glibc/sysdeps/alpha/fpu/bits/mathinline.h
Ulrich Drepper 054d2bf7cc Update.
2001-02-07  Ulrich Drepper  <drepper@redhat.com>

	* sysdeps/gnu/netinet/tcp.h: Correct values of TCP_ macros.
	Patch by Pekka.Pietikainen@cern.ch.

	* posix/regex.c: Correct several problems with 64-bit architectures
	introduced in the MBS changes.
	Patch by Isamu Hasegawa <isamu@yamato.ibm.com>.

2001-02-07  Jakub Jelinek  <jakub@redhat.com>

	* math/tgmath.h: Only add l suffixes if __NO_LONG_DOUBLE_MATH is
	not defined.
	* sysdeps/alpha/fpu/bits/mathinline.h: Honour __NO_MATH_INLINES.
2001-02-07 18:46:03 +00:00

182 lines
5.2 KiB
C

/* Inline math functions for Alpha.
Copyright (C) 1996, 1997, 1999, 2000, 2001 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by David Mosberger-Tang.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#ifndef _MATH_H
# error "Never use <bits/mathinline.h> directly; include <math.h> instead."
#endif
#ifdef __cplusplus
# define __MATH_INLINE __inline
#else
# define __MATH_INLINE extern __inline
#endif
#ifdef __USE_ISOC99
# define isunordered(x, y) \
(__extension__ \
({ double __r; \
__asm ("cmptun/su %1,%2,%0\n\ttrapb" \
: "=&f" (__r) : "f" (x), "f"(y)); \
__r != 0; }))
# define isgreater(x, y) \
(__extension__ \
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
!isunordered(__x, __y) && __x > __y; }))
# define isgreaterequal(x, y) \
(__extension__ \
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
!isunordered(__x, __y) && __x >= __y; }))
# define isless(x, y) \
(__extension__ \
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
!isunordered(__x, __y) && __x < __y; }))
# define islessequal(x, y) \
(__extension__ \
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
!isunordered(__x, __y) && __x <= __y; }))
# define islessgreater(x, y) \
(__extension__ \
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
!isunordered(__x, __y) && __x != __y; }))
#endif /* ISO C99 */
#if !defined __NO_MATH_INLINES && defined __OPTIMIZE__
#define __inline_copysign(NAME, TYPE) \
__MATH_INLINE TYPE \
NAME (TYPE __x, TYPE __y) __THROW \
{ \
TYPE __z; \
__asm ("cpys %1, %2, %0" : "=f" (__z) : "f" (__y), "f" (__x)); \
return __z; \
}
__inline_copysign(__copysignf, float)
__inline_copysign(copysignf, float)
__inline_copysign(__copysign, double)
__inline_copysign(copysign, double)
#undef __MATH_INLINE_copysign
#if __GNUC_PREREQ (2, 8)
__MATH_INLINE float __fabsf (float __x) __THROW { return __builtin_fabsf (__x); }
__MATH_INLINE float fabsf (float __x) __THROW { return __builtin_fabsf (__x); }
__MATH_INLINE double __fabs (double __x) __THROW { return __builtin_fabs (__x); }
__MATH_INLINE double fabs (double __x) __THROW { return __builtin_fabs (__x); }
#else
#define __inline_fabs(NAME, TYPE) \
__MATH_INLINE TYPE \
NAME (TYPE __x) __THROW \
{ \
TYPE __z; \
__asm ("cpys $f31, %1, %0" : "=f" (__z) : "f" (__x)); \
return __z; \
}
__inline_fabs(__fabsf, float)
__inline_fabs(fabsf, float)
__inline_fabs(__fabs, double)
__inline_fabs(fabs, double)
#undef __inline_fabs
#endif
/* Use the -inf rounding mode conversion instructions to implement
floor. We note when the exponent is large enough that the value
must be integral, as this avoids unpleasant integer overflows. */
__MATH_INLINE float
__floorf (float __x) __THROW
{
/* Check not zero since floor(-0) == -0. */
if (__x != 0 && fabsf (__x) < 16777216.0f) /* 1 << FLT_MANT_DIG */
{
/* Note that Alpha S_Floating is stored in registers in a
restricted T_Floating format, so we don't even need to
convert back to S_Floating in the end. The initial
conversion to T_Floating is needed to handle denormals. */
float __tmp1, __tmp2;
__asm ("cvtst/s %3,%2\n\t"
#ifdef _IEEE_FP_INEXACT
"cvttq/svim %2,%1\n\t"
#else
"cvttq/svm %2,%1\n\t"
#endif
"cvtqt/m %1,%0\n\t"
: "=f"(__x), "=&f"(__tmp1), "=&f"(__tmp2)
: "f"(__x));
}
return __x;
}
__MATH_INLINE double
__floor (double __x) __THROW
{
if (__x != 0 && fabs (__x) < 9007199254740992.0) /* 1 << DBL_MANT_DIG */
{
double __tmp1;
__asm (
#ifdef _IEEE_FP_INEXACT
"cvttq/svim %2,%1\n\t"
#else
"cvttq/svm %2,%1\n\t"
#endif
"cvtqt/m %1,%0\n\t"
: "=f"(__x), "=&f"(__tmp1)
: "f"(__x));
}
return __x;
}
__MATH_INLINE float floorf (float __x) __THROW { return __floorf(__x); }
__MATH_INLINE double floor (double __x) __THROW { return __floor(__x); }
#ifdef __USE_ISOC99
__MATH_INLINE float __fdimf (float __x, float __y) __THROW
{
return __x < __y ? 0.0f : __x - __y;
}
__MATH_INLINE float fdimf (float __x, float __y) __THROW
{
return __x < __y ? 0.0f : __x - __y;
}
__MATH_INLINE double __fdim (double __x, double __y) __THROW
{
return __x < __y ? 0.0 : __x - __y;
}
__MATH_INLINE double fdim (double __x, double __y) __THROW
{
return __x < __y ? 0.0 : __x - __y;
}
#endif /* C99 */
#endif /* __NO_MATH_INLINES */