libglvnd/src/util/uthash/doc/utarray.txt
Brian Nguyen 93bb43c5e7 Add uthash commit 2c8cd98e0be93d38ff3340a0fbce300bc6739b08 to src/util
uthash's hashtable implementation will be used by libGLX for storing
various mappings needed for correct dispatching.
2013-08-26 11:03:41 -07:00

375 lines
12 KiB
Plaintext

utarray: dynamic array macros for C
===================================
Troy D. Hanson <tdh@tkhanson.net>
v1.9.8, March 2013
Here's a link back to the https://github.com/troydhanson/uthash[GitHub project page].
Introduction
------------
A set of general-purpose dynamic array macros for C structures are included with
uthash in `utarray.h`. To use these macros in your own C program, just
copy `utarray.h` into your source directory and use it in your programs.
#include "utarray.h"
The dynamic array supports basic operations such as push, pop, and erase on the
array elements. These array elements can be any simple datatype or structure.
The array <<operations,operations>> are based loosely on the C++ STL vector methods.
Internally the dynamic array contains a contiguous memory region into which
the elements are copied. This buffer is grown as needed using `realloc` to
accomodate all the data that is pushed into it.
Download
~~~~~~~~
To download the `utarray.h` header file,
follow the links on https://github.com/troydhanson/uthash to clone uthash or get a zip file,
then look in the src/ sub-directory.
BSD licensed
~~~~~~~~~~~~
This software is made available under the
link:license.html[revised BSD license].
It is free and open source.
Platforms
~~~~~~~~~
The 'utarray' macros have been tested on:
* Linux,
* Mac OS X,
* Windows, using Visual Studio 2008 and Visual Studio 2010
Usage
-----
Declaration
~~~~~~~~~~~
The array itself has the data type `UT_array`, regardless of the type of
elements to be stored in it. It is declared like,
UT_array *nums;
New and free
~~~~~~~~~~~~
The next step is to create the array using `utarray_new`. Later when you're
done with the array, `utarray_free` will free it and all its elements.
Push, pop, etc
~~~~~~~~~~~~~~
The central features of the utarray involve putting elements into it, taking
them out, and iterating over them. There are several <<operations,operations>>
to pick from that deal with either single elements or ranges of elements at a
time. In the examples below we will use only the push operation to insert
elements.
Elements
--------
Support for dynamic arrays of integers or strings is especially easy. These are
best shown by example:
Integers
~~~~~~~~
This example makes a utarray of integers, pushes 0-9 into it, then prints it.
Lastly it frees it.
.Integer elements
-------------------------------------------------------------------------------
#include <stdio.h>
#include "utarray.h"
int main() {
UT_array *nums;
int i, *p;
utarray_new(nums,&ut_int_icd);
for(i=0; i < 10; i++) utarray_push_back(nums,&i);
for(p=(int*)utarray_front(nums);
p!=NULL;
p=(int*)utarray_next(nums,p)) {
printf("%d\n",*p);
}
utarray_free(nums);
return 0;
}
-------------------------------------------------------------------------------
The second argument to `utarray_push_back` is always a 'pointer' to the type
(so a literal cannot be used). So for integers, it is an `int*`.
Strings
~~~~~~~
In this example we make a utarray of strings, push two strings into it, print
it and free it.
.String elements
-------------------------------------------------------------------------------
#include <stdio.h>
#include "utarray.h"
int main() {
UT_array *strs;
char *s, **p;
utarray_new(strs,&ut_str_icd);
s = "hello"; utarray_push_back(strs, &s);
s = "world"; utarray_push_back(strs, &s);
p = NULL;
while ( (p=(char**)utarray_next(strs,p))) {
printf("%s\n",*p);
}
utarray_free(strs);
return 0;
}
-------------------------------------------------------------------------------
In this example, since the element is a `char*`, we pass a pointer to it
(`char**`) as the second argument to `utarray_push_back`. Note that "push" makes
a copy of the source string and pushes that copy into the array.
