hnix/Nix/StringOperations.hs
2018-03-27 21:59:27 -07:00

86 lines
2.7 KiB
Haskell

-- | Functions for manipulating nix strings.
module Nix.StringOperations where
import Data.List (intercalate)
import Data.Monoid ((<>))
import Data.Text (Text)
import qualified Data.Text as T
import Data.Tuple (swap)
import Nix.Expr
-- | Merge adjacent 'Plain' values with 'mappend'.
mergePlain :: Monoid v => [Antiquoted v r] -> [Antiquoted v r]
mergePlain [] = []
mergePlain (Plain a: Plain b: xs) = mergePlain (Plain (a <> b) : xs)
mergePlain (x:xs) = x : mergePlain xs
-- | Remove 'Plain' values equal to 'mempty', as they don't have any
-- informational content.
removePlainEmpty :: (Eq v, Monoid v) => [Antiquoted v r] -> [Antiquoted v r]
removePlainEmpty = filter f where
f (Plain x) = x /= mempty
f _ = True
-- | Equivalent to case splitting on 'Antiquoted' strings.
runAntiquoted :: (v -> a) -> (r -> a) -> Antiquoted v r -> a
runAntiquoted f _ (Plain v) = f v
runAntiquoted _ f (Antiquoted r) = f r
-- | Split a stream representing a string with antiquotes on line breaks.
splitLines :: [Antiquoted Text r] -> [[Antiquoted Text r]]
splitLines = uncurry (flip (:)) . go where
go (Plain t : xs) = (Plain l :) <$> foldr f (go xs) ls where
(l : ls) = T.split (=='\n') t
f prefix (finished, current) = ((Plain prefix : current) : finished, [])
go (Antiquoted a : xs) = (Antiquoted a :) <$> go xs
go [] = ([],[])
-- | Join a stream of strings containing antiquotes again. This is the inverse
-- of 'splitLines'.
unsplitLines :: [[Antiquoted Text r]] -> [Antiquoted Text r]
unsplitLines = intercalate [Plain "\n"]
-- | Form an indented string by stripping spaces equal to the minimal indent.
stripIndent :: [Antiquoted Text r] -> NString r
stripIndent [] = Indented []
stripIndent xs =
Indented . removePlainEmpty . mergePlain . unsplitLines $ ls'
where
ls = stripEmptyOpening $ splitLines xs
ls' = map (dropSpaces minIndent) ls
minIndent = case stripEmptyLines ls of
[] -> 0
nonEmptyLs -> minimum $ map (countSpaces . mergePlain) nonEmptyLs
stripEmptyLines = filter $ \case
[Plain t] -> not $ T.null $ T.strip t
_ -> True
stripEmptyOpening ([Plain t]:ts) | T.null (T.strip t) = ts
stripEmptyOpening ts = ts
countSpaces (Antiquoted _:_) = 0
countSpaces (Plain t : _) = T.length . T.takeWhile (== ' ') $ t
countSpaces [] = 0
dropSpaces 0 x = x
dropSpaces n (Plain t : cs) = Plain (T.drop n t) : cs
dropSpaces _ _ = error "stripIndent: impossible"
escapeCodes :: [(Char, Char)]
escapeCodes =
[ ('\n', 'n' )
, ('\r', 'r' )
, ('\t', 't' )
, ('\\', '\\')
, ('$' , '$' )
, ('"', '"')
]
fromEscapeCode :: Char -> Maybe Char
fromEscapeCode = (`lookup` map swap escapeCodes)
toEscapeCode :: Char -> Maybe Char
toEscapeCode = (`lookup` escapeCodes)