. For example, fadd, faddl and daddl for addition. These are the last remaining TS 18661-1 functions left to be added to glibc. TS 18661-3 extends this to corresponding functions for _FloatN and _FloatNx types. As functions parametrized by two rather than one varying floating-point types, these functions require infrastructure in glibc that was not required for previous libm functions. This patch provides such infrastructure - excluding test support, and actual function implementations, which will be in subsequent patches. Declaring the functions uses a header bits/mathcalls-narrow.h, which is included many times, for each relevant pair of types. This will end up containing macro calls of the form __MATHCALL_NARROW (__MATHCALL_NAME (add), __MATHCALL_REDIR_NAME (add), 2); for each family of narrowing functions. (The structure of this macro call, with the calls to __MATHCALL_NAME and __MATHCALL_REDIR_NAME there rather than in the definition of __MATHCALL_NARROW, arises from the names such as "add" *not* themselves being reserved identifiers - meaning it's necessary to avoid any indirection that would result in a user-defined "add" macro being expanded.) Whereas for existing functions declaring long double functions is disabled if _LIBC in the case where they alias double functions, to facilitate defining the long double functions as aliases of the double ones, there is no such logic for the narrowing functions in this patch. Rather, the files defining such functions are expected to use #define to hide the original declarations of the alias names, to avoid errors about defining aliases with incompatible types. math/Makefile support is added for building the functions (listed in libm-narrow-fns, currently empty) for all relevant pairs of types. An internal header math-narrow.h is added for macros shared between multiple function implementations - currently a ROUND_TO_ODD macro to facilitate writing functions using the round-to-odd implementation approach, and alias macros to create all the required function aliases. libc_feholdexcept_setroundf128 and libc_feupdateenv_testf128 are added for use when required (only for x86_64). float128_private.h support is added for ldbl-128 narrowing functions to be used for _Float128. Certain things are specifically omitted from this patch and the immediate followups. tgmath.h support is deferred; there remain unresolved questions about how the type-generic macros for these functions are supposed to work, especially in the case of arguments of integer type. The math.h / bits/mathcalls-narrow.h logic, and the logic for determining what functions / aliases to define, will need some adjustments to support the sqrt and fma functions, where e.g. f32xsqrtf64 can just be an alias for sqrt rather than a separate function. TS 18661-1 defines FP_FAST_* macros but no support is included for defining them (they won't in general be true without architecture-specific optimized function versions). For each of the function groups (add sub mul div sqrt fma) there are always six functions present (e.g. fadd, faddl, daddl, f32addf64, f32addf32x, f32xaddf64). When _Float64x and _Float128 are supported, there are seven more (e.g. f32addf64x, f32addf128, f64addf64x, f64addf128, f32xaddf64x, f32xaddf128, f64xaddf128). In addition, in the ldbl-opt case there are function names such as __nldbl_daddl (an alias for f32xaddf64, which is not a reserved name in TS 18661-1, only in TS 18661-3), for calls to daddl to be mapped to in the -mlong-double-64 case. (Calls to faddl just get mapped to fadd, and for sqrt and fma there won't be __nldbl_* functions because dsqrtl and dfmal can just be mapped to sqrt and fma with -mlong-double-64.) While there are six or thirteen functions present in each group (plus __nldbl_* names only as an ABI, not an API), not all are distinct; they fall in various groups of aliases. There are two distinct versions built if long double has the same format as double; four if they have distinct formats but there is no _Float64x or _Float128 support; five if long double has binary128 format; seven when _Float128 is distinct from long double. Architecture-specific optimized versions are possible, but not included in my patches. For example, IA64 generally supports narrowing the result of most floating-point instructions; Power ISA 2.07 (POWER8) supports double values as arguments to float instructions, with the results narrowed as expected; Power ISA 3 (POWER9) supports round-to-odd for float128 instructions, so meaning that approach can be used without needing to set and restore the rounding mode and test "inexact". I intend to leave any such optimized versions to the architecture maintainers. Generally in such cases it would also make sense for calls to these functions to be expanded inline (given -fno-math-errno); I put a suggestion for TS 18661-1 built-in functions at <https://gcc.gnu.org/wiki/SummerOfCode>. Tested for x86_64 (this patch in isolation, as well as testing for various configurations in conjunction with further patches). * math/bits/mathcalls-narrow.h: New file. * include/bits/mathcalls-narrow.h: Likewise. * math/math-narrow.h: Likewise. * math/math.h (__MATHCALL_NARROW_ARGS_1): New macro. (__MATHCALL_NARROW_ARGS_2): Likewise. (__MATHCALL_NARROW_ARGS_3): Likewise. (__MATHCALL_NARROW_NORMAL): Likewise. (__MATHCALL_NARROW_REDIR): Likewise. (__MATHCALL_NARROW): Likewise. [__GLIBC_USE (IEC_60559_BFP_EXT)]: Repeatedly include <bits/mathcalls-narrow.h> with _Mret_, _Marg_ and __MATHCALL_NAME defined. [__GLIBC_USE (IEC_60559_TYPES_EXT)]: Likewise. * math/Makefile (headers): Add bits/mathcalls-narrow.h. (libm-narrow-fns): New variable. (libm-narrow-types-basic): Likewise. (libm-narrow-types-ldouble-yes): Likewise. (libm-narrow-types-float128-yes): Likewise. (libm-narrow-types-float128-alias-yes): Likewise. (libm-narrow-types): Likewise. (libm-routines): Add narrowing functions. * sysdeps/i386/fpu/fenv_private.h [__x86_64__] (libc_feholdexcept_setroundf128): New macro. [__x86_64__] (libc_feupdateenv_testf128): Likewise. * sysdeps/ieee754/float128/float128_private.h: Include <math/math-narrow.h>. [libc_feholdexcept_setroundf128] (libc_feholdexcept_setroundl): Undefine and redefine. [libc_feupdateenv_testf128] (libc_feupdateenv_testl): Likewise. (libm_alias_float_ldouble): Undefine and redefine. (libm_alias_double_ldouble): Likewise.
2018-02-09 22:18:52 +01:00
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
Prefer https to http for gnu.org and fsf.org URLs Also, change sources.redhat.com to sourceware.org. This patch was automatically generated by running the following shell script, which uses GNU sed, and which avoids modifying files imported from upstream: sed -ri ' s,(http|ftp)(://(.*\.)?(gnu|fsf|sourceware)\.org($|[^.]|\.[^a-z])),https\2,g s,(http|ftp)(://(.*\.)?)sources\.redhat\.com($|[^.]|\.[^a-z]),https\2sourceware.org\4,g ' \ $(find $(git ls-files) -prune -type f \ ! -name '*.po' \ ! -name 'ChangeLog*' \ ! -path COPYING ! -path COPYING.LIB \ ! -path manual/fdl-1.3.texi ! -path manual/lgpl-2.1.texi \ ! -path manual/texinfo.tex ! -path scripts/config.guess \ ! -path scripts/config.sub ! -path scripts/install-sh \ ! -path scripts/mkinstalldirs ! -path scripts/move-if-change \ ! -path INSTALL ! -path locale/programs/charmap-kw.h \ ! -path po/libc.pot ! -path sysdeps/gnu/errlist.c \ ! '(' -name configure \ -execdir test -f configure.ac -o -f configure.in ';' ')' \ ! '(' -name preconfigure \ -execdir test -f preconfigure.ac ';' ')' \ -print) and then by running 'make dist-prepare' to regenerate files built from the altered files, and then executing the following to cleanup: chmod a+x sysdeps/unix/sysv/linux/riscv/configure # Omit irrelevant whitespace and comment-only changes, # perhaps from a slightly-different Autoconf version. git checkout -f \ sysdeps/csky/configure \ sysdeps/hppa/configure \ sysdeps/riscv/configure \ sysdeps/unix/sysv/linux/csky/configure # Omit changes that caused a pre-commit check to fail like this: # remote: *** error: sysdeps/powerpc/powerpc64/ppc-mcount.S: trailing lines git checkout -f \ sysdeps/powerpc/powerpc64/ppc-mcount.S \ sysdeps/unix/sysv/linux/s390/s390-64/syscall.S # Omit change that caused a pre-commit check to fail like this: # remote: *** error: sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S: last line does not end in newline git checkout -f sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S
2019-09-07 07:40:42 +02:00
<https://www.gnu.org/licenses/>. */
Add build infrastructure for narrowing libm functions. TS 18661-1 defines libm functions that carry out an operation (+ - * / sqrt fma) on their arguments and return a result rounded to a (usually) narrower type, as if the original result were computed to infinite precision and then rounded directly to the result type without any intermediate rounding to the argument type. For example, fadd, faddl and daddl for addition. These are the last remaining TS 18661-1 functions left to be added to glibc. TS 18661-3 extends this to corresponding functions for _FloatN and _FloatNx types. As functions parametrized by two rather than one varying floating-point types, these functions require infrastructure in glibc that was not required for previous libm functions. This patch provides such infrastructure - excluding test support, and actual function implementations, which will be in subsequent patches. Declaring the functions uses a header bits/mathcalls-narrow.h, which is included many times, for each relevant pair of types. This will end up containing macro calls of the form __MATHCALL_NARROW (__MATHCALL_NAME (add), __MATHCALL_REDIR_NAME (add), 2); for each family of narrowing functions. (The structure of this macro call, with the calls to __MATHCALL_NAME and __MATHCALL_REDIR_NAME there rather than in the definition of __MATHCALL_NARROW, arises from the names such as "add" *not* themselves being reserved identifiers - meaning it's necessary to avoid any indirection that would result in a user-defined "add" macro being expanded.) Whereas for existing functions declaring long double functions is disabled if _LIBC in the case where they alias double functions, to facilitate defining the long double functions as aliases of the double ones, there is no such logic for the narrowing functions in this patch. Rather, the files defining such functions are expected to use #define to hide the original declarations of the alias names, to avoid errors about defining aliases with incompatible types. math/Makefile support is added for building the functions (listed in libm-narrow-fns, currently empty) for all relevant pairs of types. An internal header math-narrow.h is added for macros shared between multiple function implementations - currently a ROUND_TO_ODD macro to facilitate writing functions using the round-to-odd implementation approach, and alias macros to create all the required function aliases. libc_feholdexcept_setroundf128 and libc_feupdateenv_testf128 are added for use when required (only for x86_64). float128_private.h support is added for ldbl-128 narrowing functions to be used for _Float128. Certain things are specifically omitted from this patch and the immediate followups. tgmath.h support is deferred; there remain unresolved questions about how the type-generic macros for these functions are supposed to work, especially in the case of arguments of integer type. The math.h / bits/mathcalls-narrow.h logic, and the logic for determining what functions / aliases to define, will need some adjustments to support the sqrt and fma functions, where e.g. f32xsqrtf64 can just be an alias for sqrt rather than a separate function. TS 18661-1 defines FP_FAST_* macros but no support is included for defining them (they won't in general be true without architecture-specific optimized function versions). For each of the function groups (add sub mul div sqrt fma) there are always six functions present (e.g. fadd, faddl, daddl, f32addf64, f32addf32x, f32xaddf64). When _Float64x and _Float128 are supported, there are seven more (e.g. f32addf64x, f32addf128, f64addf64x, f64addf128, f32xaddf64x, f32xaddf128, f64xaddf128). In addition, in the ldbl-opt case there are function names such as __nldbl_daddl (an alias for f32xaddf64, which is not a reserved name in TS 18661-1, only in TS 18661-3), for calls to daddl to be mapped to in the -mlong-double-64 case. (Calls to faddl just get mapped to fadd, and for sqrt and fma there won't be __nldbl_* functions because dsqrtl and dfmal can just be mapped to sqrt and fma with -mlong-double-64.) While there are six or thirteen functions present in each group (plus __nldbl_* names only as an ABI, not an API), not all are distinct; they fall in various groups of aliases. There are two distinct versions built if long double has the same format as double; four if they have distinct formats but there is no _Float64x or _Float128 support; five if long double has binary128 format; seven when _Float128 is distinct from long double. Architecture-specific optimized versions are possible, but not included in my patches. For example, IA64 generally supports narrowing the result of most floating-point instructions; Power ISA 2.07 (POWER8) supports double values as arguments to float instructions, with the results narrowed as expected; Power ISA 3 (POWER9) supports round-to-odd for float128 instructions, so meaning that approach can be used without needing to set and restore the rounding mode and test "inexact". I intend to leave any such optimized versions to the architecture maintainers. Generally in such cases it would also make sense for calls to these functions to be expanded inline (given -fno-math-errno); I put a suggestion for TS 18661-1 built-in functions at <https://gcc.gnu.org/wiki/SummerOfCode>. Tested for x86_64 (this patch in isolation, as well as testing for various configurations in conjunction with further patches). * math/bits/mathcalls-narrow.h: New file. * include/bits/mathcalls-narrow.h: Likewise. * math/math-narrow.h: Likewise. * math/math.h (__MATHCALL_NARROW_ARGS_1): New macro. (__MATHCALL_NARROW_ARGS_2): Likewise. (__MATHCALL_NARROW_ARGS_3): Likewise. (__MATHCALL_NARROW_NORMAL): Likewise. (__MATHCALL_NARROW_REDIR): Likewise. (__MATHCALL_NARROW): Likewise. [__GLIBC_USE (IEC_60559_BFP_EXT)]: Repeatedly include <bits/mathcalls-narrow.h> with _Mret_, _Marg_ and __MATHCALL_NAME defined. [__GLIBC_USE (IEC_60559_TYPES_EXT)]: Likewise. * math/Makefile (headers): Add bits/mathcalls-narrow.h. (libm-narrow-fns): New variable. (libm-narrow-types-basic): Likewise. (libm-narrow-types-ldouble-yes): Likewise. (libm-narrow-types-float128-yes): Likewise. (libm-narrow-types-float128-alias-yes): Likewise. (libm-narrow-types): Likewise. (libm-routines): Add narrowing functions. * sysdeps/i386/fpu/fenv_private.h [__x86_64__] (libc_feholdexcept_setroundf128): New macro. [__x86_64__] (libc_feupdateenv_testf128): Likewise. * sysdeps/ieee754/float128/float128_private.h: Include <math/math-narrow.h>. [libc_feholdexcept_setroundf128] (libc_feholdexcept_setroundl): Undefine and redefine. [libc_feupdateenv_testf128] (libc_feupdateenv_testl): Likewise. (libm_alias_float_ldouble): Undefine and redefine. (libm_alias_double_ldouble): Likewise.
2018-02-09 22:18:52 +01:00
#ifndef _MATH_NARROW_H
#define _MATH_NARROW_H 1
#include <bits/floatn.h>
#include <bits/long-double.h>
#include <errno.h>
#include <fenv.h>
#include <ieee754.h>
Do not include math-barriers.h in math_private.h. This patch continues the math_private.h cleanup by stopping math_private.h from including math-barriers.h and making the users of the barrier macros include the latter header directly. No attempt is made to remove any math_private.h includes that are now unused, except in strtod_l.c where that is done to avoid line number changes in assertions, so that installed stripped shared libraries can be compared before and after the patch. (I think the floating-point environment support in math_private.h should also move out - some architectures already have fenv_private.h as an architecture-internal header included from their math_private.h - and after moving that out might be a better time to identify unused math_private.h includes.) Tested for x86_64 and x86, and tested with build-many-glibcs.py that installed stripped shared libraries are unchanged by the patch. * sysdeps/generic/math_private.h: Do not include <math-barriers.h>. * stdlib/strtod_l.c: Include <math-barriers.h> instead of <math_private.h>. * math/fromfp.h: Include <math-barriers.h>. * math/math-narrow.h: Likewise. * math/s_nextafter.c: Likewise. * math/s_nexttowardf.c: Likewise. * sysdeps/aarch64/fpu/s_llrint.c: Likewise. * sysdeps/aarch64/fpu/s_llrintf.c: Likewise. * sysdeps/aarch64/fpu/s_lrint.c: Likewise. * sysdeps/aarch64/fpu/s_lrintf.c: Likewise. * sysdeps/i386/fpu/s_nextafterl.c: Likewise. * sysdeps/i386/fpu/s_nexttoward.c: Likewise. * sysdeps/i386/fpu/s_nexttowardf.c: Likewise. * sysdeps/ieee754/dbl-64/e_atan2.c: Likewise. * sysdeps/ieee754/dbl-64/e_atanh.c: Likewise. * sysdeps/ieee754/dbl-64/e_exp.c: Likewise. * sysdeps/ieee754/dbl-64/e_exp2.c: Likewise. * sysdeps/ieee754/dbl-64/e_j0.c: Likewise. * sysdeps/ieee754/dbl-64/e_sqrt.c: Likewise. * sysdeps/ieee754/dbl-64/s_expm1.c: Likewise. * sysdeps/ieee754/dbl-64/s_fma.c: Likewise. * sysdeps/ieee754/dbl-64/s_fmaf.c: Likewise. * sysdeps/ieee754/dbl-64/s_log1p.c: Likewise. * sysdeps/ieee754/dbl-64/s_nearbyint.c: Likewise. * sysdeps/ieee754/dbl-64/wordsize-64/s_nearbyint.c: Likewise. * sysdeps/ieee754/flt-32/e_atanhf.c: Likewise. * sysdeps/ieee754/flt-32/e_j0f.c: Likewise. * sysdeps/ieee754/flt-32/s_expm1f.c: Likewise. * sysdeps/ieee754/flt-32/s_log1pf.c: Likewise. * sysdeps/ieee754/flt-32/s_nearbyintf.c: Likewise. * sysdeps/ieee754/flt-32/s_nextafterf.c: Likewise. * sysdeps/ieee754/k_standardl.c: Likewise. * sysdeps/ieee754/ldbl-128/e_asinl.c: Likewise. * sysdeps/ieee754/ldbl-128/e_expl.c: Likewise. * sysdeps/ieee754/ldbl-128/e_powl.c: Likewise. * sysdeps/ieee754/ldbl-128/s_fmal.c: Likewise. * sysdeps/ieee754/ldbl-128/s_nearbyintl.c: Likewise. * sysdeps/ieee754/ldbl-128/s_nextafterl.c: Likewise. * sysdeps/ieee754/ldbl-128/s_nexttoward.c: Likewise. * sysdeps/ieee754/ldbl-128/s_nexttowardf.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/e_asinl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_fmal.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_rintl.c: Likewise. * sysdeps/ieee754/ldbl-96/e_atanhl.c: Likewise. * sysdeps/ieee754/ldbl-96/e_j0l.c: Likewise. * sysdeps/ieee754/ldbl-96/s_fma.c: Likewise. * sysdeps/ieee754/ldbl-96/s_fmal.c: Likewise. * sysdeps/ieee754/ldbl-96/s_nexttoward.c: Likewise. * sysdeps/ieee754/ldbl-96/s_nexttowardf.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_nexttowardfd.c: Likewise. * sysdeps/m68k/m680x0/fpu/s_nextafterl.c: Likewise.
2018-05-11 17:11:38 +02:00
#include <math-barriers.h>
Add build infrastructure for narrowing libm functions. TS 18661-1 defines libm functions that carry out an operation (+ - * / sqrt fma) on their arguments and return a result rounded to a (usually) narrower type, as if the original result were computed to infinite precision and then rounded directly to the result type without any intermediate rounding to the argument type. For example, fadd, faddl and daddl for addition. These are the last remaining TS 18661-1 functions left to be added to glibc. TS 18661-3 extends this to corresponding functions for _FloatN and _FloatNx types. As functions parametrized by two rather than one varying floating-point types, these functions require infrastructure in glibc that was not required for previous libm functions. This patch provides such infrastructure - excluding test support, and actual function implementations, which will be in subsequent patches. Declaring the functions uses a header bits/mathcalls-narrow.h, which is included many times, for each relevant pair of types. This will end up containing macro calls of the form __MATHCALL_NARROW (__MATHCALL_NAME (add), __MATHCALL_REDIR_NAME (add), 2); for each family of narrowing functions. (The structure of this macro call, with the calls to __MATHCALL_NAME and __MATHCALL_REDIR_NAME there rather than in the definition of __MATHCALL_NARROW, arises from the names such as "add" *not* themselves being reserved identifiers - meaning it's necessary to avoid any indirection that would result in a user-defined "add" macro being expanded.) Whereas for existing functions declaring long double functions is disabled if _LIBC in the case where they alias double functions, to facilitate defining the long double functions as aliases of the double ones, there is no such logic for the narrowing functions in this patch. Rather, the files defining such functions are expected to use #define to hide the original declarations of the alias names, to avoid errors about defining aliases with incompatible types. math/Makefile support is added for building the functions (listed in libm-narrow-fns, currently empty) for all relevant pairs of types. An internal header math-narrow.h is added for macros shared between multiple function implementations - currently a ROUND_TO_ODD macro to facilitate writing functions using the round-to-odd implementation approach, and alias macros to create all the required function aliases. libc_feholdexcept_setroundf128 and libc_feupdateenv_testf128 are added for use when required (only for x86_64). float128_private.h support is added for ldbl-128 narrowing functions to be used for _Float128. Certain things are specifically omitted from this patch and the immediate followups. tgmath.h support is deferred; there remain unresolved questions about how the type-generic macros for these functions are supposed to work, especially in the case of arguments of integer type. The math.h / bits/mathcalls-narrow.h logic, and the logic for determining what functions / aliases to define, will need some adjustments to support the sqrt and fma functions, where e.g. f32xsqrtf64 can just be an alias for sqrt rather than a separate function. TS 18661-1 defines FP_FAST_* macros but no support is included for defining them (they won't in general be true without architecture-specific optimized function versions). For each of the function groups (add sub mul div sqrt fma) there are always six functions present (e.g. fadd, faddl, daddl, f32addf64, f32addf32x, f32xaddf64). When _Float64x and _Float128 are supported, there are seven more (e.g. f32addf64x, f32addf128, f64addf64x, f64addf128, f32xaddf64x, f32xaddf128, f64xaddf128). In addition, in the ldbl-opt case there are function names such as __nldbl_daddl (an alias for f32xaddf64, which is not a reserved name in TS 18661-1, only in TS 18661-3), for calls to daddl to be mapped to in the -mlong-double-64 case. (Calls to faddl just get mapped to fadd, and for sqrt and fma there won't be __nldbl_* functions because dsqrtl and dfmal can just be mapped to sqrt and fma with -mlong-double-64.) While there are six or thirteen functions present in each group (plus __nldbl_* names only as an ABI, not an API), not all are distinct; they fall in various groups of aliases. There are two distinct versions built if long double has the same format as double; four if they have distinct formats but there is no _Float64x or _Float128 support; five if long double has binary128 format; seven when _Float128 is distinct from long double. Architecture-specific optimized versions are possible, but not included in my patches. For example, IA64 generally supports narrowing the result of most floating-point instructions; Power ISA 2.07 (POWER8) supports double values as arguments to float instructions, with the results narrowed as expected; Power ISA 3 (POWER9) supports round-to-odd for float128 instructions, so meaning that approach can be used without needing to set and restore the rounding mode and test "inexact". I intend to leave any such optimized versions to the architecture maintainers. Generally in such cases it would also make sense for calls to these functions to be expanded inline (given -fno-math-errno); I put a suggestion for TS 18661-1 built-in functions at <https://gcc.gnu.org/wiki/SummerOfCode>. Tested for x86_64 (this patch in isolation, as well as testing for various configurations in conjunction with further patches). * math/bits/mathcalls-narrow.h: New file. * include/bits/mathcalls-narrow.h: Likewise. * math/math-narrow.h: Likewise. * math/math.h (__MATHCALL_NARROW_ARGS_1): New macro. (__MATHCALL_NARROW_ARGS_2): Likewise. (__MATHCALL_NARROW_ARGS_3): Likewise. (__MATHCALL_NARROW_NORMAL): Likewise. (__MATHCALL_NARROW_REDIR): Likewise. (__MATHCALL_NARROW): Likewise. [__GLIBC_USE (IEC_60559_BFP_EXT)]: Repeatedly include <bits/mathcalls-narrow.h> with _Mret_, _Marg_ and __MATHCALL_NAME defined. [__GLIBC_USE (IEC_60559_TYPES_EXT)]: Likewise. * math/Makefile (headers): Add bits/mathcalls-narrow.h. (libm-narrow-fns): New variable. (libm-narrow-types-basic): Likewise. (libm-narrow-types-ldouble-yes): Likewise. (libm-narrow-types-float128-yes): Likewise. (libm-narrow-types-float128-alias-yes): Likewise. (libm-narrow-types): Likewise. (libm-routines): Add narrowing functions. * sysdeps/i386/fpu/fenv_private.h [__x86_64__] (libc_feholdexcept_setroundf128): New macro. [__x86_64__] (libc_feupdateenv_testf128): Likewise. * sysdeps/ieee754/float128/float128_private.h: Include <math/math-narrow.h>. [libc_feholdexcept_setroundf128] (libc_feholdexcept_setroundl): Undefine and redefine. [libc_feupdateenv_testf128] (libc_feupdateenv_testl): Likewise. (libm_alias_float_ldouble): Undefine and redefine. (libm_alias_double_ldouble): Likewise.
2018-02-09 22:18:52 +01:00
#include <math_private.h>
Do not include fenv_private.h in math_private.h. Continuing the clean-up related to the catch-all math_private.h header, this patch stops math_private.h from including fenv_private.h. Instead, fenv_private.h is included directly from those users of math_private.h that also used interfaces from fenv_private.h. No attempt is made to remove unused includes of math_private.h, but that is a natural followup. (However, since math_private.h sometimes defines optimized versions of math.h interfaces or __* variants thereof, as well as defining its own interfaces, I think it might make sense to get all those optimized versions included from include/math.h, not requiring a separate header at all, before eliminating unused math_private.h includes - that avoids a file quietly becoming less-optimized if someone adds a call to one of those interfaces without restoring a math_private.h include to that file.) There is still a pitfall that if code uses plain fe* and __fe* interfaces, but only includes fenv.h and not fenv_private.h or (before this patch) math_private.h, it will compile on platforms with exceptions and rounding modes but not get the optimized versions (and possibly not compile) on platforms without exception and rounding mode support, so making it easy to break the build for such platforms accidentally. I think it would be most natural to move the inlines / macros for fe* and __fe* in the case of no exceptions and rounding modes into include/fenv.h, so that all code including fenv.h with _ISOMAC not defined automatically gets them. Then fenv_private.h would be purely the header for the libc_fe*, SET_RESTORE_ROUND etc. internal interfaces and the risk of breaking the build on other platforms than the one you tested on because of a missing fenv_private.h include would be much reduced (and there would be some unused fenv_private.h includes to remove along with unused math_private.h includes). Tested for x86_64 and x86, and tested with build-many-glibcs.py that installed stripped shared libraries are unchanged by this patch. * sysdeps/generic/math_private.h: Do not include <fenv_private.h>. * math/fromfp.h: Include <fenv_private.h>. * math/math-narrow.h: Likewise. * math/s_cexp_template.c: Likewise. * math/s_csin_template.c: Likewise. * math/s_csinh_template.c: Likewise. * math/s_ctan_template.c: Likewise. * math/s_ctanh_template.c: Likewise. * math/s_iseqsig_template.c: Likewise. * math/w_acos_compat.c: Likewise. * math/w_acosf_compat.c: Likewise. * math/w_acosl_compat.c: Likewise. * math/w_asin_compat.c: Likewise. * math/w_asinf_compat.c: Likewise. * math/w_asinl_compat.c: Likewise. * math/w_ilogb_template.c: Likewise. * math/w_j0_compat.c: Likewise. * math/w_j0f_compat.c: Likewise. * math/w_j0l_compat.c: Likewise. * math/w_j1_compat.c: Likewise. * math/w_j1f_compat.c: Likewise. * math/w_j1l_compat.c: Likewise. * math/w_jn_compat.c: Likewise. * math/w_jnf_compat.c: Likewise. * math/w_llogb_template.c: Likewise. * math/w_log10_compat.c: Likewise. * math/w_log10f_compat.c: Likewise. * math/w_log10l_compat.c: Likewise. * math/w_log2_compat.c: Likewise. * math/w_log2f_compat.c: Likewise. * math/w_log2l_compat.c: Likewise. * math/w_log_compat.c: Likewise. * math/w_logf_compat.c: Likewise. * math/w_logl_compat.c: Likewise. * sysdeps/aarch64/fpu/feholdexcpt.c: Likewise. * sysdeps/aarch64/fpu/fesetround.c: Likewise. * sysdeps/aarch64/fpu/fgetexcptflg.c: Likewise. * sysdeps/aarch64/fpu/ftestexcept.c: Likewise. * sysdeps/ieee754/dbl-64/e_atan2.c: Likewise. * sysdeps/ieee754/dbl-64/e_exp.c: Likewise. * sysdeps/ieee754/dbl-64/e_exp2.c: Likewise. * sysdeps/ieee754/dbl-64/e_gamma_r.c: Likewise. * sysdeps/ieee754/dbl-64/e_jn.c: Likewise. * sysdeps/ieee754/dbl-64/e_pow.c: Likewise. * sysdeps/ieee754/dbl-64/e_remainder.c: Likewise. * sysdeps/ieee754/dbl-64/e_sqrt.c: Likewise. * sysdeps/ieee754/dbl-64/gamma_product.c: Likewise. * sysdeps/ieee754/dbl-64/lgamma_neg.c: Likewise. * sysdeps/ieee754/dbl-64/s_atan.c: Likewise. * sysdeps/ieee754/dbl-64/s_fma.c: Likewise. * sysdeps/ieee754/dbl-64/s_fmaf.c: Likewise. * sysdeps/ieee754/dbl-64/s_llrint.c: Likewise. * sysdeps/ieee754/dbl-64/s_llround.c: Likewise. * sysdeps/ieee754/dbl-64/s_lrint.c: Likewise. * sysdeps/ieee754/dbl-64/s_lround.c: Likewise. * sysdeps/ieee754/dbl-64/s_nearbyint.c: Likewise. * sysdeps/ieee754/dbl-64/s_sin.c: Likewise. * sysdeps/ieee754/dbl-64/s_sincos.c: Likewise. * sysdeps/ieee754/dbl-64/s_tan.c: Likewise. * sysdeps/ieee754/dbl-64/wordsize-64/s_lround.c: Likewise. * sysdeps/ieee754/dbl-64/wordsize-64/s_nearbyint.c: Likewise. * sysdeps/ieee754/dbl-64/x2y2m1.c: Likewise. * sysdeps/ieee754/float128/float128_private.h: Likewise. * sysdeps/ieee754/flt-32/e_gammaf_r.c: Likewise. * sysdeps/ieee754/flt-32/e_j1f.c: Likewise. * sysdeps/ieee754/flt-32/e_jnf.c: Likewise. * sysdeps/ieee754/flt-32/lgamma_negf.c: Likewise. * sysdeps/ieee754/flt-32/s_llrintf.c: Likewise. * sysdeps/ieee754/flt-32/s_llroundf.c: Likewise. * sysdeps/ieee754/flt-32/s_lrintf.c: Likewise. * sysdeps/ieee754/flt-32/s_lroundf.c: Likewise. * sysdeps/ieee754/flt-32/s_nearbyintf.c: Likewise. * sysdeps/ieee754/k_standardl.c: Likewise. * sysdeps/ieee754/ldbl-128/e_expl.c: Likewise. * sysdeps/ieee754/ldbl-128/e_gammal_r.c: Likewise. * sysdeps/ieee754/ldbl-128/e_j1l.c: Likewise. * sysdeps/ieee754/ldbl-128/e_jnl.c: Likewise. * sysdeps/ieee754/ldbl-128/gamma_productl.c: Likewise. * sysdeps/ieee754/ldbl-128/lgamma_negl.c: Likewise. * sysdeps/ieee754/ldbl-128/s_fmal.c: Likewise. * sysdeps/ieee754/ldbl-128/s_llrintl.c: Likewise. * sysdeps/ieee754/ldbl-128/s_llroundl.c: Likewise. * sysdeps/ieee754/ldbl-128/s_lrintl.c: Likewise. * sysdeps/ieee754/ldbl-128/s_lroundl.c: Likewise. * sysdeps/ieee754/ldbl-128/s_nearbyintl.c: Likewise. * sysdeps/ieee754/ldbl-128/x2y2m1l.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/e_expl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/e_j1l.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/e_jnl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/lgamma_negl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_fmal.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_llrintl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_llroundl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_lrintl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_lroundl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_rintl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/x2y2m1l.c: Likewise. * sysdeps/ieee754/ldbl-96/e_gammal_r.c: Likewise. * sysdeps/ieee754/ldbl-96/e_jnl.c: Likewise. * sysdeps/ieee754/ldbl-96/gamma_productl.c: Likewise. * sysdeps/ieee754/ldbl-96/lgamma_negl.c: Likewise. * sysdeps/ieee754/ldbl-96/s_fma.c: Likewise. * sysdeps/ieee754/ldbl-96/s_fmal.c: Likewise. * sysdeps/ieee754/ldbl-96/s_llrintl.c: Likewise. * sysdeps/ieee754/ldbl-96/s_llroundl.c: Likewise. * sysdeps/ieee754/ldbl-96/s_lrintl.c: Likewise. * sysdeps/ieee754/ldbl-96/s_lroundl.c: Likewise. * sysdeps/ieee754/ldbl-96/x2y2m1l.c: Likewise. * sysdeps/powerpc/fpu/e_sqrt.c: Likewise. * sysdeps/powerpc/fpu/e_sqrtf.c: Likewise. * sysdeps/riscv/rv64/rvd/s_ceil.c: Likewise. * sysdeps/riscv/rv64/rvd/s_floor.c: Likewise. * sysdeps/riscv/rv64/rvd/s_nearbyint.c: Likewise. * sysdeps/riscv/rv64/rvd/s_round.c: Likewise. * sysdeps/riscv/rv64/rvd/s_roundeven.c: Likewise. * sysdeps/riscv/rv64/rvd/s_trunc.c: Likewise. * sysdeps/riscv/rvd/s_finite.c: Likewise. * sysdeps/riscv/rvd/s_fmax.c: Likewise. * sysdeps/riscv/rvd/s_fmin.c: Likewise. * sysdeps/riscv/rvd/s_fpclassify.c: Likewise. * sysdeps/riscv/rvd/s_isinf.c: Likewise. * sysdeps/riscv/rvd/s_isnan.c: Likewise. * sysdeps/riscv/rvd/s_issignaling.c: Likewise. * sysdeps/riscv/rvf/fegetround.c: Likewise. * sysdeps/riscv/rvf/feholdexcpt.c: Likewise. * sysdeps/riscv/rvf/fesetenv.c: Likewise. * sysdeps/riscv/rvf/fesetround.c: Likewise. * sysdeps/riscv/rvf/feupdateenv.c: Likewise. * sysdeps/riscv/rvf/fgetexcptflg.c: Likewise. * sysdeps/riscv/rvf/ftestexcept.c: Likewise. * sysdeps/riscv/rvf/s_ceilf.c: Likewise. * sysdeps/riscv/rvf/s_finitef.c: Likewise. * sysdeps/riscv/rvf/s_floorf.c: Likewise. * sysdeps/riscv/rvf/s_fmaxf.c: Likewise. * sysdeps/riscv/rvf/s_fminf.c: Likewise. * sysdeps/riscv/rvf/s_fpclassifyf.c: Likewise. * sysdeps/riscv/rvf/s_isinff.c: Likewise. * sysdeps/riscv/rvf/s_isnanf.c: Likewise. * sysdeps/riscv/rvf/s_issignalingf.c: Likewise. * sysdeps/riscv/rvf/s_nearbyintf.c: Likewise. * sysdeps/riscv/rvf/s_roundevenf.c: Likewise. * sysdeps/riscv/rvf/s_roundf.c: Likewise. * sysdeps/riscv/rvf/s_truncf.c: Likewise.
2018-09-03 23:09:04 +02:00
#include <fenv_private.h>
Add narrowing square root functions This patch adds the narrowing square root functions from TS 18661-1 / TS 18661-3 / C2X to glibc's libm: fsqrt, fsqrtl, dsqrtl, f32sqrtf64, f32sqrtf32x, f32xsqrtf64 for all configurations; f32sqrtf64x, f32sqrtf128, f64sqrtf64x, f64sqrtf128, f32xsqrtf64x, f32xsqrtf128, f64xsqrtf128 for configurations with _Float64x and _Float128; __f32sqrtieee128 and __f64sqrtieee128 aliases in the powerpc64le case (for calls to fsqrtl and dsqrtl when long double is IEEE binary128). Corresponding tgmath.h macro support is also added. The changes are mostly similar to those for the other narrowing functions previously added, so the description of those generally applies to this patch as well. However, the not-actually-narrowing cases (where the two types involved in the function have the same floating-point format) are aliased to sqrt, sqrtl or sqrtf128 rather than needing a separately built not-actually-narrowing function such as was needed for add / sub / mul / div. Thus, there is no __nldbl_dsqrtl name for ldbl-opt because no such name was needed (whereas the other functions needed such a name since the only other name for that entry point was e.g. f32xaddf64, not reserved by TS 18661-1); the headers are made to arrange for sqrt to be called in that case instead. The DIAG_* calls in sysdeps/ieee754/soft-fp/s_dsqrtl.c are because they were observed to be needed in GCC 7 testing of riscv32-linux-gnu-rv32imac-ilp32. The other sysdeps/ieee754/soft-fp/ files added didn't need such DIAG_* in any configuration I tested with build-many-glibcs.py, but if they do turn out to be needed in more files with some other configuration / GCC version, they can always be added there. I reused the same test inputs in auto-libm-test-in as for non-narrowing sqrt rather than adding extra or separate inputs for narrowing sqrt. The tests in libm-test-narrow-sqrt.inc also follow those for non-narrowing sqrt. Tested as followed: natively with the full glibc testsuite for x86_64 (GCC 11, 7, 6) and x86 (GCC 11); with build-many-glibcs.py with GCC 11, 7 and 6; cross testing of math/ tests for powerpc64le, powerpc32 hard float, mips64 (all three ABIs, both hard and soft float). The different GCC versions are to cover the different cases in tgmath.h and tgmath.h tests properly (GCC 6 has _Float* only as typedefs in glibc headers, GCC 7 has proper _Float* support, GCC 8 adds __builtin_tgmath).
2021-09-10 22:56:22 +02:00
#include <math-narrow-alias.h>
#include <stdbool.h>
Add build infrastructure for narrowing libm functions. TS 18661-1 defines libm functions that carry out an operation (+ - * / sqrt fma) on their arguments and return a result rounded to a (usually) narrower type, as if the original result were computed to infinite precision and then rounded directly to the result type without any intermediate rounding to the argument type. For example, fadd, faddl and daddl for addition. These are the last remaining TS 18661-1 functions left to be added to glibc. TS 18661-3 extends this to corresponding functions for _FloatN and _FloatNx types. As functions parametrized by two rather than one varying floating-point types, these functions require infrastructure in glibc that was not required for previous libm functions. This patch provides such infrastructure - excluding test support, and actual function implementations, which will be in subsequent patches. Declaring the functions uses a header bits/mathcalls-narrow.h, which is included many times, for each relevant pair of types. This will end up containing macro calls of the form __MATHCALL_NARROW (__MATHCALL_NAME (add), __MATHCALL_REDIR_NAME (add), 2); for each family of narrowing functions. (The structure of this macro call, with the calls to __MATHCALL_NAME and __MATHCALL_REDIR_NAME there rather than in the definition of __MATHCALL_NARROW, arises from the names such as "add" *not* themselves being reserved identifiers - meaning it's necessary to avoid any indirection that would result in a user-defined "add" macro being expanded.) Whereas for existing functions declaring long double functions is disabled if _LIBC in the case where they alias double functions, to facilitate defining the long double functions as aliases of the double ones, there is no such logic for the narrowing functions in this patch. Rather, the files defining such functions are expected to use #define to hide the original declarations of the alias names, to avoid errors about defining aliases with incompatible types. math/Makefile support is added for building the functions (listed in libm-narrow-fns, currently empty) for all relevant pairs of types. An internal header math-narrow.h is added for macros shared between multiple function implementations - currently a ROUND_TO_ODD macro to facilitate writing functions using the round-to-odd implementation approach, and alias macros to create all the required function aliases. libc_feholdexcept_setroundf128 and libc_feupdateenv_testf128 are added for use when required (only for x86_64). float128_private.h support is added for ldbl-128 narrowing functions to be used for _Float128. Certain things are specifically omitted from this patch and the immediate followups. tgmath.h support is deferred; there remain unresolved questions about how the type-generic macros for these functions are supposed to work, especially in the case of arguments of integer type. The math.h / bits/mathcalls-narrow.h logic, and the logic for determining what functions / aliases to define, will need some adjustments to support the sqrt and fma functions, where e.g. f32xsqrtf64 can just be an alias for sqrt rather than a separate function. TS 18661-1 defines FP_FAST_* macros but no support is included for defining them (they won't in general be true without architecture-specific optimized function versions). For each of the function groups (add sub mul div sqrt fma) there are always six functions present (e.g. fadd, faddl, daddl, f32addf64, f32addf32x, f32xaddf64). When _Float64x and _Float128 are supported, there are seven more (e.g. f32addf64x, f32addf128, f64addf64x, f64addf128, f32xaddf64x, f32xaddf128, f64xaddf128). In addition, in the ldbl-opt case there are function names such as __nldbl_daddl (an alias for f32xaddf64, which is not a reserved name in TS 18661-1, only in TS 18661-3), for calls to daddl to be mapped to in the -mlong-double-64 case. (Calls to faddl just get mapped to fadd, and for sqrt and fma there won't be __nldbl_* functions because dsqrtl and dfmal can just be mapped to sqrt and fma with -mlong-double-64.) While there are six or thirteen functions present in each group (plus __nldbl_* names only as an ABI, not an API), not all are distinct; they fall in various groups of aliases. There are two distinct versions built if long double has the same format as double; four if they have distinct formats but there is no _Float64x or _Float128 support; five if long double has binary128 format; seven when _Float128 is distinct from long double. Architecture-specific optimized versions are possible, but not included in my patches. For example, IA64 generally supports narrowing the result of most floating-point instructions; Power ISA 2.07 (POWER8) supports double values as arguments to float instructions, with the results narrowed as expected; Power ISA 3 (POWER9) supports round-to-odd for float128 instructions, so meaning that approach can be used without needing to set and restore the rounding mode and test "inexact". I intend to leave any such optimized versions to the architecture maintainers. Generally in such cases it would also make sense for calls to these functions to be expanded inline (given -fno-math-errno); I put a suggestion for TS 18661-1 built-in functions at <https://gcc.gnu.org/wiki/SummerOfCode>. Tested for x86_64 (this patch in isolation, as well as testing for various configurations in conjunction with further patches). * math/bits/mathcalls-narrow.h: New file. * include/bits/mathcalls-narrow.h: Likewise. * math/math-narrow.h: Likewise. * math/math.h (__MATHCALL_NARROW_ARGS_1): New macro. (__MATHCALL_NARROW_ARGS_2): Likewise. (__MATHCALL_NARROW_ARGS_3): Likewise. (__MATHCALL_NARROW_NORMAL): Likewise. (__MATHCALL_NARROW_REDIR): Likewise. (__MATHCALL_NARROW): Likewise. [__GLIBC_USE (IEC_60559_BFP_EXT)]: Repeatedly include <bits/mathcalls-narrow.h> with _Mret_, _Marg_ and __MATHCALL_NAME defined. [__GLIBC_USE (IEC_60559_TYPES_EXT)]: Likewise. * math/Makefile (headers): Add bits/mathcalls-narrow.h. (libm-narrow-fns): New variable. (libm-narrow-types-basic): Likewise. (libm-narrow-types-ldouble-yes): Likewise. (libm-narrow-types-float128-yes): Likewise. (libm-narrow-types-float128-alias-yes): Likewise. (libm-narrow-types): Likewise. (libm-routines): Add narrowing functions. * sysdeps/i386/fpu/fenv_private.h [__x86_64__] (libc_feholdexcept_setroundf128): New macro. [__x86_64__] (libc_feupdateenv_testf128): Likewise. * sysdeps/ieee754/float128/float128_private.h: Include <math/math-narrow.h>. [libc_feholdexcept_setroundf128] (libc_feholdexcept_setroundl): Undefine and redefine. [libc_feupdateenv_testf128] (libc_feupdateenv_testl): Likewise. (libm_alias_float_ldouble): Undefine and redefine. (libm_alias_double_ldouble): Likewise.
2018-02-09 22:18:52 +01:00
/* Carry out a computation using round-to-odd. The computation is
EXPR; the union type in which to store the result is UNION and the
subfield of the "ieee" field of that union with the low part of the
Add narrowing square root functions This patch adds the narrowing square root functions from TS 18661-1 / TS 18661-3 / C2X to glibc's libm: fsqrt, fsqrtl, dsqrtl, f32sqrtf64, f32sqrtf32x, f32xsqrtf64 for all configurations; f32sqrtf64x, f32sqrtf128, f64sqrtf64x, f64sqrtf128, f32xsqrtf64x, f32xsqrtf128, f64xsqrtf128 for configurations with _Float64x and _Float128; __f32sqrtieee128 and __f64sqrtieee128 aliases in the powerpc64le case (for calls to fsqrtl and dsqrtl when long double is IEEE binary128). Corresponding tgmath.h macro support is also added. The changes are mostly similar to those for the other narrowing functions previously added, so the description of those generally applies to this patch as well. However, the not-actually-narrowing cases (where the two types involved in the function have the same floating-point format) are aliased to sqrt, sqrtl or sqrtf128 rather than needing a separately built not-actually-narrowing function such as was needed for add / sub / mul / div. Thus, there is no __nldbl_dsqrtl name for ldbl-opt because no such name was needed (whereas the other functions needed such a name since the only other name for that entry point was e.g. f32xaddf64, not reserved by TS 18661-1); the headers are made to arrange for sqrt to be called in that case instead. The DIAG_* calls in sysdeps/ieee754/soft-fp/s_dsqrtl.c are because they were observed to be needed in GCC 7 testing of riscv32-linux-gnu-rv32imac-ilp32. The other sysdeps/ieee754/soft-fp/ files added didn't need such DIAG_* in any configuration I tested with build-many-glibcs.py, but if they do turn out to be needed in more files with some other configuration / GCC version, they can always be added there. I reused the same test inputs in auto-libm-test-in as for non-narrowing sqrt rather than adding extra or separate inputs for narrowing sqrt. The tests in libm-test-narrow-sqrt.inc also follow those for non-narrowing sqrt. Tested as followed: natively with the full glibc testsuite for x86_64 (GCC 11, 7, 6) and x86 (GCC 11); with build-many-glibcs.py with GCC 11, 7 and 6; cross testing of math/ tests for powerpc64le, powerpc32 hard float, mips64 (all three ABIs, both hard and soft float). The different GCC versions are to cover the different cases in tgmath.h and tgmath.h tests properly (GCC 6 has _Float* only as typedefs in glibc headers, GCC 7 has proper _Float* support, GCC 8 adds __builtin_tgmath).
2021-09-10 22:56:22 +02:00
mantissa is MANTISSA; SUFFIX is the suffix for both underlying libm
functions for the argument type (for computations where a libm
function rather than a C operator is used when argument and result
types are the same) and the libc_fe* macros to ensure that the
correct rounding mode is used, for platforms with multiple rounding
modes where those macros set only the relevant mode.
CLEAR_UNDERFLOW indicates whether underflow exceptions must be
cleared (in the case where a round-toward-zero underflow might not
indicate an underflow after narrowing, when that narrowing only
reduces precision not exponent range and the architecture uses
before-rounding tininess detection). This macro does not work
correctly if the sign of an exact zero result depends on the
rounding mode, so that case must be checked for separately. */
#define ROUND_TO_ODD(EXPR, UNION, SUFFIX, MANTISSA, CLEAR_UNDERFLOW) \
Add build infrastructure for narrowing libm functions. TS 18661-1 defines libm functions that carry out an operation (+ - * / sqrt fma) on their arguments and return a result rounded to a (usually) narrower type, as if the original result were computed to infinite precision and then rounded directly to the result type without any intermediate rounding to the argument type. For example, fadd, faddl and daddl for addition. These are the last remaining TS 18661-1 functions left to be added to glibc. TS 18661-3 extends this to corresponding functions for _FloatN and _FloatNx types. As functions parametrized by two rather than one varying floating-point types, these functions require infrastructure in glibc that was not required for previous libm functions. This patch provides such infrastructure - excluding test support, and actual function implementations, which will be in subsequent patches. Declaring the functions uses a header bits/mathcalls-narrow.h, which is included many times, for each relevant pair of types. This will end up containing macro calls of the form __MATHCALL_NARROW (__MATHCALL_NAME (add), __MATHCALL_REDIR_NAME (add), 2); for each family of narrowing functions. (The structure of this macro call, with the calls to __MATHCALL_NAME and __MATHCALL_REDIR_NAME there rather than in the definition of __MATHCALL_NARROW, arises from the names such as "add" *not* themselves being reserved identifiers - meaning it's necessary to avoid any indirection that would result in a user-defined "add" macro being expanded.) Whereas for existing functions declaring long double functions is disabled if _LIBC in the case where they alias double functions, to facilitate defining the long double functions as aliases of the double ones, there is no such logic for the narrowing functions in this patch. Rather, the files defining such functions are expected to use #define to hide the original declarations of the alias names, to avoid errors about defining aliases with incompatible types. math/Makefile support is added for building the functions (listed in libm-narrow-fns, currently empty) for all relevant pairs of types. An internal header math-narrow.h is added for macros shared between multiple function implementations - currently a ROUND_TO_ODD macro to facilitate writing functions using the round-to-odd implementation approach, and alias macros to create all the required function aliases. libc_feholdexcept_setroundf128 and libc_feupdateenv_testf128 are added for use when required (only for x86_64). float128_private.h support is added for ldbl-128 narrowing functions to be used for _Float128. Certain things are specifically omitted from this patch and the immediate followups. tgmath.h support is deferred; there remain unresolved questions about how the type-generic macros for these functions are supposed to work, especially in the case of arguments of integer type. The math.h / bits/mathcalls-narrow.h logic, and the logic for determining what functions / aliases to define, will need some adjustments to support the sqrt and fma functions, where e.g. f32xsqrtf64 can just be an alias for sqrt rather than a separate function. TS 18661-1 defines FP_FAST_* macros but no support is included for defining them (they won't in general be true without architecture-specific optimized function versions). For each of the function groups (add sub mul div sqrt fma) there are always six functions present (e.g. fadd, faddl, daddl, f32addf64, f32addf32x, f32xaddf64). When _Float64x and _Float128 are supported, there are seven more (e.g. f32addf64x, f32addf128, f64addf64x, f64addf128, f32xaddf64x, f32xaddf128, f64xaddf128). In addition, in the ldbl-opt case there are function names such as __nldbl_daddl (an alias for f32xaddf64, which is not a reserved name in TS 18661-1, only in TS 18661-3), for calls to daddl to be mapped to in the -mlong-double-64 case. (Calls to faddl just get mapped to fadd, and for sqrt and fma there won't be __nldbl_* functions because dsqrtl and dfmal can just be mapped to sqrt and fma with -mlong-double-64.) While there are six or thirteen functions present in each group (plus __nldbl_* names only as an ABI, not an API), not all are distinct; they fall in various groups of aliases. There are two distinct versions built if long double has the same format as double; four if they have distinct formats but there is no _Float64x or _Float128 support; five if long double has binary128 format; seven when _Float128 is distinct from long double. Architecture-specific optimized versions are possible, but not included in my patches. For example, IA64 generally supports narrowing the result of most floating-point instructions; Power ISA 2.07 (POWER8) supports double values as arguments to float instructions, with the results narrowed as expected; Power ISA 3 (POWER9) supports round-to-odd for float128 instructions, so meaning that approach can be used without needing to set and restore the rounding mode and test "inexact". I intend to leave any such optimized versions to the architecture maintainers. Generally in such cases it would also make sense for calls to these functions to be expanded inline (given -fno-math-errno); I put a suggestion for TS 18661-1 built-in functions at <https://gcc.gnu.org/wiki/SummerOfCode>. Tested for x86_64 (this patch in isolation, as well as testing for various configurations in conjunction with further patches). * math/bits/mathcalls-narrow.h: New file. * include/bits/mathcalls-narrow.h: Likewise. * math/math-narrow.h: Likewise. * math/math.h (__MATHCALL_NARROW_ARGS_1): New macro. (__MATHCALL_NARROW_ARGS_2): Likewise. (__MATHCALL_NARROW_ARGS_3): Likewise. (__MATHCALL_NARROW_NORMAL): Likewise. (__MATHCALL_NARROW_REDIR): Likewise. (__MATHCALL_NARROW): Likewise. [__GLIBC_USE (IEC_60559_BFP_EXT)]: Repeatedly include <bits/mathcalls-narrow.h> with _Mret_, _Marg_ and __MATHCALL_NAME defined. [__GLIBC_USE (IEC_60559_TYPES_EXT)]: Likewise. * math/Makefile (headers): Add bits/mathcalls-narrow.h. (libm-narrow-fns): New variable. (libm-narrow-types-basic): Likewise. (libm-narrow-types-ldouble-yes): Likewise. (libm-narrow-types-float128-yes): Likewise. (libm-narrow-types-float128-alias-yes): Likewise. (libm-narrow-types): Likewise. (libm-routines): Add narrowing functions. * sysdeps/i386/fpu/fenv_private.h [__x86_64__] (libc_feholdexcept_setroundf128): New macro. [__x86_64__] (libc_feupdateenv_testf128): Likewise. * sysdeps/ieee754/float128/float128_private.h: Include <math/math-narrow.h>. [libc_feholdexcept_setroundf128] (libc_feholdexcept_setroundl): Undefine and redefine. [libc_feupdateenv_testf128] (libc_feupdateenv_testl): Likewise. (libm_alias_float_ldouble): Undefine and redefine. (libm_alias_double_ldouble): Likewise.
2018-02-09 22:18:52 +01:00
({ \
fenv_t env; \
UNION u; \
\
libc_feholdexcept_setround ## SUFFIX (&env, FE_TOWARDZERO); \
u.d = (EXPR); \
math_force_eval (u.d); \
if (CLEAR_UNDERFLOW) \
feclearexcept (FE_UNDERFLOW); \
Add build infrastructure for narrowing libm functions. TS 18661-1 defines libm functions that carry out an operation (+ - * / sqrt fma) on their arguments and return a result rounded to a (usually) narrower type, as if the original result were computed to infinite precision and then rounded directly to the result type without any intermediate rounding to the argument type. For example, fadd, faddl and daddl for addition. These are the last remaining TS 18661-1 functions left to be added to glibc. TS 18661-3 extends this to corresponding functions for _FloatN and _FloatNx types. As functions parametrized by two rather than one varying floating-point types, these functions require infrastructure in glibc that was not required for previous libm functions. This patch provides such infrastructure - excluding test support, and actual function implementations, which will be in subsequent patches. Declaring the functions uses a header bits/mathcalls-narrow.h, which is included many times, for each relevant pair of types. This will end up containing macro calls of the form __MATHCALL_NARROW (__MATHCALL_NAME (add), __MATHCALL_REDIR_NAME (add), 2); for each family of narrowing functions. (The structure of this macro call, with the calls to __MATHCALL_NAME and __MATHCALL_REDIR_NAME there rather than in the definition of __MATHCALL_NARROW, arises from the names such as "add" *not* themselves being reserved identifiers - meaning it's necessary to avoid any indirection that would result in a user-defined "add" macro being expanded.) Whereas for existing functions declaring long double functions is disabled if _LIBC in the case where they alias double functions, to facilitate defining the long double functions as aliases of the double ones, there is no such logic for the narrowing functions in this patch. Rather, the files defining such functions are expected to use #define to hide the original declarations of the alias names, to avoid errors about defining aliases with incompatible types. math/Makefile support is added for building the functions (listed in libm-narrow-fns, currently empty) for all relevant pairs of types. An internal header math-narrow.h is added for macros shared between multiple function implementations - currently a ROUND_TO_ODD macro to facilitate writing functions using the round-to-odd implementation approach, and alias macros to create all the required function aliases. libc_feholdexcept_setroundf128 and libc_feupdateenv_testf128 are added for use when required (only for x86_64). float128_private.h support is added for ldbl-128 narrowing functions to be used for _Float128. Certain things are specifically omitted from this patch and the immediate followups. tgmath.h support is deferred; there remain unresolved questions about how the type-generic macros for these functions are supposed to work, especially in the case of arguments of integer type. The math.h / bits/mathcalls-narrow.h logic, and the logic for determining what functions / aliases to define, will need some adjustments to support the sqrt and fma functions, where e.g. f32xsqrtf64 can just be an alias for sqrt rather than a separate function. TS 18661-1 defines FP_FAST_* macros but no support is included for defining them (they won't in general be true without architecture-specific optimized function versions). For each of the function groups (add sub mul div sqrt fma) there are always six functions present (e.g. fadd, faddl, daddl, f32addf64, f32addf32x, f32xaddf64). When _Float64x and _Float128 are supported, there are seven more (e.g. f32addf64x, f32addf128, f64addf64x, f64addf128, f32xaddf64x, f32xaddf128, f64xaddf128). In addition, in the ldbl-opt case there are function names such as __nldbl_daddl (an alias for f32xaddf64, which is not a reserved name in TS 18661-1, only in TS 18661-3), for calls to daddl to be mapped to in the -mlong-double-64 case. (Calls to faddl just get mapped to fadd, and for sqrt and fma there won't be __nldbl_* functions because dsqrtl and dfmal can just be mapped to sqrt and fma with -mlong-double-64.) While there are six or thirteen functions present in each group (plus __nldbl_* names only as an ABI, not an API), not all are distinct; they fall in various groups of aliases. There are two distinct versions built if long double has the same format as double; four if they have distinct formats but there is no _Float64x or _Float128 support; five if long double has binary128 format; seven when _Float128 is distinct from long double. Architecture-specific optimized versions are possible, but not included in my patches. For example, IA64 generally supports narrowing the result of most floating-point instructions; Power ISA 2.07 (POWER8) supports double values as arguments to float instructions, with the results narrowed as expected; Power ISA 3 (POWER9) supports round-to-odd for float128 instructions, so meaning that approach can be used without needing to set and restore the rounding mode and test "inexact". I intend to leave any such optimized versions to the architecture maintainers. Generally in such cases it would also make sense for calls to these functions to be expanded inline (given -fno-math-errno); I put a suggestion for TS 18661-1 built-in functions at <https://gcc.gnu.org/wiki/SummerOfCode>. Tested for x86_64 (this patch in isolation, as well as testing for various configurations in conjunction with further patches). * math/bits/mathcalls-narrow.h: New file. * include/bits/mathcalls-narrow.h: Likewise. * math/math-narrow.h: Likewise. * math/math.h (__MATHCALL_NARROW_ARGS_1): New macro. (__MATHCALL_NARROW_ARGS_2): Likewise. (__MATHCALL_NARROW_ARGS_3): Likewise. (__MATHCALL_NARROW_NORMAL): Likewise. (__MATHCALL_NARROW_REDIR): Likewise. (__MATHCALL_NARROW): Likewise. [__GLIBC_USE (IEC_60559_BFP_EXT)]: Repeatedly include <bits/mathcalls-narrow.h> with _Mret_, _Marg_ and __MATHCALL_NAME defined. [__GLIBC_USE (IEC_60559_TYPES_EXT)]: Likewise. * math/Makefile (headers): Add bits/mathcalls-narrow.h. (libm-narrow-fns): New variable. (libm-narrow-types-basic): Likewise. (libm-narrow-types-ldouble-yes): Likewise. (libm-narrow-types-float128-yes): Likewise. (libm-narrow-types-float128-alias-yes): Likewise. (libm-narrow-types): Likewise. (libm-routines): Add narrowing functions. * sysdeps/i386/fpu/fenv_private.h [__x86_64__] (libc_feholdexcept_setroundf128): New macro. [__x86_64__] (libc_feupdateenv_testf128): Likewise. * sysdeps/ieee754/float128/float128_private.h: Include <math/math-narrow.h>. [libc_feholdexcept_setroundf128] (libc_feholdexcept_setroundl): Undefine and redefine. [libc_feupdateenv_testf128] (libc_feupdateenv_testl): Likewise. (libm_alias_float_ldouble): Undefine and redefine. (libm_alias_double_ldouble): Likewise.
2018-02-09 22:18:52 +01:00
u.ieee.MANTISSA \
|= libc_feupdateenv_test ## SUFFIX (&env, FE_INEXACT) != 0; \
\
u.d; \
})
Add narrowing add functions. This patch adds the narrowing add functions from TS 18661-1 to glibc's libm: fadd, faddl, daddl, f32addf64, f32addf32x, f32xaddf64 for all configurations; f32addf64x, f32addf128, f64addf64x, f64addf128, f32xaddf64x, f32xaddf128, f64xaddf128 for configurations with _Float64x and _Float128; __nldbl_daddl for ldbl-opt. As discussed for the build infrastructure patch, tgmath.h support is deliberately deferred, and FP_FAST_* macros are not applicable without optimized function implementations. Function implementations are added for all relevant pairs of formats (including certain cases of a format and itself where more than one type has that format). The main implementations use round-to-odd, or a trivial computation in the case where both formats are the same or where the wider format is IBM long double (in which case we don't attempt to be correctly rounding). The sysdeps/ieee754/soft-fp implementations use soft-fp, and are used automatically for configurations without exceptions and rounding modes by virtue of existing Implies files. As previously discussed, optimized versions for particular architectures are possible, but not included. i386 gets a special version of f32xaddf64 to avoid problems with double rounding (similar to the existing fdim version), since this function must round just once without an intermediate rounding to long double. (No such special version is needed for any other function, because the nontrivial functions use round-to-odd, which does the intermediate computation with the rounding mode set to round-to-zero, and double rounding is OK except in round-to-nearest mode, so is OK for that intermediate round-to-zero computation.) mul and div will need slightly different special versions for i386 (using round-to-odd on long double instead of precision control) because of the possibility of inexact intermediate results in the subnormal range for double. To reduce duplication among the different function implementations, math-narrow.h gets macros CHECK_NARROW_ADD, NARROW_ADD_ROUND_TO_ODD and NARROW_ADD_TRIVIAL. In the trivial cases and for any architecture-specific optimized implementations, the overhead of the errno setting might be significant, but I think that's best handled through compiler built-in functions rather than providing separate no-errno versions in glibc (and likewise there are no __*_finite entry points for these function provided, __*_finite effectively being no-errno versions at present in most cases). Tested for x86_64 and x86, with both GCC 6 and GCC 7. Tested for mips64 (all three ABIs, both hard and soft float) and powerpc with GCC 7. Tested with build-many-glibcs.py with both GCC 6 and GCC 7. * math/Makefile (libm-narrow-fns): Add add. (libm-test-funcs-narrow): Likewise. * math/Versions (GLIBC_2.28): Add narrowing add functions. * math/bits/mathcalls-narrow.h (add): Use __MATHCALL_NARROW . * math/gen-auto-libm-tests.c (test_functions): Add add. * math/math-narrow.h (CHECK_NARROW_ADD): New macro. (NARROW_ADD_ROUND_TO_ODD): Likewise. (NARROW_ADD_TRIVIAL): Likewise. * sysdeps/ieee754/float128/float128_private.h (__faddl): New macro. (__daddl): Likewise. * sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add fadd and dadd. (CFLAGS-nldbl-dadd.c): New variable. (CFLAGS-nldbl-fadd.c): Likewise. * sysdeps/ieee754/ldbl-opt/Versions (GLIBC_2.28): Add __nldbl_daddl. * sysdeps/ieee754/ldbl-opt/nldbl-compat.h (__nldbl_daddl): New prototype. * manual/arith.texi (Misc FP Arithmetic): Document fadd, faddl, daddl, fMaddfN, fMaddfNx, fMxaddfN and fMxaddfNx. * math/auto-libm-test-in: Add tests of add. * math/auto-libm-test-out-narrow-add: New generated file. * math/libm-test-narrow-add.inc: New file. * sysdeps/i386/fpu/s_f32xaddf64.c: Likewise. * sysdeps/ieee754/dbl-64/s_f32xaddf64.c: Likewise. * sysdeps/ieee754/dbl-64/s_fadd.c: Likewise. * sysdeps/ieee754/float128/s_f32addf128.c: Likewise. * sysdeps/ieee754/float128/s_f64addf128.c: Likewise. * sysdeps/ieee754/float128/s_f64xaddf128.c: Likewise. * sysdeps/ieee754/ldbl-128/s_daddl.c: Likewise. * sysdeps/ieee754/ldbl-128/s_f64xaddf128.c: Likewise. * sysdeps/ieee754/ldbl-128/s_faddl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_daddl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_faddl.c: Likewise. * sysdeps/ieee754/ldbl-96/s_daddl.c: Likewise. * sysdeps/ieee754/ldbl-96/s_faddl.c: Likewise. * sysdeps/ieee754/ldbl-opt/nldbl-dadd.c: Likewise. * sysdeps/ieee754/ldbl-opt/nldbl-fadd.c: Likewise. * sysdeps/ieee754/soft-fp/s_daddl.c: Likewise. * sysdeps/ieee754/soft-fp/s_fadd.c: Likewise. * sysdeps/ieee754/soft-fp/s_faddl.c: Likewise. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/mach/hurd/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/riscv/rv64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/tile/tilegx32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/tile/tilegx64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
2018-02-10 03:08:43 +01:00
/* Check for error conditions from a narrowing add function returning
RET with arguments X and Y and set errno as needed. Overflow and
underflow can occur for finite arguments and a domain error for
infinite ones. */
#define CHECK_NARROW_ADD(RET, X, Y) \
do \
{ \
if (!isfinite (RET)) \
{ \
if (isnan (RET)) \
{ \
if (!isnan (X) && !isnan (Y)) \
__set_errno (EDOM); \
} \
else if (isfinite (X) && isfinite (Y)) \
__set_errno (ERANGE); \
} \
else if ((RET) == 0 && (X) != -(Y)) \
__set_errno (ERANGE); \
} \
while (0)
/* Implement narrowing add using round-to-odd. The arguments are X
and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are
as for ROUND_TO_ODD. */
#define NARROW_ADD_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \
do \
{ \
TYPE ret; \
\
/* Ensure a zero result is computed in the original rounding \
mode. */ \
if ((X) == -(Y)) \
ret = (TYPE) ((X) + (Y)); \
else \
ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) + (Y), \
UNION, SUFFIX, MANTISSA, false); \
Add narrowing add functions. This patch adds the narrowing add functions from TS 18661-1 to glibc's libm: fadd, faddl, daddl, f32addf64, f32addf32x, f32xaddf64 for all configurations; f32addf64x, f32addf128, f64addf64x, f64addf128, f32xaddf64x, f32xaddf128, f64xaddf128 for configurations with _Float64x and _Float128; __nldbl_daddl for ldbl-opt. As discussed for the build infrastructure patch, tgmath.h support is deliberately deferred, and FP_FAST_* macros are not applicable without optimized function implementations. Function implementations are added for all relevant pairs of formats (including certain cases of a format and itself where more than one type has that format). The main implementations use round-to-odd, or a trivial computation in the case where both formats are the same or where the wider format is IBM long double (in which case we don't attempt to be correctly rounding). The sysdeps/ieee754/soft-fp implementations use soft-fp, and are used automatically for configurations without exceptions and rounding modes by virtue of existing Implies files. As previously discussed, optimized versions for particular architectures are possible, but not included. i386 gets a special version of f32xaddf64 to avoid problems with double rounding (similar to the existing fdim version), since this function must round just once without an intermediate rounding to long double. (No such special version is needed for any other function, because the nontrivial functions use round-to-odd, which does the intermediate computation with the rounding mode set to round-to-zero, and double rounding is OK except in round-to-nearest mode, so is OK for that intermediate round-to-zero computation.) mul and div will need slightly different special versions for i386 (using round-to-odd on long double instead of precision control) because of the possibility of inexact intermediate results in the subnormal range for double. To reduce duplication among the different function implementations, math-narrow.h gets macros CHECK_NARROW_ADD, NARROW_ADD_ROUND_TO_ODD and NARROW_ADD_TRIVIAL. In the trivial cases and for any architecture-specific optimized implementations, the overhead of the errno setting might be significant, but I think that's best handled through compiler built-in functions rather than providing separate no-errno versions in glibc (and likewise there are no __*_finite entry points for these function provided, __*_finite effectively being no-errno versions at present in most cases). Tested for x86_64 and x86, with both GCC 6 and GCC 7. Tested for mips64 (all three ABIs, both hard and soft float) and powerpc with GCC 7. Tested with build-many-glibcs.py with both GCC 6 and GCC 7. * math/Makefile (libm-narrow-fns): Add add. (libm-test-funcs-narrow): Likewise. * math/Versions (GLIBC_2.28): Add narrowing add functions. * math/bits/mathcalls-narrow.h (add): Use __MATHCALL_NARROW . * math/gen-auto-libm-tests.c (test_functions): Add add. * math/math-narrow.h (CHECK_NARROW_ADD): New macro. (NARROW_ADD_ROUND_TO_ODD): Likewise. (NARROW_ADD_TRIVIAL): Likewise. * sysdeps/ieee754/float128/float128_private.h (__faddl): New macro. (__daddl): Likewise. * sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add fadd and dadd. (CFLAGS-nldbl-dadd.c): New variable. (CFLAGS-nldbl-fadd.c): Likewise. * sysdeps/ieee754/ldbl-opt/Versions (GLIBC_2.28): Add __nldbl_daddl. * sysdeps/ieee754/ldbl-opt/nldbl-compat.h (__nldbl_daddl): New prototype. * manual/arith.texi (Misc FP Arithmetic): Document fadd, faddl, daddl, fMaddfN, fMaddfNx, fMxaddfN and fMxaddfNx. * math/auto-libm-test-in: Add tests of add. * math/auto-libm-test-out-narrow-add: New generated file. * math/libm-test-narrow-add.inc: New file. * sysdeps/i386/fpu/s_f32xaddf64.c: Likewise. * sysdeps/ieee754/dbl-64/s_f32xaddf64.c: Likewise. * sysdeps/ieee754/dbl-64/s_fadd.c: Likewise. * sysdeps/ieee754/float128/s_f32addf128.c: Likewise. * sysdeps/ieee754/float128/s_f64addf128.c: Likewise. * sysdeps/ieee754/float128/s_f64xaddf128.c: Likewise. * sysdeps/ieee754/ldbl-128/s_daddl.c: Likewise. * sysdeps/ieee754/ldbl-128/s_f64xaddf128.c: Likewise. * sysdeps/ieee754/ldbl-128/s_faddl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_daddl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_faddl.c: Likewise. * sysdeps/ieee754/ldbl-96/s_daddl.c: Likewise. * sysdeps/ieee754/ldbl-96/s_faddl.c: Likewise. * sysdeps/ieee754/ldbl-opt/nldbl-dadd.c: Likewise. * sysdeps/ieee754/ldbl-opt/nldbl-fadd.c: Likewise. * sysdeps/ieee754/soft-fp/s_daddl.c: Likewise. * sysdeps/ieee754/soft-fp/s_fadd.c: Likewise. * sysdeps/ieee754/soft-fp/s_faddl.c: Likewise. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/mach/hurd/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/riscv/rv64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/tile/tilegx32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/tile/tilegx64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
2018-02-10 03:08:43 +01:00
\
CHECK_NARROW_ADD (ret, (X), (Y)); \
return ret; \
} \
while (0)
/* Implement a narrowing add function that is not actually narrowing
or where no attempt is made to be correctly rounding (the latter
only applies to IBM long double). The arguments are X and Y and
the return type is TYPE. */
#define NARROW_ADD_TRIVIAL(X, Y, TYPE) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) ((X) + (Y)); \
CHECK_NARROW_ADD (ret, (X), (Y)); \
return ret; \
} \
while (0)
Add narrowing subtract functions. This patch adds the narrowing subtract functions from TS 18661-1 to glibc's libm: fsub, fsubl, dsubl, f32subf64, f32subf32x, f32xsubf64 for all configurations; f32subf64x, f32subf128, f64subf64x, f64subf128, f32xsubf64x, f32xsubf128, f64xsubf128 for configurations with _Float64x and _Float128; __nldbl_dsubl for ldbl-opt. The changes are essentially the same as for the narrowing add functions, so the description of those generally applies to this patch as well. Tested for x86_64, x86, mips64 (all three ABIs, both hard and soft float) and powerpc, and with build-many-glibcs.py. * math/Makefile (libm-narrow-fns): Add sub. (libm-test-funcs-narrow): Likewise. * math/Versions (GLIBC_2.28): Add narrowing subtract functions. * math/bits/mathcalls-narrow.h (sub): Use __MATHCALL_NARROW. * math/gen-auto-libm-tests.c (test_functions): Add sub. * math/math-narrow.h (CHECK_NARROW_SUB): New macro. (NARROW_SUB_ROUND_TO_ODD): Likewise. (NARROW_SUB_TRIVIAL): Likewise. * sysdeps/ieee754/float128/float128_private.h (__fsubl): New macro. (__dsubl): Likewise. * sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add fsub and dsub. (CFLAGS-nldbl-dsub.c): New variable. (CFLAGS-nldbl-fsub.c): Likewise. * sysdeps/ieee754/ldbl-opt/Versions (GLIBC_2.28): Add __nldbl_dsubl. * sysdeps/ieee754/ldbl-opt/nldbl-compat.h (__nldbl_dsubl): New prototype. * manual/arith.texi (Misc FP Arithmetic): Document fsub, fsubl, dsubl, fMsubfN, fMsubfNx, fMxsubfN and fMxsubfNx. * math/auto-libm-test-in: Add tests of sub. * math/auto-libm-test-out-narrow-sub: New generated file. * math/libm-test-narrow-sub.inc: New file. * sysdeps/i386/fpu/s_f32xsubf64.c: Likewise. * sysdeps/ieee754/dbl-64/s_f32xsubf64.c: Likewise. * sysdeps/ieee754/dbl-64/s_fsub.c: Likewise. * sysdeps/ieee754/float128/s_f32subf128.c: Likewise. * sysdeps/ieee754/float128/s_f64subf128.c: Likewise. * sysdeps/ieee754/float128/s_f64xsubf128.c: Likewise. * sysdeps/ieee754/ldbl-128/s_dsubl.c: Likewise. * sysdeps/ieee754/ldbl-128/s_f64xsubf128.c: Likewise. * sysdeps/ieee754/ldbl-128/s_fsubl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_dsubl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_fsubl.c: Likewise. * sysdeps/ieee754/ldbl-96/s_dsubl.c: Likewise. * sysdeps/ieee754/ldbl-96/s_fsubl.c: Likewise. * sysdeps/ieee754/ldbl-opt/nldbl-dsub.c: Likewise. * sysdeps/ieee754/ldbl-opt/nldbl-fsub.c: Likewise. * sysdeps/ieee754/soft-fp/s_dsubl.c: Likewise. * sysdeps/ieee754/soft-fp/s_fsub.c: Likewise. * sysdeps/ieee754/soft-fp/s_fsubl.c: Likewise. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/mach/hurd/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/riscv/rv64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/tile/tilegx32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/tile/tilegx64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
2018-03-20 01:34:52 +01:00
/* Check for error conditions from a narrowing subtract function
returning RET with arguments X and Y and set errno as needed.
Overflow and underflow can occur for finite arguments and a domain
error for infinite ones. */
#define CHECK_NARROW_SUB(RET, X, Y) \
do \
{ \
if (!isfinite (RET)) \
{ \
if (isnan (RET)) \
{ \
if (!isnan (X) && !isnan (Y)) \
__set_errno (EDOM); \
} \
else if (isfinite (X) && isfinite (Y)) \
__set_errno (ERANGE); \
} \
else if ((RET) == 0 && (X) != (Y)) \
__set_errno (ERANGE); \
} \
while (0)
/* Implement narrowing subtract using round-to-odd. The arguments are
X and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are
as for ROUND_TO_ODD. */
#define NARROW_SUB_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \
do \
{ \
TYPE ret; \
\
/* Ensure a zero result is computed in the original rounding \
mode. */ \
if ((X) == (Y)) \
ret = (TYPE) ((X) - (Y)); \
else \
ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) - (Y), \
UNION, SUFFIX, MANTISSA, false); \
Add narrowing subtract functions. This patch adds the narrowing subtract functions from TS 18661-1 to glibc's libm: fsub, fsubl, dsubl, f32subf64, f32subf32x, f32xsubf64 for all configurations; f32subf64x, f32subf128, f64subf64x, f64subf128, f32xsubf64x, f32xsubf128, f64xsubf128 for configurations with _Float64x and _Float128; __nldbl_dsubl for ldbl-opt. The changes are essentially the same as for the narrowing add functions, so the description of those generally applies to this patch as well. Tested for x86_64, x86, mips64 (all three ABIs, both hard and soft float) and powerpc, and with build-many-glibcs.py. * math/Makefile (libm-narrow-fns): Add sub. (libm-test-funcs-narrow): Likewise. * math/Versions (GLIBC_2.28): Add narrowing subtract functions. * math/bits/mathcalls-narrow.h (sub): Use __MATHCALL_NARROW. * math/gen-auto-libm-tests.c (test_functions): Add sub. * math/math-narrow.h (CHECK_NARROW_SUB): New macro. (NARROW_SUB_ROUND_TO_ODD): Likewise. (NARROW_SUB_TRIVIAL): Likewise. * sysdeps/ieee754/float128/float128_private.h (__fsubl): New macro. (__dsubl): Likewise. * sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add fsub and dsub. (CFLAGS-nldbl-dsub.c): New variable. (CFLAGS-nldbl-fsub.c): Likewise. * sysdeps/ieee754/ldbl-opt/Versions (GLIBC_2.28): Add __nldbl_dsubl. * sysdeps/ieee754/ldbl-opt/nldbl-compat.h (__nldbl_dsubl): New prototype. * manual/arith.texi (Misc FP Arithmetic): Document fsub, fsubl, dsubl, fMsubfN, fMsubfNx, fMxsubfN and fMxsubfNx. * math/auto-libm-test-in: Add tests of sub. * math/auto-libm-test-out-narrow-sub: New generated file. * math/libm-test-narrow-sub.inc: New file. * sysdeps/i386/fpu/s_f32xsubf64.c: Likewise. * sysdeps/ieee754/dbl-64/s_f32xsubf64.c: Likewise. * sysdeps/ieee754/dbl-64/s_fsub.c: Likewise. * sysdeps/ieee754/float128/s_f32subf128.c: Likewise. * sysdeps/ieee754/float128/s_f64subf128.c: Likewise. * sysdeps/ieee754/float128/s_f64xsubf128.c: Likewise. * sysdeps/ieee754/ldbl-128/s_dsubl.c: Likewise. * sysdeps/ieee754/ldbl-128/s_f64xsubf128.c: Likewise. * sysdeps/ieee754/ldbl-128/s_fsubl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_dsubl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_fsubl.c: Likewise. * sysdeps/ieee754/ldbl-96/s_dsubl.c: Likewise. * sysdeps/ieee754/ldbl-96/s_fsubl.c: Likewise. * sysdeps/ieee754/ldbl-opt/nldbl-dsub.c: Likewise. * sysdeps/ieee754/ldbl-opt/nldbl-fsub.c: Likewise. * sysdeps/ieee754/soft-fp/s_dsubl.c: Likewise. * sysdeps/ieee754/soft-fp/s_fsub.c: Likewise. * sysdeps/ieee754/soft-fp/s_fsubl.c: Likewise. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/mach/hurd/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/riscv/rv64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/tile/tilegx32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/tile/tilegx64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
2018-03-20 01:34:52 +01:00
\
CHECK_NARROW_SUB (ret, (X), (Y)); \
return ret; \
} \
while (0)
/* Implement a narrowing subtract function that is not actually
narrowing or where no attempt is made to be correctly rounding (the
latter only applies to IBM long double). The arguments are X and Y
and the return type is TYPE. */
#define NARROW_SUB_TRIVIAL(X, Y, TYPE) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) ((X) - (Y)); \
CHECK_NARROW_SUB (ret, (X), (Y)); \
return ret; \
} \
while (0)
Add narrowing multiply functions. This patch adds the narrowing multiply functions from TS 18661-1 to glibc's libm: fmul, fmull, dmull, f32mulf64, f32mulf32x, f32xmulf64 for all configurations; f32mulf64x, f32mulf128, f64mulf64x, f64mulf128, f32xmulf64x, f32xmulf128, f64xmulf128 for configurations with _Float64x and _Float128; __nldbl_dmull for ldbl-opt. The changes are mostly essentially the same as for the narrowing add functions, so the description of those generally applies to this patch as well. f32xmulf64 for i386 cannot use precision control as used for add and subtract, because that would result in double rounding for subnormal results, so that uses round-to-odd with long double intermediate result instead. The soft-fp support involves adding a new FP_TRUNC_COOKED since soft-fp multiplication uses cooked inputs and outputs. Tested for x86_64, x86, mips64 (all three ABIs, both hard and soft float) and powerpc, and with build-many-glibcs.py. * math/Makefile (libm-narrow-fns): Add mul. (libm-test-funcs-narrow): Likewise. * math/Versions (GLIBC_2.28): Add narrowing multiply functions. * math/bits/mathcalls-narrow.h (mul): Use __MATHCALL_NARROW. * math/gen-auto-libm-tests.c (test_functions): Add mul. * math/math-narrow.h (CHECK_NARROW_MUL): New macro. (NARROW_MUL_ROUND_TO_ODD): Likewise. (NARROW_MUL_TRIVIAL): Likewise. * soft-fp/op-common.h (FP_TRUNC_COOKED): Likewise. * sysdeps/ieee754/float128/float128_private.h (__fmull): New macro. (__dmull): Likewise. * sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add fmul and dmul. (CFLAGS-nldbl-dmul.c): New variable. (CFLAGS-nldbl-fmul.c): Likewise. * sysdeps/ieee754/ldbl-opt/Versions (GLIBC_2.28): Add __nldbl_dmull. * sysdeps/ieee754/ldbl-opt/nldbl-compat.h (__nldbl_dmull): New prototype. * manual/arith.texi (Misc FP Arithmetic): Document fmul, fmull, dmull, fMmulfN, fMmulfNx, fMxmulfN and fMxmulfNx. * math/auto-libm-test-in: Add tests of mul. * math/auto-libm-test-out-narrow-mul: New generated file. * math/libm-test-narrow-mul.inc: New file. * sysdeps/i386/fpu/s_f32xmulf64.c: Likewise. * sysdeps/ieee754/dbl-64/s_f32xmulf64.c: Likewise. * sysdeps/ieee754/dbl-64/s_fmul.c: Likewise. * sysdeps/ieee754/float128/s_f32mulf128.c: Likewise. * sysdeps/ieee754/float128/s_f64mulf128.c: Likewise. * sysdeps/ieee754/float128/s_f64xmulf128.c: Likewise. * sysdeps/ieee754/ldbl-128/s_dmull.c: Likewise. * sysdeps/ieee754/ldbl-128/s_f64xmulf128.c: Likewise. * sysdeps/ieee754/ldbl-128/s_fmull.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_dmull.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_fmull.c: Likewise. * sysdeps/ieee754/ldbl-96/s_dmull.c: Likewise. * sysdeps/ieee754/ldbl-96/s_fmull.c: Likewise. * sysdeps/ieee754/ldbl-opt/nldbl-dmul.c: Likewise. * sysdeps/ieee754/ldbl-opt/nldbl-fmul.c: Likewise. * sysdeps/ieee754/soft-fp/s_dmull.c: Likewise. * sysdeps/ieee754/soft-fp/s_fmul.c: Likewise. * sysdeps/ieee754/soft-fp/s_fmull.c: Likewise. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/mach/hurd/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/riscv/rv64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
2018-05-16 02:05:28 +02:00
/* Check for error conditions from a narrowing multiply function
returning RET with arguments X and Y and set errno as needed.
Overflow and underflow can occur for finite arguments and a domain
error for Inf * 0. */
#define CHECK_NARROW_MUL(RET, X, Y) \
do \
{ \
if (!isfinite (RET)) \
{ \
if (isnan (RET)) \
{ \
if (!isnan (X) && !isnan (Y)) \
__set_errno (EDOM); \
} \
else if (isfinite (X) && isfinite (Y)) \
__set_errno (ERANGE); \
} \
else if ((RET) == 0 && (X) != 0 && (Y) != 0) \
__set_errno (ERANGE); \
} \
while (0)
/* Implement narrowing multiply using round-to-odd. The arguments are
X and Y, the return type is TYPE and UNION, MANTISSA, SUFFIX and
CLEAR_UNDERFLOW are as for ROUND_TO_ODD. */
#define NARROW_MUL_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA, \
CLEAR_UNDERFLOW) \
Add narrowing multiply functions. This patch adds the narrowing multiply functions from TS 18661-1 to glibc's libm: fmul, fmull, dmull, f32mulf64, f32mulf32x, f32xmulf64 for all configurations; f32mulf64x, f32mulf128, f64mulf64x, f64mulf128, f32xmulf64x, f32xmulf128, f64xmulf128 for configurations with _Float64x and _Float128; __nldbl_dmull for ldbl-opt. The changes are mostly essentially the same as for the narrowing add functions, so the description of those generally applies to this patch as well. f32xmulf64 for i386 cannot use precision control as used for add and subtract, because that would result in double rounding for subnormal results, so that uses round-to-odd with long double intermediate result instead. The soft-fp support involves adding a new FP_TRUNC_COOKED since soft-fp multiplication uses cooked inputs and outputs. Tested for x86_64, x86, mips64 (all three ABIs, both hard and soft float) and powerpc, and with build-many-glibcs.py. * math/Makefile (libm-narrow-fns): Add mul. (libm-test-funcs-narrow): Likewise. * math/Versions (GLIBC_2.28): Add narrowing multiply functions. * math/bits/mathcalls-narrow.h (mul): Use __MATHCALL_NARROW. * math/gen-auto-libm-tests.c (test_functions): Add mul. * math/math-narrow.h (CHECK_NARROW_MUL): New macro. (NARROW_MUL_ROUND_TO_ODD): Likewise. (NARROW_MUL_TRIVIAL): Likewise. * soft-fp/op-common.h (FP_TRUNC_COOKED): Likewise. * sysdeps/ieee754/float128/float128_private.h (__fmull): New macro. (__dmull): Likewise. * sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add fmul and dmul. (CFLAGS-nldbl-dmul.c): New variable. (CFLAGS-nldbl-fmul.c): Likewise. * sysdeps/ieee754/ldbl-opt/Versions (GLIBC_2.28): Add __nldbl_dmull. * sysdeps/ieee754/ldbl-opt/nldbl-compat.h (__nldbl_dmull): New prototype. * manual/arith.texi (Misc FP Arithmetic): Document fmul, fmull, dmull, fMmulfN, fMmulfNx, fMxmulfN and fMxmulfNx. * math/auto-libm-test-in: Add tests of mul. * math/auto-libm-test-out-narrow-mul: New generated file. * math/libm-test-narrow-mul.inc: New file. * sysdeps/i386/fpu/s_f32xmulf64.c: Likewise. * sysdeps/ieee754/dbl-64/s_f32xmulf64.c: Likewise. * sysdeps/ieee754/dbl-64/s_fmul.c: Likewise. * sysdeps/ieee754/float128/s_f32mulf128.c: Likewise. * sysdeps/ieee754/float128/s_f64mulf128.c: Likewise. * sysdeps/ieee754/float128/s_f64xmulf128.c: Likewise. * sysdeps/ieee754/ldbl-128/s_dmull.c: Likewise. * sysdeps/ieee754/ldbl-128/s_f64xmulf128.c: Likewise. * sysdeps/ieee754/ldbl-128/s_fmull.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_dmull.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_fmull.c: Likewise. * sysdeps/ieee754/ldbl-96/s_dmull.c: Likewise. * sysdeps/ieee754/ldbl-96/s_fmull.c: Likewise. * sysdeps/ieee754/ldbl-opt/nldbl-dmul.c: Likewise. * sysdeps/ieee754/ldbl-opt/nldbl-fmul.c: Likewise. * sysdeps/ieee754/soft-fp/s_dmull.c: Likewise. * sysdeps/ieee754/soft-fp/s_fmul.c: Likewise. * sysdeps/ieee754/soft-fp/s_fmull.c: Likewise. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/mach/hurd/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/riscv/rv64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
2018-05-16 02:05:28 +02:00
do \
{ \
TYPE ret; \
\
ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) * (Y), \
UNION, SUFFIX, MANTISSA, \
CLEAR_UNDERFLOW); \
Add narrowing multiply functions. This patch adds the narrowing multiply functions from TS 18661-1 to glibc's libm: fmul, fmull, dmull, f32mulf64, f32mulf32x, f32xmulf64 for all configurations; f32mulf64x, f32mulf128, f64mulf64x, f64mulf128, f32xmulf64x, f32xmulf128, f64xmulf128 for configurations with _Float64x and _Float128; __nldbl_dmull for ldbl-opt. The changes are mostly essentially the same as for the narrowing add functions, so the description of those generally applies to this patch as well. f32xmulf64 for i386 cannot use precision control as used for add and subtract, because that would result in double rounding for subnormal results, so that uses round-to-odd with long double intermediate result instead. The soft-fp support involves adding a new FP_TRUNC_COOKED since soft-fp multiplication uses cooked inputs and outputs. Tested for x86_64, x86, mips64 (all three ABIs, both hard and soft float) and powerpc, and with build-many-glibcs.py. * math/Makefile (libm-narrow-fns): Add mul. (libm-test-funcs-narrow): Likewise. * math/Versions (GLIBC_2.28): Add narrowing multiply functions. * math/bits/mathcalls-narrow.h (mul): Use __MATHCALL_NARROW. * math/gen-auto-libm-tests.c (test_functions): Add mul. * math/math-narrow.h (CHECK_NARROW_MUL): New macro. (NARROW_MUL_ROUND_TO_ODD): Likewise. (NARROW_MUL_TRIVIAL): Likewise. * soft-fp/op-common.h (FP_TRUNC_COOKED): Likewise. * sysdeps/ieee754/float128/float128_private.h (__fmull): New macro. (__dmull): Likewise. * sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add fmul and dmul. (CFLAGS-nldbl-dmul.c): New variable. (CFLAGS-nldbl-fmul.c): Likewise. * sysdeps/ieee754/ldbl-opt/Versions (GLIBC_2.28): Add __nldbl_dmull. * sysdeps/ieee754/ldbl-opt/nldbl-compat.h (__nldbl_dmull): New prototype. * manual/arith.texi (Misc FP Arithmetic): Document fmul, fmull, dmull, fMmulfN, fMmulfNx, fMxmulfN and fMxmulfNx. * math/auto-libm-test-in: Add tests of mul. * math/auto-libm-test-out-narrow-mul: New generated file. * math/libm-test-narrow-mul.inc: New file. * sysdeps/i386/fpu/s_f32xmulf64.c: Likewise. * sysdeps/ieee754/dbl-64/s_f32xmulf64.c: Likewise. * sysdeps/ieee754/dbl-64/s_fmul.c: Likewise. * sysdeps/ieee754/float128/s_f32mulf128.c: Likewise. * sysdeps/ieee754/float128/s_f64mulf128.c: Likewise. * sysdeps/ieee754/float128/s_f64xmulf128.c: Likewise. * sysdeps/ieee754/ldbl-128/s_dmull.c: Likewise. * sysdeps/ieee754/ldbl-128/s_f64xmulf128.c: Likewise. * sysdeps/ieee754/ldbl-128/s_fmull.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_dmull.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_fmull.c: Likewise. * sysdeps/ieee754/ldbl-96/s_dmull.c: Likewise. * sysdeps/ieee754/ldbl-96/s_fmull.c: Likewise. * sysdeps/ieee754/ldbl-opt/nldbl-dmul.c: Likewise. * sysdeps/ieee754/ldbl-opt/nldbl-fmul.c: Likewise. * sysdeps/ieee754/soft-fp/s_dmull.c: Likewise. * sysdeps/ieee754/soft-fp/s_fmul.c: Likewise. * sysdeps/ieee754/soft-fp/s_fmull.c: Likewise. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/mach/hurd/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/riscv/rv64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
2018-05-16 02:05:28 +02:00
\
CHECK_NARROW_MUL (ret, (X), (Y)); \
return ret; \
} \
while (0)
/* Implement a narrowing multiply function that is not actually
narrowing or where no attempt is made to be correctly rounding (the
latter only applies to IBM long double). The arguments are X and Y
and the return type is TYPE. */
#define NARROW_MUL_TRIVIAL(X, Y, TYPE) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) ((X) * (Y)); \
CHECK_NARROW_MUL (ret, (X), (Y)); \
return ret; \
} \
while (0)
Add narrowing divide functions. This patch adds the narrowing divide functions from TS 18661-1 to glibc's libm: fdiv, fdivl, ddivl, f32divf64, f32divf32x, f32xdivf64 for all configurations; f32divf64x, f32divf128, f64divf64x, f64divf128, f32xdivf64x, f32xdivf128, f64xdivf128 for configurations with _Float64x and _Float128; __nldbl_ddivl for ldbl-opt. The changes are mostly essentially the same as for the other narrowing functions, so the description of those generally applies to this patch as well. Tested for x86_64, x86, mips64 (all three ABIs, both hard and soft float) and powerpc, and with build-many-glibcs.py. * math/Makefile (libm-narrow-fns): Add div. (libm-test-funcs-narrow): Likewise. * math/Versions (GLIBC_2.28): Add narrowing divide functions. * math/bits/mathcalls-narrow.h (div): Use __MATHCALL_NARROW. * math/gen-auto-libm-tests.c (test_functions): Add div. * math/math-narrow.h (CHECK_NARROW_DIV): New macro. (NARROW_DIV_ROUND_TO_ODD): Likewise. (NARROW_DIV_TRIVIAL): Likewise. * sysdeps/ieee754/float128/float128_private.h (__fdivl): New macro. (__ddivl): Likewise. * sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add fdiv and ddiv. (CFLAGS-nldbl-ddiv.c): New variable. (CFLAGS-nldbl-fdiv.c): Likewise. * sysdeps/ieee754/ldbl-opt/Versions (GLIBC_2.28): Add __nldbl_ddivl. * sysdeps/ieee754/ldbl-opt/nldbl-compat.h (__nldbl_ddivl): New prototype. * manual/arith.texi (Misc FP Arithmetic): Document fdiv, fdivl, ddivl, fMdivfN, fMdivfNx, fMxdivfN and fMxdivfNx. * math/auto-libm-test-in: Add tests of div. * math/auto-libm-test-out-narrow-div: New generated file. * math/libm-test-narrow-div.inc: New file. * sysdeps/i386/fpu/s_f32xdivf64.c: Likewise. * sysdeps/ieee754/dbl-64/s_f32xdivf64.c: Likewise. * sysdeps/ieee754/dbl-64/s_fdiv.c: Likewise. * sysdeps/ieee754/float128/s_f32divf128.c: Likewise. * sysdeps/ieee754/float128/s_f64divf128.c: Likewise. * sysdeps/ieee754/float128/s_f64xdivf128.c: Likewise. * sysdeps/ieee754/ldbl-128/s_ddivl.c: Likewise. * sysdeps/ieee754/ldbl-128/s_f64xdivf128.c: Likewise. * sysdeps/ieee754/ldbl-128/s_fdivl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_ddivl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_fdivl.c: Likewise. * sysdeps/ieee754/ldbl-96/s_ddivl.c: Likewise. * sysdeps/ieee754/ldbl-96/s_fdivl.c: Likewise. * sysdeps/ieee754/ldbl-opt/nldbl-ddiv.c: Likewise. * sysdeps/ieee754/ldbl-opt/nldbl-fdiv.c: Likewise. * sysdeps/ieee754/soft-fp/s_ddivl.c: Likewise. * sysdeps/ieee754/soft-fp/s_fdiv.c: Likewise. * sysdeps/ieee754/soft-fp/s_fdivl.c: Likewise. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/mach/hurd/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/riscv/rv64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
2018-05-17 02:40:52 +02:00
/* Check for error conditions from a narrowing divide function
returning RET with arguments X and Y and set errno as needed.
Overflow, underflow and divide-by-zero can occur for finite
arguments and a domain error for Inf / Inf and 0 / 0. */
#define CHECK_NARROW_DIV(RET, X, Y) \
do \
{ \
if (!isfinite (RET)) \
{ \
if (isnan (RET)) \
{ \
if (!isnan (X) && !isnan (Y)) \
__set_errno (EDOM); \
} \
else if (isfinite (X)) \
__set_errno (ERANGE); \
} \
else if ((RET) == 0 && (X) != 0 && !isinf (Y)) \
__set_errno (ERANGE); \
} \
while (0)
/* Implement narrowing divide using round-to-odd. The arguments are X
and Y, the return type is TYPE and UNION, MANTISSA, SUFFIX and
CLEAR_UNDERFLOW are as for ROUND_TO_ODD. */
#define NARROW_DIV_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA, \
CLEAR_UNDERFLOW) \
Add narrowing divide functions. This patch adds the narrowing divide functions from TS 18661-1 to glibc's libm: fdiv, fdivl, ddivl, f32divf64, f32divf32x, f32xdivf64 for all configurations; f32divf64x, f32divf128, f64divf64x, f64divf128, f32xdivf64x, f32xdivf128, f64xdivf128 for configurations with _Float64x and _Float128; __nldbl_ddivl for ldbl-opt. The changes are mostly essentially the same as for the other narrowing functions, so the description of those generally applies to this patch as well. Tested for x86_64, x86, mips64 (all three ABIs, both hard and soft float) and powerpc, and with build-many-glibcs.py. * math/Makefile (libm-narrow-fns): Add div. (libm-test-funcs-narrow): Likewise. * math/Versions (GLIBC_2.28): Add narrowing divide functions. * math/bits/mathcalls-narrow.h (div): Use __MATHCALL_NARROW. * math/gen-auto-libm-tests.c (test_functions): Add div. * math/math-narrow.h (CHECK_NARROW_DIV): New macro. (NARROW_DIV_ROUND_TO_ODD): Likewise. (NARROW_DIV_TRIVIAL): Likewise. * sysdeps/ieee754/float128/float128_private.h (__fdivl): New macro. (__ddivl): Likewise. * sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add fdiv and ddiv. (CFLAGS-nldbl-ddiv.c): New variable. (CFLAGS-nldbl-fdiv.c): Likewise. * sysdeps/ieee754/ldbl-opt/Versions (GLIBC_2.28): Add __nldbl_ddivl. * sysdeps/ieee754/ldbl-opt/nldbl-compat.h (__nldbl_ddivl): New prototype. * manual/arith.texi (Misc FP Arithmetic): Document fdiv, fdivl, ddivl, fMdivfN, fMdivfNx, fMxdivfN and fMxdivfNx. * math/auto-libm-test-in: Add tests of div. * math/auto-libm-test-out-narrow-div: New generated file. * math/libm-test-narrow-div.inc: New file. * sysdeps/i386/fpu/s_f32xdivf64.c: Likewise. * sysdeps/ieee754/dbl-64/s_f32xdivf64.c: Likewise. * sysdeps/ieee754/dbl-64/s_fdiv.c: Likewise. * sysdeps/ieee754/float128/s_f32divf128.c: Likewise. * sysdeps/ieee754/float128/s_f64divf128.c: Likewise. * sysdeps/ieee754/float128/s_f64xdivf128.c: Likewise. * sysdeps/ieee754/ldbl-128/s_ddivl.c: Likewise. * sysdeps/ieee754/ldbl-128/s_f64xdivf128.c: Likewise. * sysdeps/ieee754/ldbl-128/s_fdivl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_ddivl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_fdivl.c: Likewise. * sysdeps/ieee754/ldbl-96/s_ddivl.c: Likewise. * sysdeps/ieee754/ldbl-96/s_fdivl.c: Likewise. * sysdeps/ieee754/ldbl-opt/nldbl-ddiv.c: Likewise. * sysdeps/ieee754/ldbl-opt/nldbl-fdiv.c: Likewise. * sysdeps/ieee754/soft-fp/s_ddivl.c: Likewise. * sysdeps/ieee754/soft-fp/s_fdiv.c: Likewise. * sysdeps/ieee754/soft-fp/s_fdivl.c: Likewise. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/mach/hurd/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/riscv/rv64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
2018-05-17 02:40:52 +02:00
do \
{ \
TYPE ret; \
\
ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) / (Y), \
UNION, SUFFIX, MANTISSA, \
CLEAR_UNDERFLOW); \
Add narrowing divide functions. This patch adds the narrowing divide functions from TS 18661-1 to glibc's libm: fdiv, fdivl, ddivl, f32divf64, f32divf32x, f32xdivf64 for all configurations; f32divf64x, f32divf128, f64divf64x, f64divf128, f32xdivf64x, f32xdivf128, f64xdivf128 for configurations with _Float64x and _Float128; __nldbl_ddivl for ldbl-opt. The changes are mostly essentially the same as for the other narrowing functions, so the description of those generally applies to this patch as well. Tested for x86_64, x86, mips64 (all three ABIs, both hard and soft float) and powerpc, and with build-many-glibcs.py. * math/Makefile (libm-narrow-fns): Add div. (libm-test-funcs-narrow): Likewise. * math/Versions (GLIBC_2.28): Add narrowing divide functions. * math/bits/mathcalls-narrow.h (div): Use __MATHCALL_NARROW. * math/gen-auto-libm-tests.c (test_functions): Add div. * math/math-narrow.h (CHECK_NARROW_DIV): New macro. (NARROW_DIV_ROUND_TO_ODD): Likewise. (NARROW_DIV_TRIVIAL): Likewise. * sysdeps/ieee754/float128/float128_private.h (__fdivl): New macro. (__ddivl): Likewise. * sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add fdiv and ddiv. (CFLAGS-nldbl-ddiv.c): New variable. (CFLAGS-nldbl-fdiv.c): Likewise. * sysdeps/ieee754/ldbl-opt/Versions (GLIBC_2.28): Add __nldbl_ddivl. * sysdeps/ieee754/ldbl-opt/nldbl-compat.h (__nldbl_ddivl): New prototype. * manual/arith.texi (Misc FP Arithmetic): Document fdiv, fdivl, ddivl, fMdivfN, fMdivfNx, fMxdivfN and fMxdivfNx. * math/auto-libm-test-in: Add tests of div. * math/auto-libm-test-out-narrow-div: New generated file. * math/libm-test-narrow-div.inc: New file. * sysdeps/i386/fpu/s_f32xdivf64.c: Likewise. * sysdeps/ieee754/dbl-64/s_f32xdivf64.c: Likewise. * sysdeps/ieee754/dbl-64/s_fdiv.c: Likewise. * sysdeps/ieee754/float128/s_f32divf128.c: Likewise. * sysdeps/ieee754/float128/s_f64divf128.c: Likewise. * sysdeps/ieee754/float128/s_f64xdivf128.c: Likewise. * sysdeps/ieee754/ldbl-128/s_ddivl.c: Likewise. * sysdeps/ieee754/ldbl-128/s_f64xdivf128.c: Likewise. * sysdeps/ieee754/ldbl-128/s_fdivl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_ddivl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_fdivl.c: Likewise. * sysdeps/ieee754/ldbl-96/s_ddivl.c: Likewise. * sysdeps/ieee754/ldbl-96/s_fdivl.c: Likewise. * sysdeps/ieee754/ldbl-opt/nldbl-ddiv.c: Likewise. * sysdeps/ieee754/ldbl-opt/nldbl-fdiv.c: Likewise. * sysdeps/ieee754/soft-fp/s_ddivl.c: Likewise. * sysdeps/ieee754/soft-fp/s_fdiv.c: Likewise. * sysdeps/ieee754/soft-fp/s_fdivl.c: Likewise. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/mach/hurd/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/riscv/rv64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
2018-05-17 02:40:52 +02:00
\
CHECK_NARROW_DIV (ret, (X), (Y)); \
return ret; \
} \
while (0)
/* Implement a narrowing divide function that is not actually
narrowing or where no attempt is made to be correctly rounding (the
latter only applies to IBM long double). The arguments are X and Y
and the return type is TYPE. */
#define NARROW_DIV_TRIVIAL(X, Y, TYPE) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) ((X) / (Y)); \
CHECK_NARROW_DIV (ret, (X), (Y)); \
return ret; \
} \
while (0)
Add narrowing square root functions This patch adds the narrowing square root functions from TS 18661-1 / TS 18661-3 / C2X to glibc's libm: fsqrt, fsqrtl, dsqrtl, f32sqrtf64, f32sqrtf32x, f32xsqrtf64 for all configurations; f32sqrtf64x, f32sqrtf128, f64sqrtf64x, f64sqrtf128, f32xsqrtf64x, f32xsqrtf128, f64xsqrtf128 for configurations with _Float64x and _Float128; __f32sqrtieee128 and __f64sqrtieee128 aliases in the powerpc64le case (for calls to fsqrtl and dsqrtl when long double is IEEE binary128). Corresponding tgmath.h macro support is also added. The changes are mostly similar to those for the other narrowing functions previously added, so the description of those generally applies to this patch as well. However, the not-actually-narrowing cases (where the two types involved in the function have the same floating-point format) are aliased to sqrt, sqrtl or sqrtf128 rather than needing a separately built not-actually-narrowing function such as was needed for add / sub / mul / div. Thus, there is no __nldbl_dsqrtl name for ldbl-opt because no such name was needed (whereas the other functions needed such a name since the only other name for that entry point was e.g. f32xaddf64, not reserved by TS 18661-1); the headers are made to arrange for sqrt to be called in that case instead. The DIAG_* calls in sysdeps/ieee754/soft-fp/s_dsqrtl.c are because they were observed to be needed in GCC 7 testing of riscv32-linux-gnu-rv32imac-ilp32. The other sysdeps/ieee754/soft-fp/ files added didn't need such DIAG_* in any configuration I tested with build-many-glibcs.py, but if they do turn out to be needed in more files with some other configuration / GCC version, they can always be added there. I reused the same test inputs in auto-libm-test-in as for non-narrowing sqrt rather than adding extra or separate inputs for narrowing sqrt. The tests in libm-test-narrow-sqrt.inc also follow those for non-narrowing sqrt. Tested as followed: natively with the full glibc testsuite for x86_64 (GCC 11, 7, 6) and x86 (GCC 11); with build-many-glibcs.py with GCC 11, 7 and 6; cross testing of math/ tests for powerpc64le, powerpc32 hard float, mips64 (all three ABIs, both hard and soft float). The different GCC versions are to cover the different cases in tgmath.h and tgmath.h tests properly (GCC 6 has _Float* only as typedefs in glibc headers, GCC 7 has proper _Float* support, GCC 8 adds __builtin_tgmath).
2021-09-10 22:56:22 +02:00
/* Check for error conditions from a narrowing square root function
returning RET with argument X and set errno as needed. Overflow
and underflow can occur for finite positive arguments and a domain
error for negative arguments. */
#define CHECK_NARROW_SQRT(RET, X) \
do \
{ \
if (!isfinite (RET)) \
{ \
if (isnan (RET)) \
{ \
if (!isnan (X)) \
__set_errno (EDOM); \
} \
else if (isfinite (X)) \
__set_errno (ERANGE); \
} \
else if ((RET) == 0 && (X) != 0) \
__set_errno (ERANGE); \
} \
while (0)
Add build infrastructure for narrowing libm functions. TS 18661-1 defines libm functions that carry out an operation (+ - * / sqrt fma) on their arguments and return a result rounded to a (usually) narrower type, as if the original result were computed to infinite precision and then rounded directly to the result type without any intermediate rounding to the argument type. For example, fadd, faddl and daddl for addition. These are the last remaining TS 18661-1 functions left to be added to glibc. TS 18661-3 extends this to corresponding functions for _FloatN and _FloatNx types. As functions parametrized by two rather than one varying floating-point types, these functions require infrastructure in glibc that was not required for previous libm functions. This patch provides such infrastructure - excluding test support, and actual function implementations, which will be in subsequent patches. Declaring the functions uses a header bits/mathcalls-narrow.h, which is included many times, for each relevant pair of types. This will end up containing macro calls of the form __MATHCALL_NARROW (__MATHCALL_NAME (add), __MATHCALL_REDIR_NAME (add), 2); for each family of narrowing functions. (The structure of this macro call, with the calls to __MATHCALL_NAME and __MATHCALL_REDIR_NAME there rather than in the definition of __MATHCALL_NARROW, arises from the names such as "add" *not* themselves being reserved identifiers - meaning it's necessary to avoid any indirection that would result in a user-defined "add" macro being expanded.) Whereas for existing functions declaring long double functions is disabled if _LIBC in the case where they alias double functions, to facilitate defining the long double functions as aliases of the double ones, there is no such logic for the narrowing functions in this patch. Rather, the files defining such functions are expected to use #define to hide the original declarations of the alias names, to avoid errors about defining aliases with incompatible types. math/Makefile support is added for building the functions (listed in libm-narrow-fns, currently empty) for all relevant pairs of types. An internal header math-narrow.h is added for macros shared between multiple function implementations - currently a ROUND_TO_ODD macro to facilitate writing functions using the round-to-odd implementation approach, and alias macros to create all the required function aliases. libc_feholdexcept_setroundf128 and libc_feupdateenv_testf128 are added for use when required (only for x86_64). float128_private.h support is added for ldbl-128 narrowing functions to be used for _Float128. Certain things are specifically omitted from this patch and the immediate followups. tgmath.h support is deferred; there remain unresolved questions about how the type-generic macros for these functions are supposed to work, especially in the case of arguments of integer type. The math.h / bits/mathcalls-narrow.h logic, and the logic for determining what functions / aliases to define, will need some adjustments to support the sqrt and fma functions, where e.g. f32xsqrtf64 can just be an alias for sqrt rather than a separate function. TS 18661-1 defines FP_FAST_* macros but no support is included for defining them (they won't in general be true without architecture-specific optimized function versions). For each of the function groups (add sub mul div sqrt fma) there are always six functions present (e.g. fadd, faddl, daddl, f32addf64, f32addf32x, f32xaddf64). When _Float64x and _Float128 are supported, there are seven more (e.g. f32addf64x, f32addf128, f64addf64x, f64addf128, f32xaddf64x, f32xaddf128, f64xaddf128). In addition, in the ldbl-opt case there are function names such as __nldbl_daddl (an alias for f32xaddf64, which is not a reserved name in TS 18661-1, only in TS 18661-3), for calls to daddl to be mapped to in the -mlong-double-64 case. (Calls to faddl just get mapped to fadd, and for sqrt and fma there won't be __nldbl_* functions because dsqrtl and dfmal can just be mapped to sqrt and fma with -mlong-double-64.) While there are six or thirteen functions present in each group (plus __nldbl_* names only as an ABI, not an API), not all are distinct; they fall in various groups of aliases. There are two distinct versions built if long double has the same format as double; four if they have distinct formats but there is no _Float64x or _Float128 support; five if long double has binary128 format; seven when _Float128 is distinct from long double. Architecture-specific optimized versions are possible, but not included in my patches. For example, IA64 generally supports narrowing the result of most floating-point instructions; Power ISA 2.07 (POWER8) supports double values as arguments to float instructions, with the results narrowed as expected; Power ISA 3 (POWER9) supports round-to-odd for float128 instructions, so meaning that approach can be used without needing to set and restore the rounding mode and test "inexact". I intend to leave any such optimized versions to the architecture maintainers. Generally in such cases it would also make sense for calls to these functions to be expanded inline (given -fno-math-errno); I put a suggestion for TS 18661-1 built-in functions at <https://gcc.gnu.org/wiki/SummerOfCode>. Tested for x86_64 (this patch in isolation, as well as testing for various configurations in conjunction with further patches). * math/bits/mathcalls-narrow.h: New file. * include/bits/mathcalls-narrow.h: Likewise. * math/math-narrow.h: Likewise. * math/math.h (__MATHCALL_NARROW_ARGS_1): New macro. (__MATHCALL_NARROW_ARGS_2): Likewise. (__MATHCALL_NARROW_ARGS_3): Likewise. (__MATHCALL_NARROW_NORMAL): Likewise. (__MATHCALL_NARROW_REDIR): Likewise. (__MATHCALL_NARROW): Likewise. [__GLIBC_USE (IEC_60559_BFP_EXT)]: Repeatedly include <bits/mathcalls-narrow.h> with _Mret_, _Marg_ and __MATHCALL_NAME defined. [__GLIBC_USE (IEC_60559_TYPES_EXT)]: Likewise. * math/Makefile (headers): Add bits/mathcalls-narrow.h. (libm-narrow-fns): New variable. (libm-narrow-types-basic): Likewise. (libm-narrow-types-ldouble-yes): Likewise. (libm-narrow-types-float128-yes): Likewise. (libm-narrow-types-float128-alias-yes): Likewise. (libm-narrow-types): Likewise. (libm-routines): Add narrowing functions. * sysdeps/i386/fpu/fenv_private.h [__x86_64__] (libc_feholdexcept_setroundf128): New macro. [__x86_64__] (libc_feupdateenv_testf128): Likewise. * sysdeps/ieee754/float128/float128_private.h: Include <math/math-narrow.h>. [libc_feholdexcept_setroundf128] (libc_feholdexcept_setroundl): Undefine and redefine. [libc_feupdateenv_testf128] (libc_feupdateenv_testl): Likewise. (libm_alias_float_ldouble): Undefine and redefine. (libm_alias_double_ldouble): Likewise.
2018-02-09 22:18:52 +01:00
Add narrowing square root functions This patch adds the narrowing square root functions from TS 18661-1 / TS 18661-3 / C2X to glibc's libm: fsqrt, fsqrtl, dsqrtl, f32sqrtf64, f32sqrtf32x, f32xsqrtf64 for all configurations; f32sqrtf64x, f32sqrtf128, f64sqrtf64x, f64sqrtf128, f32xsqrtf64x, f32xsqrtf128, f64xsqrtf128 for configurations with _Float64x and _Float128; __f32sqrtieee128 and __f64sqrtieee128 aliases in the powerpc64le case (for calls to fsqrtl and dsqrtl when long double is IEEE binary128). Corresponding tgmath.h macro support is also added. The changes are mostly similar to those for the other narrowing functions previously added, so the description of those generally applies to this patch as well. However, the not-actually-narrowing cases (where the two types involved in the function have the same floating-point format) are aliased to sqrt, sqrtl or sqrtf128 rather than needing a separately built not-actually-narrowing function such as was needed for add / sub / mul / div. Thus, there is no __nldbl_dsqrtl name for ldbl-opt because no such name was needed (whereas the other functions needed such a name since the only other name for that entry point was e.g. f32xaddf64, not reserved by TS 18661-1); the headers are made to arrange for sqrt to be called in that case instead. The DIAG_* calls in sysdeps/ieee754/soft-fp/s_dsqrtl.c are because they were observed to be needed in GCC 7 testing of riscv32-linux-gnu-rv32imac-ilp32. The other sysdeps/ieee754/soft-fp/ files added didn't need such DIAG_* in any configuration I tested with build-many-glibcs.py, but if they do turn out to be needed in more files with some other configuration / GCC version, they can always be added there. I reused the same test inputs in auto-libm-test-in as for non-narrowing sqrt rather than adding extra or separate inputs for narrowing sqrt. The tests in libm-test-narrow-sqrt.inc also follow those for non-narrowing sqrt. Tested as followed: natively with the full glibc testsuite for x86_64 (GCC 11, 7, 6) and x86 (GCC 11); with build-many-glibcs.py with GCC 11, 7 and 6; cross testing of math/ tests for powerpc64le, powerpc32 hard float, mips64 (all three ABIs, both hard and soft float). The different GCC versions are to cover the different cases in tgmath.h and tgmath.h tests properly (GCC 6 has _Float* only as typedefs in glibc headers, GCC 7 has proper _Float* support, GCC 8 adds __builtin_tgmath).
2021-09-10 22:56:22 +02:00
/* Implement narrowing square root using round-to-odd. The argument
is X, the return type is TYPE and UNION, MANTISSA and SUFFIX are as
for ROUND_TO_ODD. */
#define NARROW_SQRT_ROUND_TO_ODD(X, TYPE, UNION, SUFFIX, MANTISSA) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) ROUND_TO_ODD (sqrt ## SUFFIX (math_opt_barrier (X)), \
UNION, SUFFIX, MANTISSA, false); \
Add narrowing square root functions This patch adds the narrowing square root functions from TS 18661-1 / TS 18661-3 / C2X to glibc's libm: fsqrt, fsqrtl, dsqrtl, f32sqrtf64, f32sqrtf32x, f32xsqrtf64 for all configurations; f32sqrtf64x, f32sqrtf128, f64sqrtf64x, f64sqrtf128, f32xsqrtf64x, f32xsqrtf128, f64xsqrtf128 for configurations with _Float64x and _Float128; __f32sqrtieee128 and __f64sqrtieee128 aliases in the powerpc64le case (for calls to fsqrtl and dsqrtl when long double is IEEE binary128). Corresponding tgmath.h macro support is also added. The changes are mostly similar to those for the other narrowing functions previously added, so the description of those generally applies to this patch as well. However, the not-actually-narrowing cases (where the two types involved in the function have the same floating-point format) are aliased to sqrt, sqrtl or sqrtf128 rather than needing a separately built not-actually-narrowing function such as was needed for add / sub / mul / div. Thus, there is no __nldbl_dsqrtl name for ldbl-opt because no such name was needed (whereas the other functions needed such a name since the only other name for that entry point was e.g. f32xaddf64, not reserved by TS 18661-1); the headers are made to arrange for sqrt to be called in that case instead. The DIAG_* calls in sysdeps/ieee754/soft-fp/s_dsqrtl.c are because they were observed to be needed in GCC 7 testing of riscv32-linux-gnu-rv32imac-ilp32. The other sysdeps/ieee754/soft-fp/ files added didn't need such DIAG_* in any configuration I tested with build-many-glibcs.py, but if they do turn out to be needed in more files with some other configuration / GCC version, they can always be added there. I reused the same test inputs in auto-libm-test-in as for non-narrowing sqrt rather than adding extra or separate inputs for narrowing sqrt. The tests in libm-test-narrow-sqrt.inc also follow those for non-narrowing sqrt. Tested as followed: natively with the full glibc testsuite for x86_64 (GCC 11, 7, 6) and x86 (GCC 11); with build-many-glibcs.py with GCC 11, 7 and 6; cross testing of math/ tests for powerpc64le, powerpc32 hard float, mips64 (all three ABIs, both hard and soft float). The different GCC versions are to cover the different cases in tgmath.h and tgmath.h tests properly (GCC 6 has _Float* only as typedefs in glibc headers, GCC 7 has proper _Float* support, GCC 8 adds __builtin_tgmath).
2021-09-10 22:56:22 +02:00
\
CHECK_NARROW_SQRT (ret, (X)); \
return ret; \
} \
while (0)
Add build infrastructure for narrowing libm functions. TS 18661-1 defines libm functions that carry out an operation (+ - * / sqrt fma) on their arguments and return a result rounded to a (usually) narrower type, as if the original result were computed to infinite precision and then rounded directly to the result type without any intermediate rounding to the argument type. For example, fadd, faddl and daddl for addition. These are the last remaining TS 18661-1 functions left to be added to glibc. TS 18661-3 extends this to corresponding functions for _FloatN and _FloatNx types. As functions parametrized by two rather than one varying floating-point types, these functions require infrastructure in glibc that was not required for previous libm functions. This patch provides such infrastructure - excluding test support, and actual function implementations, which will be in subsequent patches. Declaring the functions uses a header bits/mathcalls-narrow.h, which is included many times, for each relevant pair of types. This will end up containing macro calls of the form __MATHCALL_NARROW (__MATHCALL_NAME (add), __MATHCALL_REDIR_NAME (add), 2); for each family of narrowing functions. (The structure of this macro call, with the calls to __MATHCALL_NAME and __MATHCALL_REDIR_NAME there rather than in the definition of __MATHCALL_NARROW, arises from the names such as "add" *not* themselves being reserved identifiers - meaning it's necessary to avoid any indirection that would result in a user-defined "add" macro being expanded.) Whereas for existing functions declaring long double functions is disabled if _LIBC in the case where they alias double functions, to facilitate defining the long double functions as aliases of the double ones, there is no such logic for the narrowing functions in this patch. Rather, the files defining such functions are expected to use #define to hide the original declarations of the alias names, to avoid errors about defining aliases with incompatible types. math/Makefile support is added for building the functions (listed in libm-narrow-fns, currently empty) for all relevant pairs of types. An internal header math-narrow.h is added for macros shared between multiple function implementations - currently a ROUND_TO_ODD macro to facilitate writing functions using the round-to-odd implementation approach, and alias macros to create all the required function aliases. libc_feholdexcept_setroundf128 and libc_feupdateenv_testf128 are added for use when required (only for x86_64). float128_private.h support is added for ldbl-128 narrowing functions to be used for _Float128. Certain things are specifically omitted from this patch and the immediate followups. tgmath.h support is deferred; there remain unresolved questions about how the type-generic macros for these functions are supposed to work, especially in the case of arguments of integer type. The math.h / bits/mathcalls-narrow.h logic, and the logic for determining what functions / aliases to define, will need some adjustments to support the sqrt and fma functions, where e.g. f32xsqrtf64 can just be an alias for sqrt rather than a separate function. TS 18661-1 defines FP_FAST_* macros but no support is included for defining them (they won't in general be true without architecture-specific optimized function versions). For each of the function groups (add sub mul div sqrt fma) there are always six functions present (e.g. fadd, faddl, daddl, f32addf64, f32addf32x, f32xaddf64). When _Float64x and _Float128 are supported, there are seven more (e.g. f32addf64x, f32addf128, f64addf64x, f64addf128, f32xaddf64x, f32xaddf128, f64xaddf128). In addition, in the ldbl-opt case there are function names such as __nldbl_daddl (an alias for f32xaddf64, which is not a reserved name in TS 18661-1, only in TS 18661-3), for calls to daddl to be mapped to in the -mlong-double-64 case. (Calls to faddl just get mapped to fadd, and for sqrt and fma there won't be __nldbl_* functions because dsqrtl and dfmal can just be mapped to sqrt and fma with -mlong-double-64.) While there are six or thirteen functions present in each group (plus __nldbl_* names only as an ABI, not an API), not all are distinct; they fall in various groups of aliases. There are two distinct versions built if long double has the same format as double; four if they have distinct formats but there is no _Float64x or _Float128 support; five if long double has binary128 format; seven when _Float128 is distinct from long double. Architecture-specific optimized versions are possible, but not included in my patches. For example, IA64 generally supports narrowing the result of most floating-point instructions; Power ISA 2.07 (POWER8) supports double values as arguments to float instructions, with the results narrowed as expected; Power ISA 3 (POWER9) supports round-to-odd for float128 instructions, so meaning that approach can be used without needing to set and restore the rounding mode and test "inexact". I intend to leave any such optimized versions to the architecture maintainers. Generally in such cases it would also make sense for calls to these functions to be expanded inline (given -fno-math-errno); I put a suggestion for TS 18661-1 built-in functions at <https://gcc.gnu.org/wiki/SummerOfCode>. Tested for x86_64 (this patch in isolation, as well as testing for various configurations in conjunction with further patches). * math/bits/mathcalls-narrow.h: New file. * include/bits/mathcalls-narrow.h: Likewise. * math/math-narrow.h: Likewise. * math/math.h (__MATHCALL_NARROW_ARGS_1): New macro. (__MATHCALL_NARROW_ARGS_2): Likewise. (__MATHCALL_NARROW_ARGS_3): Likewise. (__MATHCALL_NARROW_NORMAL): Likewise. (__MATHCALL_NARROW_REDIR): Likewise. (__MATHCALL_NARROW): Likewise. [__GLIBC_USE (IEC_60559_BFP_EXT)]: Repeatedly include <bits/mathcalls-narrow.h> with _Mret_, _Marg_ and __MATHCALL_NAME defined. [__GLIBC_USE (IEC_60559_TYPES_EXT)]: Likewise. * math/Makefile (headers): Add bits/mathcalls-narrow.h. (libm-narrow-fns): New variable. (libm-narrow-types-basic): Likewise. (libm-narrow-types-ldouble-yes): Likewise. (libm-narrow-types-float128-yes): Likewise. (libm-narrow-types-float128-alias-yes): Likewise. (libm-narrow-types): Likewise. (libm-routines): Add narrowing functions. * sysdeps/i386/fpu/fenv_private.h [__x86_64__] (libc_feholdexcept_setroundf128): New macro. [__x86_64__] (libc_feupdateenv_testf128): Likewise. * sysdeps/ieee754/float128/float128_private.h: Include <math/math-narrow.h>. [libc_feholdexcept_setroundf128] (libc_feholdexcept_setroundl): Undefine and redefine. [libc_feupdateenv_testf128] (libc_feupdateenv_testl): Likewise. (libm_alias_float_ldouble): Undefine and redefine. (libm_alias_double_ldouble): Likewise.
2018-02-09 22:18:52 +01:00
Add narrowing square root functions This patch adds the narrowing square root functions from TS 18661-1 / TS 18661-3 / C2X to glibc's libm: fsqrt, fsqrtl, dsqrtl, f32sqrtf64, f32sqrtf32x, f32xsqrtf64 for all configurations; f32sqrtf64x, f32sqrtf128, f64sqrtf64x, f64sqrtf128, f32xsqrtf64x, f32xsqrtf128, f64xsqrtf128 for configurations with _Float64x and _Float128; __f32sqrtieee128 and __f64sqrtieee128 aliases in the powerpc64le case (for calls to fsqrtl and dsqrtl when long double is IEEE binary128). Corresponding tgmath.h macro support is also added. The changes are mostly similar to those for the other narrowing functions previously added, so the description of those generally applies to this patch as well. However, the not-actually-narrowing cases (where the two types involved in the function have the same floating-point format) are aliased to sqrt, sqrtl or sqrtf128 rather than needing a separately built not-actually-narrowing function such as was needed for add / sub / mul / div. Thus, there is no __nldbl_dsqrtl name for ldbl-opt because no such name was needed (whereas the other functions needed such a name since the only other name for that entry point was e.g. f32xaddf64, not reserved by TS 18661-1); the headers are made to arrange for sqrt to be called in that case instead. The DIAG_* calls in sysdeps/ieee754/soft-fp/s_dsqrtl.c are because they were observed to be needed in GCC 7 testing of riscv32-linux-gnu-rv32imac-ilp32. The other sysdeps/ieee754/soft-fp/ files added didn't need such DIAG_* in any configuration I tested with build-many-glibcs.py, but if they do turn out to be needed in more files with some other configuration / GCC version, they can always be added there. I reused the same test inputs in auto-libm-test-in as for non-narrowing sqrt rather than adding extra or separate inputs for narrowing sqrt. The tests in libm-test-narrow-sqrt.inc also follow those for non-narrowing sqrt. Tested as followed: natively with the full glibc testsuite for x86_64 (GCC 11, 7, 6) and x86 (GCC 11); with build-many-glibcs.py with GCC 11, 7 and 6; cross testing of math/ tests for powerpc64le, powerpc32 hard float, mips64 (all three ABIs, both hard and soft float). The different GCC versions are to cover the different cases in tgmath.h and tgmath.h tests properly (GCC 6 has _Float* only as typedefs in glibc headers, GCC 7 has proper _Float* support, GCC 8 adds __builtin_tgmath).
2021-09-10 22:56:22 +02:00
/* Implement a narrowing square root function where no attempt is made
to be correctly rounding (this only applies to IBM long double; the
case where the function is not actually narrowing is handled by
aliasing other sqrt functions in libm, not using this macro). The
argument is X and the return type is TYPE. */
#define NARROW_SQRT_TRIVIAL(X, TYPE, SUFFIX) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) (sqrt ## SUFFIX (X)); \
CHECK_NARROW_SQRT (ret, (X)); \
return ret; \
} \
while (0)
Add build infrastructure for narrowing libm functions. TS 18661-1 defines libm functions that carry out an operation (+ - * / sqrt fma) on their arguments and return a result rounded to a (usually) narrower type, as if the original result were computed to infinite precision and then rounded directly to the result type without any intermediate rounding to the argument type. For example, fadd, faddl and daddl for addition. These are the last remaining TS 18661-1 functions left to be added to glibc. TS 18661-3 extends this to corresponding functions for _FloatN and _FloatNx types. As functions parametrized by two rather than one varying floating-point types, these functions require infrastructure in glibc that was not required for previous libm functions. This patch provides such infrastructure - excluding test support, and actual function implementations, which will be in subsequent patches. Declaring the functions uses a header bits/mathcalls-narrow.h, which is included many times, for each relevant pair of types. This will end up containing macro calls of the form __MATHCALL_NARROW (__MATHCALL_NAME (add), __MATHCALL_REDIR_NAME (add), 2); for each family of narrowing functions. (The structure of this macro call, with the calls to __MATHCALL_NAME and __MATHCALL_REDIR_NAME there rather than in the definition of __MATHCALL_NARROW, arises from the names such as "add" *not* themselves being reserved identifiers - meaning it's necessary to avoid any indirection that would result in a user-defined "add" macro being expanded.) Whereas for existing functions declaring long double functions is disabled if _LIBC in the case where they alias double functions, to facilitate defining the long double functions as aliases of the double ones, there is no such logic for the narrowing functions in this patch. Rather, the files defining such functions are expected to use #define to hide the original declarations of the alias names, to avoid errors about defining aliases with incompatible types. math/Makefile support is added for building the functions (listed in libm-narrow-fns, currently empty) for all relevant pairs of types. An internal header math-narrow.h is added for macros shared between multiple function implementations - currently a ROUND_TO_ODD macro to facilitate writing functions using the round-to-odd implementation approach, and alias macros to create all the required function aliases. libc_feholdexcept_setroundf128 and libc_feupdateenv_testf128 are added for use when required (only for x86_64). float128_private.h support is added for ldbl-128 narrowing functions to be used for _Float128. Certain things are specifically omitted from this patch and the immediate followups. tgmath.h support is deferred; there remain unresolved questions about how the type-generic macros for these functions are supposed to work, especially in the case of arguments of integer type. The math.h / bits/mathcalls-narrow.h logic, and the logic for determining what functions / aliases to define, will need some adjustments to support the sqrt and fma functions, where e.g. f32xsqrtf64 can just be an alias for sqrt rather than a separate function. TS 18661-1 defines FP_FAST_* macros but no support is included for defining them (they won't in general be true without architecture-specific optimized function versions). For each of the function groups (add sub mul div sqrt fma) there are always six functions present (e.g. fadd, faddl, daddl, f32addf64, f32addf32x, f32xaddf64). When _Float64x and _Float128 are supported, there are seven more (e.g. f32addf64x, f32addf128, f64addf64x, f64addf128, f32xaddf64x, f32xaddf128, f64xaddf128). In addition, in the ldbl-opt case there are function names such as __nldbl_daddl (an alias for f32xaddf64, which is not a reserved name in TS 18661-1, only in TS 18661-3), for calls to daddl to be mapped to in the -mlong-double-64 case. (Calls to faddl just get mapped to fadd, and for sqrt and fma there won't be __nldbl_* functions because dsqrtl and dfmal can just be mapped to sqrt and fma with -mlong-double-64.) While there are six or thirteen functions present in each group (plus __nldbl_* names only as an ABI, not an API), not all are distinct; they fall in various groups of aliases. There are two distinct versions built if long double has the same format as double; four if they have distinct formats but there is no _Float64x or _Float128 support; five if long double has binary128 format; seven when _Float128 is distinct from long double. Architecture-specific optimized versions are possible, but not included in my patches. For example, IA64 generally supports narrowing the result of most floating-point instructions; Power ISA 2.07 (POWER8) supports double values as arguments to float instructions, with the results narrowed as expected; Power ISA 3 (POWER9) supports round-to-odd for float128 instructions, so meaning that approach can be used without needing to set and restore the rounding mode and test "inexact". I intend to leave any such optimized versions to the architecture maintainers. Generally in such cases it would also make sense for calls to these functions to be expanded inline (given -fno-math-errno); I put a suggestion for TS 18661-1 built-in functions at <https://gcc.gnu.org/wiki/SummerOfCode>. Tested for x86_64 (this patch in isolation, as well as testing for various configurations in conjunction with further patches). * math/bits/mathcalls-narrow.h: New file. * include/bits/mathcalls-narrow.h: Likewise. * math/math-narrow.h: Likewise. * math/math.h (__MATHCALL_NARROW_ARGS_1): New macro. (__MATHCALL_NARROW_ARGS_2): Likewise. (__MATHCALL_NARROW_ARGS_3): Likewise. (__MATHCALL_NARROW_NORMAL): Likewise. (__MATHCALL_NARROW_REDIR): Likewise. (__MATHCALL_NARROW): Likewise. [__GLIBC_USE (IEC_60559_BFP_EXT)]: Repeatedly include <bits/mathcalls-narrow.h> with _Mret_, _Marg_ and __MATHCALL_NAME defined. [__GLIBC_USE (IEC_60559_TYPES_EXT)]: Likewise. * math/Makefile (headers): Add bits/mathcalls-narrow.h. (libm-narrow-fns): New variable. (libm-narrow-types-basic): Likewise. (libm-narrow-types-ldouble-yes): Likewise. (libm-narrow-types-float128-yes): Likewise. (libm-narrow-types-float128-alias-yes): Likewise. (libm-narrow-types): Likewise. (libm-routines): Add narrowing functions. * sysdeps/i386/fpu/fenv_private.h [__x86_64__] (libc_feholdexcept_setroundf128): New macro. [__x86_64__] (libc_feupdateenv_testf128): Likewise. * sysdeps/ieee754/float128/float128_private.h: Include <math/math-narrow.h>. [libc_feholdexcept_setroundf128] (libc_feholdexcept_setroundl): Undefine and redefine. [libc_feupdateenv_testf128] (libc_feupdateenv_testl): Likewise. (libm_alias_float_ldouble): Undefine and redefine. (libm_alias_double_ldouble): Likewise.
2018-02-09 22:18:52 +01:00
Add narrowing fma functions This patch adds the narrowing fused multiply-add functions from TS 18661-1 / TS 18661-3 / C2X to glibc's libm: ffma, ffmal, dfmal, f32fmaf64, f32fmaf32x, f32xfmaf64 for all configurations; f32fmaf64x, f32fmaf128, f64fmaf64x, f64fmaf128, f32xfmaf64x, f32xfmaf128, f64xfmaf128 for configurations with _Float64x and _Float128; __f32fmaieee128 and __f64fmaieee128 aliases in the powerpc64le case (for calls to ffmal and dfmal when long double is IEEE binary128). Corresponding tgmath.h macro support is also added. The changes are mostly similar to those for the other narrowing functions previously added, especially that for sqrt, so the description of those generally applies to this patch as well. As with sqrt, I reused the same test inputs in auto-libm-test-in as for non-narrowing fma rather than adding extra or separate inputs for narrowing fma. The tests in libm-test-narrow-fma.inc also follow those for non-narrowing fma. The non-narrowing fma has a known bug (bug 6801) that it does not set errno on errors (overflow, underflow, Inf * 0, Inf - Inf). Rather than fixing this or having narrowing fma check for errors when non-narrowing does not (complicating the cases when narrowing fma can otherwise be an alias for a non-narrowing function), this patch does not attempt to check for errors from narrowing fma and set errno; the CHECK_NARROW_FMA macro is still present, but as a placeholder that does nothing, and this missing errno setting is considered to be covered by the existing bug rather than needing a separate open bug. missing-errno annotations are duly added to many of the auto-libm-test-in test inputs for fma. This completes adding all the new functions from TS 18661-1 to glibc, so will be followed by corresponding stdc-predef.h changes to define __STDC_IEC_60559_BFP__ and __STDC_IEC_60559_COMPLEX__, as the support for TS 18661-1 will be at a similar level to that for C standard floating-point facilities up to C11 (pragmas not implemented, but library functions done). (There are still further changes to be done to implement changes to the types of fromfp functions from N2548.) Tested as followed: natively with the full glibc testsuite for x86_64 (GCC 11, 7, 6) and x86 (GCC 11); with build-many-glibcs.py with GCC 11, 7 and 6; cross testing of math/ tests for powerpc64le, powerpc32 hard float, mips64 (all three ABIs, both hard and soft float). The different GCC versions are to cover the different cases in tgmath.h and tgmath.h tests properly (GCC 6 has _Float* only as typedefs in glibc headers, GCC 7 has proper _Float* support, GCC 8 adds __builtin_tgmath).
2021-09-22 23:25:31 +02:00
/* Check for error conditions from a narrowing fused multiply-add
function returning RET with arguments X, Y and Z and set errno as
needed. Checking for error conditions for fma (either narrowing or
not) and setting errno is not currently implemented. See bug
6801. */
#define CHECK_NARROW_FMA(RET, X, Y, Z) \
do \
{ \
} \
while (0)
/* Implement narrowing fused multiply-add using round-to-odd. The
arguments are X, Y and Z, the return type is TYPE and UNION,
MANTISSA, SUFFIX and CLEAR_UNDERFLOW are as for ROUND_TO_ODD. */
#define NARROW_FMA_ROUND_TO_ODD(X, Y, Z, TYPE, UNION, SUFFIX, MANTISSA, \
CLEAR_UNDERFLOW) \
do \
{ \
typeof (X) tmp; \
TYPE ret; \
\
tmp = ROUND_TO_ODD (fma ## SUFFIX (math_opt_barrier (X), (Y), \
(Z)), \
UNION, SUFFIX, MANTISSA, CLEAR_UNDERFLOW); \
/* If the round-to-odd result is zero, the result is an exact \
zero and must be recomputed in the original rounding mode. */ \
if (tmp == 0) \
ret = (TYPE) (math_opt_barrier (X) * (Y) + (Z)); \
else \
ret = (TYPE) tmp; \
\
CHECK_NARROW_FMA (ret, (X), (Y), (Z)); \
return ret; \
} \
while (0)
/* Implement a narrowing fused multiply-add function where no attempt
is made to be correctly rounding (this only applies to IBM long
double; the case where the function is not actually narrowing is
handled by aliasing other fma functions in libm, not using this
macro). The arguments are X, Y and Z and the return type is
TYPE. */
#define NARROW_FMA_TRIVIAL(X, Y, Z, TYPE, SUFFIX) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) (fma ## SUFFIX ((X), (Y), (Z))); \
CHECK_NARROW_FMA (ret, (X), (Y), (Z)); \
return ret; \
} \
while (0)
Add build infrastructure for narrowing libm functions. TS 18661-1 defines libm functions that carry out an operation (+ - * / sqrt fma) on their arguments and return a result rounded to a (usually) narrower type, as if the original result were computed to infinite precision and then rounded directly to the result type without any intermediate rounding to the argument type. For example, fadd, faddl and daddl for addition. These are the last remaining TS 18661-1 functions left to be added to glibc. TS 18661-3 extends this to corresponding functions for _FloatN and _FloatNx types. As functions parametrized by two rather than one varying floating-point types, these functions require infrastructure in glibc that was not required for previous libm functions. This patch provides such infrastructure - excluding test support, and actual function implementations, which will be in subsequent patches. Declaring the functions uses a header bits/mathcalls-narrow.h, which is included many times, for each relevant pair of types. This will end up containing macro calls of the form __MATHCALL_NARROW (__MATHCALL_NAME (add), __MATHCALL_REDIR_NAME (add), 2); for each family of narrowing functions. (The structure of this macro call, with the calls to __MATHCALL_NAME and __MATHCALL_REDIR_NAME there rather than in the definition of __MATHCALL_NARROW, arises from the names such as "add" *not* themselves being reserved identifiers - meaning it's necessary to avoid any indirection that would result in a user-defined "add" macro being expanded.) Whereas for existing functions declaring long double functions is disabled if _LIBC in the case where they alias double functions, to facilitate defining the long double functions as aliases of the double ones, there is no such logic for the narrowing functions in this patch. Rather, the files defining such functions are expected to use #define to hide the original declarations of the alias names, to avoid errors about defining aliases with incompatible types. math/Makefile support is added for building the functions (listed in libm-narrow-fns, currently empty) for all relevant pairs of types. An internal header math-narrow.h is added for macros shared between multiple function implementations - currently a ROUND_TO_ODD macro to facilitate writing functions using the round-to-odd implementation approach, and alias macros to create all the required function aliases. libc_feholdexcept_setroundf128 and libc_feupdateenv_testf128 are added for use when required (only for x86_64). float128_private.h support is added for ldbl-128 narrowing functions to be used for _Float128. Certain things are specifically omitted from this patch and the immediate followups. tgmath.h support is deferred; there remain unresolved questions about how the type-generic macros for these functions are supposed to work, especially in the case of arguments of integer type. The math.h / bits/mathcalls-narrow.h logic, and the logic for determining what functions / aliases to define, will need some adjustments to support the sqrt and fma functions, where e.g. f32xsqrtf64 can just be an alias for sqrt rather than a separate function. TS 18661-1 defines FP_FAST_* macros but no support is included for defining them (they won't in general be true without architecture-specific optimized function versions). For each of the function groups (add sub mul div sqrt fma) there are always six functions present (e.g. fadd, faddl, daddl, f32addf64, f32addf32x, f32xaddf64). When _Float64x and _Float128 are supported, there are seven more (e.g. f32addf64x, f32addf128, f64addf64x, f64addf128, f32xaddf64x, f32xaddf128, f64xaddf128). In addition, in the ldbl-opt case there are function names such as __nldbl_daddl (an alias for f32xaddf64, which is not a reserved name in TS 18661-1, only in TS 18661-3), for calls to daddl to be mapped to in the -mlong-double-64 case. (Calls to faddl just get mapped to fadd, and for sqrt and fma there won't be __nldbl_* functions because dsqrtl and dfmal can just be mapped to sqrt and fma with -mlong-double-64.) While there are six or thirteen functions present in each group (plus __nldbl_* names only as an ABI, not an API), not all are distinct; they fall in various groups of aliases. There are two distinct versions built if long double has the same format as double; four if they have distinct formats but there is no _Float64x or _Float128 support; five if long double has binary128 format; seven when _Float128 is distinct from long double. Architecture-specific optimized versions are possible, but not included in my patches. For example, IA64 generally supports narrowing the result of most floating-point instructions; Power ISA 2.07 (POWER8) supports double values as arguments to float instructions, with the results narrowed as expected; Power ISA 3 (POWER9) supports round-to-odd for float128 instructions, so meaning that approach can be used without needing to set and restore the rounding mode and test "inexact". I intend to leave any such optimized versions to the architecture maintainers. Generally in such cases it would also make sense for calls to these functions to be expanded inline (given -fno-math-errno); I put a suggestion for TS 18661-1 built-in functions at <https://gcc.gnu.org/wiki/SummerOfCode>. Tested for x86_64 (this patch in isolation, as well as testing for various configurations in conjunction with further patches). * math/bits/mathcalls-narrow.h: New file. * include/bits/mathcalls-narrow.h: Likewise. * math/math-narrow.h: Likewise. * math/math.h (__MATHCALL_NARROW_ARGS_1): New macro. (__MATHCALL_NARROW_ARGS_2): Likewise. (__MATHCALL_NARROW_ARGS_3): Likewise. (__MATHCALL_NARROW_NORMAL): Likewise. (__MATHCALL_NARROW_REDIR): Likewise. (__MATHCALL_NARROW): Likewise. [__GLIBC_USE (IEC_60559_BFP_EXT)]: Repeatedly include <bits/mathcalls-narrow.h> with _Mret_, _Marg_ and __MATHCALL_NAME defined. [__GLIBC_USE (IEC_60559_TYPES_EXT)]: Likewise. * math/Makefile (headers): Add bits/mathcalls-narrow.h. (libm-narrow-fns): New variable. (libm-narrow-types-basic): Likewise. (libm-narrow-types-ldouble-yes): Likewise. (libm-narrow-types-float128-yes): Likewise. (libm-narrow-types-float128-alias-yes): Likewise. (libm-narrow-types): Likewise. (libm-routines): Add narrowing functions. * sysdeps/i386/fpu/fenv_private.h [__x86_64__] (libc_feholdexcept_setroundf128): New macro. [__x86_64__] (libc_feupdateenv_testf128): Likewise. * sysdeps/ieee754/float128/float128_private.h: Include <math/math-narrow.h>. [libc_feholdexcept_setroundf128] (libc_feholdexcept_setroundl): Undefine and redefine. [libc_feupdateenv_testf128] (libc_feupdateenv_testl): Likewise. (libm_alias_float_ldouble): Undefine and redefine. (libm_alias_double_ldouble): Likewise.
2018-02-09 22:18:52 +01:00
#endif /* math-narrow.h. */