About UT_icd
~~~~~~~~~~~~
Arrays be made of any type of element, not just integers and strings. The
elements can be basic types or structures. Unless you're dealing with integers
and strings (which use pre-defined `ut_int_icd` and `ut_str_icd`), you'll need
to define a `UT_icd` helper structure. This structure contains everything that
utarray needs to initialize, copy or destruct elements.
typedef struct {
size_t sz;
init_f *init;
ctor_f *copy;
dtor_f *dtor;
} UT_icd;
The three function pointers `init`, `copy`, and `dtor` have these prototypes:
typedef void (ctor_f)(void *dst, const void *src);
typedef void (dtor_f)(void *elt);
typedef void (init_f)(void *elt);
The `sz` is just the size of the element being stored in the array.
The `init` function will be invoked whenever utarray needs to initialize an
empty element. This only happens as a byproduct of `utarray_resize` or
`utarray_extend_back`. If `init` is `NULL`, it defaults to zero filling the
new element using memset.
The `copy` function is used whenever an element is copied into the array.
It is invoked during `utarray_push_back`, `utarray_insert`, `utarray_inserta`,
or `utarray_concat`. If `copy` is `NULL`, it defaults to a bitwise copy using
memcpy.
The `dtor` function is used to clean up an element that is being removed from
the array. It may be invoked due to `utarray_resize`, `utarray_pop_back`,
`utarray_erase`, `utarray_clear`, `utarray_done` or `utarray_free`. If the
elements need no cleanup upon destruction, `dtor` may be `NULL`.
Scalar types
~~~~~~~~~~~~
The next example uses `UT_icd` with all its defaults to make a utarray of
`long` elements. This example pushes two longs, prints them, and frees the
array.
.long elements
-------------------------------------------------------------------------------
#include <stdio.h>
#include "utarray.h"
UT_icd long_icd = {sizeof(long), NULL, NULL, NULL };
int main() {
UT_array *nums;
long l, *p;
utarray_new(nums, &long_icd);
l=1; utarray_push_back(nums, &l);
l=2; utarray_push_back(nums, &l);
p=NULL;
while( (p=(long*)utarray_next(nums,p))) printf("%ld\n", *p);
utarray_free(nums);
return 0;
}
-------------------------------------------------------------------------------
Structures
~~~~~~~~~~
Structures can be used as utarray elements. If the structure requires no
special effort to initialize, copy or destruct, we can use `UT_icd` with all
its defaults. This example shows a structure that consists of two integers. Here
we push two values, print them and free the array.
.Structure (simple)
-------------------------------------------------------------------------------
#include <stdio.h>
#include "utarray.h"
typedef struct {
int a;
int b;
} intpair_t;
UT_icd intpair_icd = {sizeof(intpair_t), NULL, NULL, NULL};
int main() {
UT_array *pairs;
intpair_t ip, *p;
utarray_new(pairs,&intpair_icd);
ip.a=1; ip.b=2; utarray_push_back(pairs, &ip);
ip.a=10; ip.b=20; utarray_push_back(pairs, &ip);
for(p=(intpair_t*)utarray_front(pairs);
p!=NULL;
p=(intpair_t*)utarray_next(pairs,p)) {
printf("%d %d\n", p->a, p->b);
}
utarray_free(pairs);
return 0;
}
-------------------------------------------------------------------------------
The real utility of `UT_icd` is apparent when the elements of the utarray are
structures that require special work to initialize, copy or destruct.
For example, when a structure contains pointers to related memory areas that
need to be copied when the structure is copied (and freed when the structure is
freed), we can use custom `init`, `copy`, and `dtor` members in the `UT_icd`.
Here we take an example of a structure that contains an integer and a string.
When this element is copied (such as when an element is pushed into the array),
we want to "deep copy" the `s` pointer (so the original element and the new
element point to their own copies of `s`). When an element is destructed, we
want to "deep free" its copy of `s`. Lastly, this example is written to work
even if `s` has the value `NULL`.
.Structure (complex)
-------------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include "utarray.h"
typedef struct {
int a;
char *s;
} intchar_t;
void intchar_copy(void *_dst, const void *_src) {
intchar_t *dst = (intchar_t*)_dst, *src = (intchar_t*)_src;
dst->a = src->a;
dst->s = src->s ? strdup(src->s) : NULL;
}
void intchar_dtor(void *_elt) {
intchar_t *elt = (intchar_t*)_elt;
if (elt->s) free(elt->s);
}
UT_icd intchar_icd = {sizeof(intchar_t), NULL, intchar_copy, intchar_dtor};
int main() {
UT_array *intchars;
intchar_t ic, *p;
utarray_new(intchars, &intchar_icd);
ic.a=1; ic.s="hello"; utarray_push_back(intchars, &ic);
ic.a=2; ic.s="world"; utarray_push_back(intchars, &ic);
p=NULL;
while( (p=(intchar_t*)utarray_next(intchars,p))) {
printf("%d %s\n", p->a, (p->s ? p->s : "null"));
}
utarray_free(intchars);
return 0;
}
-------------------------------------------------------------------------------
[[operations]]
Reference
---------
This table lists all the utarray operations. These are loosely based on the C++
vector class.
Operations
~~~~~~~~~~
[width="100%",cols="50<m,40<",grid="none",options="none"]
|===============================================================================
| utarray_new(UT_array *a, UT_icd *icd)| allocate a new array
| utarray_free(UT_array *a) | free an allocated array
| utarray_init(UT_array *a,UT_icd *icd)| init an array (non-alloc)
| utarray_done(UT_array *a) | dispose of an array (non-allocd)
| utarray_reserve(UT_array *a,int n) | ensure space available for 'n' more elements
| utarray_push_back(UT_array *a,void *p) | push element p onto a
| utarray_pop_back(UT_array *a) | pop last element from a
| utarray_extend_back(UT_array *a) | push empty element onto a
| utarray_len(UT_array *a) | get length of a
| utarray_eltptr(UT_array *a,int j) | get pointer of element from index
| utarray_eltidx(UT_array *a,void *e) | get index of element from pointer
| utarray_insert(UT_array *a,void *p, int j) | insert element p to index j
| utarray_inserta(UT_array *a,UT_array *w, int j) | insert array w into array a at index j
| utarray_resize(UT_array *dst,int num) | extend or shrink array to num elements
| utarray_concat(UT_array *dst,UT_array *src) | copy src to end of dst array
| utarray_erase(UT_array *a,int pos,int len) | remove len elements from a[pos]..a[pos+len-1]
| utarray_clear(UT_array *a) | clear all elements from a, setting its length to zero
| utarray_sort(UT_array *a,cmpfcn *cmp) | sort elements of a using comparison function
| utarray_find(UT_array *a,void *v, cmpfcn *cmp) | find element v in utarray (must be sorted)
| utarray_front(UT_array *a) | get first element of a
| utarray_next(UT_array *a,void *e) | get element of a following e (front if e is NULL)
| utarray_prev(UT_array *a,void *e) | get element of a before e (back if e is NULL)
| utarray_back(UT_array *a) | get last element of a
|===============================================================================
Notes
~~~~~
1. `utarray_new` and `utarray_free` are used to allocate a new array and free it,
while `utarray_init` and `utarray_done` can be used if the UT_array is already
allocated and just needs to be initialized or have its internal resources
freed.
2. `utarray_reserve` takes the "delta" of elements to reserve (not the total
desired capacity of the array-- this differs from the C++ STL "reserve" notion)
3. `utarray_sort` expects a comparison function having the usual `strcmp` -like
convention where it accepts two elements (a and b) and returns a negative
value if a precedes b, 0 if a and b sort equally, and positive if b precedes a.
This is an example of a comparison function:
int intsort(const void *a,const void*b) {
int _a = *(int*)a;
int _b = *(int*)b;
return _a - _b;
}
4. `utarray_find` uses a binary search to locate an element having a certain value
according to the given comparison function. The utarray must be first sorted
using the same comparison function. An example of using `utarray_find` with
a utarray of strings is included in `tests/test61.c`.
5. A 'pointer' to a particular element (obtained using `utarray_eltptr` or
`utarray_front`, `utarray_next`, `utarray_prev`, `utarray_back`) becomes invalid whenever
another element is inserted into the utarray. This is because the internal
memory management may need to `realloc` the element storage to a new address.
For this reason, it's usually better to refer to an element by its integer
'index' in code whose duration may include element insertion.
// vim: set nowrap syntax=asciidoc: