Systemd/src/core/manager.c

3732 lines
126 KiB
C
Raw Normal View History

/***
This file is part of systemd.
Copyright 2010 Lennart Poettering
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see <http://www.gnu.org/licenses/>.
***/
2009-11-18 00:42:52 +01:00
#include <errno.h>
#include <fcntl.h>
#include <linux/kd.h>
2010-01-24 00:39:29 +01:00
#include <signal.h>
#include <string.h>
#include <sys/epoll.h>
#include <sys/inotify.h>
#include <sys/ioctl.h>
#include <sys/reboot.h>
#include <sys/timerfd.h>
#include <sys/wait.h>
#include <unistd.h>
2010-08-11 15:19:50 +02:00
#ifdef HAVE_AUDIT
#include <libaudit.h>
2010-08-11 15:19:50 +02:00
#endif
2009-11-18 00:42:52 +01:00
#include "sd-daemon.h"
#include "sd-messages.h"
#include "sd-path.h"
#include "alloc-util.h"
#include "audit-fd.h"
#include "boot-timestamps.h"
#include "bus-common-errors.h"
#include "bus-error.h"
#include "bus-kernel.h"
#include "bus-util.h"
#include "clean-ipc.h"
#include "dbus-job.h"
#include "dbus-manager.h"
#include "dbus-unit.h"
#include "dbus.h"
#include "dirent-util.h"
#include "env-util.h"
#include "escape.h"
#include "execute.h"
#include "exec-util.h"
#include "exit-status.h"
#include "fd-util.h"
#include "fileio.h"
#include "fs-util.h"
2009-11-18 00:42:52 +01:00
#include "hashmap.h"
#include "io-util.h"
#include "locale-setup.h"
#include "log.h"
#include "macro.h"
#include "manager.h"
#include "missing.h"
#include "mkdir.h"
#include "parse-util.h"
#include "path-lookup.h"
#include "path-util.h"
#include "process-util.h"
#include "ratelimit.h"
#include "rm-rf.h"
#include "signal-util.h"
2010-06-18 04:22:59 +02:00
#include "special.h"
#include "stat-util.h"
#include "string-table.h"
#include "string-util.h"
#include "strv.h"
#include "terminal-util.h"
#include "time-util.h"
#include "transaction.h"
#include "umask-util.h"
#include "unit-name.h"
#include "user-util.h"
#include "util.h"
2011-09-23 17:20:45 +02:00
#include "virt.h"
#include "watchdog.h"
2009-11-18 00:42:52 +01:00
#define NOTIFY_RCVBUF_SIZE (8*1024*1024)
core: use an AF_UNIX/SOCK_DGRAM socket for cgroup agent notification dbus-daemon currently uses a backlog of 30 on its D-bus system bus socket. On overloaded systems this means that only 30 connections may be queued without dbus-daemon processing them before further connection attempts fail. Our cgroups-agent binary so far used D-Bus for its messaging, and hitting this limit hence may result in us losing cgroup empty messages. This patch adds a seperate cgroup agent socket of type AF_UNIX/SOCK_DGRAM. Since sockets of these types need no connection set up, no listen() backlog applies. Our cgroup-agent binary will hence simply block as long as it can't enqueue its datagram message, so that we won't lose cgroup empty messages as likely anymore. This also rearranges the ordering of the processing of SIGCHLD signals, service notification messages (sd_notify()...) and the two types of cgroup notifications (inotify for the unified hierarchy support, and agent for the classic hierarchy support). We now always process events for these in the following order: 1. service notification messages (SD_EVENT_PRIORITY_NORMAL-7) 2. SIGCHLD signals (SD_EVENT_PRIORITY_NORMAL-6) 3. cgroup inotify and cgroup agent (SD_EVENT_PRIORITY_NORMAL-5) This is because when receiving SIGCHLD we invalidate PID information, which we need to process the service notification messages which are bound to PIDs. Hence the order between the first two items. And we want to process SIGCHLD metadata to detect whether a service is gone, before using cgroup notifications, to decide when a service is gone, since the former carries more useful metadata. Related to this: https://bugs.freedesktop.org/show_bug.cgi?id=95264 https://github.com/systemd/systemd/issues/1961
2016-05-04 20:43:23 +02:00
#define CGROUPS_AGENT_RCVBUF_SIZE (8*1024*1024)
/* Initial delay and the interval for printing status messages about running jobs */
#define JOBS_IN_PROGRESS_WAIT_USEC (5*USEC_PER_SEC)
#define JOBS_IN_PROGRESS_PERIOD_USEC (USEC_PER_SEC / 3)
#define JOBS_IN_PROGRESS_PERIOD_DIVISOR 3
static int manager_dispatch_notify_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
core: use an AF_UNIX/SOCK_DGRAM socket for cgroup agent notification dbus-daemon currently uses a backlog of 30 on its D-bus system bus socket. On overloaded systems this means that only 30 connections may be queued without dbus-daemon processing them before further connection attempts fail. Our cgroups-agent binary so far used D-Bus for its messaging, and hitting this limit hence may result in us losing cgroup empty messages. This patch adds a seperate cgroup agent socket of type AF_UNIX/SOCK_DGRAM. Since sockets of these types need no connection set up, no listen() backlog applies. Our cgroup-agent binary will hence simply block as long as it can't enqueue its datagram message, so that we won't lose cgroup empty messages as likely anymore. This also rearranges the ordering of the processing of SIGCHLD signals, service notification messages (sd_notify()...) and the two types of cgroup notifications (inotify for the unified hierarchy support, and agent for the classic hierarchy support). We now always process events for these in the following order: 1. service notification messages (SD_EVENT_PRIORITY_NORMAL-7) 2. SIGCHLD signals (SD_EVENT_PRIORITY_NORMAL-6) 3. cgroup inotify and cgroup agent (SD_EVENT_PRIORITY_NORMAL-5) This is because when receiving SIGCHLD we invalidate PID information, which we need to process the service notification messages which are bound to PIDs. Hence the order between the first two items. And we want to process SIGCHLD metadata to detect whether a service is gone, before using cgroup notifications, to decide when a service is gone, since the former carries more useful metadata. Related to this: https://bugs.freedesktop.org/show_bug.cgi?id=95264 https://github.com/systemd/systemd/issues/1961
2016-05-04 20:43:23 +02:00
static int manager_dispatch_cgroups_agent_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
static int manager_dispatch_signal_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
static int manager_dispatch_time_change_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
static int manager_dispatch_idle_pipe_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
static int manager_dispatch_user_lookup_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
static int manager_dispatch_jobs_in_progress(sd_event_source *source, usec_t usec, void *userdata);
static int manager_dispatch_run_queue(sd_event_source *source, void *userdata);
static int manager_run_environment_generators(Manager *m);
static int manager_run_generators(Manager *m);
static void manager_watch_jobs_in_progress(Manager *m) {
usec_t next;
int r;
assert(m);
/* We do not want to show the cylon animation if the user
* needs to confirm service executions otherwise confirmation
* messages will be screwed by the cylon animation. */
if (!manager_is_confirm_spawn_disabled(m))
return;
if (m->jobs_in_progress_event_source)
return;
next = now(CLOCK_MONOTONIC) + JOBS_IN_PROGRESS_WAIT_USEC;
r = sd_event_add_time(
m->event,
&m->jobs_in_progress_event_source,
CLOCK_MONOTONIC,
next, 0,
manager_dispatch_jobs_in_progress, m);
if (r < 0)
return;
2015-04-29 16:05:32 +02:00
(void) sd_event_source_set_description(m->jobs_in_progress_event_source, "manager-jobs-in-progress");
}
#define CYLON_BUFFER_EXTRA (2*(sizeof(ANSI_RED)-1) + sizeof(ANSI_HIGHLIGHT_RED)-1 + 2*(sizeof(ANSI_NORMAL)-1))
static void draw_cylon(char buffer[], size_t buflen, unsigned width, unsigned pos) {
char *p = buffer;
assert(buflen >= CYLON_BUFFER_EXTRA + width + 1);
assert(pos <= width+1); /* 0 or width+1 mean that the center light is behind the corner */
if (pos > 1) {
if (pos > 2)
p = mempset(p, ' ', pos-2);
if (log_get_show_color())
p = stpcpy(p, ANSI_RED);
*p++ = '*';
}
if (pos > 0 && pos <= width) {
if (log_get_show_color())
p = stpcpy(p, ANSI_HIGHLIGHT_RED);
*p++ = '*';
}
if (log_get_show_color())
p = stpcpy(p, ANSI_NORMAL);
if (pos < width) {
if (log_get_show_color())
p = stpcpy(p, ANSI_RED);
*p++ = '*';
if (pos < width-1)
p = mempset(p, ' ', width-1-pos);
if (log_get_show_color())
strcpy(p, ANSI_NORMAL);
}
}
void manager_flip_auto_status(Manager *m, bool enable) {
assert(m);
if (enable) {
if (m->show_status == SHOW_STATUS_AUTO)
manager_set_show_status(m, SHOW_STATUS_TEMPORARY);
} else {
if (m->show_status == SHOW_STATUS_TEMPORARY)
manager_set_show_status(m, SHOW_STATUS_AUTO);
}
}
static void manager_print_jobs_in_progress(Manager *m) {
_cleanup_free_ char *job_of_n = NULL;
Iterator i;
Job *j;
unsigned counter = 0, print_nr;
char cylon[6 + CYLON_BUFFER_EXTRA + 1];
unsigned cylon_pos;
char time[FORMAT_TIMESPAN_MAX], limit[FORMAT_TIMESPAN_MAX] = "no limit";
uint64_t x;
assert(m);
assert(m->n_running_jobs > 0);
manager_flip_auto_status(m, true);
print_nr = (m->jobs_in_progress_iteration / JOBS_IN_PROGRESS_PERIOD_DIVISOR) % m->n_running_jobs;
HASHMAP_FOREACH(j, m->jobs, i)
if (j->state == JOB_RUNNING && counter++ == print_nr)
break;
/* m->n_running_jobs must be consistent with the contents of m->jobs,
* so the above loop must have succeeded in finding j. */
assert(counter == print_nr + 1);
2013-10-12 01:33:48 +02:00
assert(j);
cylon_pos = m->jobs_in_progress_iteration % 14;
if (cylon_pos >= 8)
cylon_pos = 14 - cylon_pos;
draw_cylon(cylon, sizeof(cylon), 6, cylon_pos);
m->jobs_in_progress_iteration++;
if (m->n_running_jobs > 1) {
if (asprintf(&job_of_n, "(%u of %u) ", counter, m->n_running_jobs) < 0)
job_of_n = NULL;
}
format_timespan(time, sizeof(time), now(CLOCK_MONOTONIC) - j->begin_usec, 1*USEC_PER_SEC);
if (job_get_timeout(j, &x) > 0)
format_timespan(limit, sizeof(limit), x - j->begin_usec, 1*USEC_PER_SEC);
manager_status_printf(m, STATUS_TYPE_EPHEMERAL, cylon,
"%sA %s job is running for %s (%s / %s)",
strempty(job_of_n),
job_type_to_string(j->type),
unit_description(j->unit),
time, limit);
}
static int have_ask_password(void) {
_cleanup_closedir_ DIR *dir;
struct dirent *de;
dir = opendir("/run/systemd/ask-password");
if (!dir) {
if (errno == ENOENT)
return false;
else
return -errno;
}
FOREACH_DIRENT_ALL(de, dir, return -errno) {
if (startswith(de->d_name, "ask."))
return true;
}
return false;
}
static int manager_dispatch_ask_password_fd(sd_event_source *source,
int fd, uint32_t revents, void *userdata) {
Manager *m = userdata;
assert(m);
flush_fd(fd);
m->have_ask_password = have_ask_password();
if (m->have_ask_password < 0)
/* Log error but continue. Negative have_ask_password
* is treated as unknown status. */
log_error_errno(m->have_ask_password, "Failed to list /run/systemd/ask-password: %m");
return 0;
}
static void manager_close_ask_password(Manager *m) {
assert(m);
m->ask_password_event_source = sd_event_source_unref(m->ask_password_event_source);
m->ask_password_inotify_fd = safe_close(m->ask_password_inotify_fd);
m->have_ask_password = -EINVAL;
}
static int manager_check_ask_password(Manager *m) {
int r;
assert(m);
if (!m->ask_password_event_source) {
assert(m->ask_password_inotify_fd < 0);
mkdir_p_label("/run/systemd/ask-password", 0755);
m->ask_password_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC);
if (m->ask_password_inotify_fd < 0)
return log_error_errno(errno, "inotify_init1() failed: %m");
if (inotify_add_watch(m->ask_password_inotify_fd, "/run/systemd/ask-password", IN_CREATE|IN_DELETE|IN_MOVE) < 0) {
log_error_errno(errno, "Failed to add watch on /run/systemd/ask-password: %m");
manager_close_ask_password(m);
return -errno;
}
r = sd_event_add_io(m->event, &m->ask_password_event_source,
m->ask_password_inotify_fd, EPOLLIN,
manager_dispatch_ask_password_fd, m);
if (r < 0) {
log_error_errno(errno, "Failed to add event source for /run/systemd/ask-password: %m");
manager_close_ask_password(m);
return -errno;
}
2015-04-29 16:05:32 +02:00
(void) sd_event_source_set_description(m->ask_password_event_source, "manager-ask-password");
/* Queries might have been added meanwhile... */
manager_dispatch_ask_password_fd(m->ask_password_event_source,
m->ask_password_inotify_fd, EPOLLIN, m);
}
return m->have_ask_password;
}
static int manager_watch_idle_pipe(Manager *m) {
int r;
assert(m);
if (m->idle_pipe_event_source)
return 0;
if (m->idle_pipe[2] < 0)
return 0;
r = sd_event_add_io(m->event, &m->idle_pipe_event_source, m->idle_pipe[2], EPOLLIN, manager_dispatch_idle_pipe_fd, m);
if (r < 0)
return log_error_errno(r, "Failed to watch idle pipe: %m");
2015-04-29 16:05:32 +02:00
(void) sd_event_source_set_description(m->idle_pipe_event_source, "manager-idle-pipe");
return 0;
}
static void manager_close_idle_pipe(Manager *m) {
assert(m);
m->idle_pipe_event_source = sd_event_source_unref(m->idle_pipe_event_source);
safe_close_pair(m->idle_pipe);
safe_close_pair(m->idle_pipe + 2);
}
static int manager_setup_time_change(Manager *m) {
int r;
/* We only care for the cancellation event, hence we set the
* timeout to the latest possible value. */
struct itimerspec its = {
.it_value.tv_sec = TIME_T_MAX,
};
assert(m);
assert_cc(sizeof(time_t) == sizeof(TIME_T_MAX));
if (m->test_run)
return 0;
/* Uses TFD_TIMER_CANCEL_ON_SET to get notifications whenever
* CLOCK_REALTIME makes a jump relative to CLOCK_MONOTONIC */
m->time_change_fd = timerfd_create(CLOCK_REALTIME, TFD_NONBLOCK|TFD_CLOEXEC);
if (m->time_change_fd < 0)
return log_error_errno(errno, "Failed to create timerfd: %m");
if (timerfd_settime(m->time_change_fd, TFD_TIMER_ABSTIME|TFD_TIMER_CANCEL_ON_SET, &its, NULL) < 0) {
log_debug_errno(errno, "Failed to set up TFD_TIMER_CANCEL_ON_SET, ignoring: %m");
m->time_change_fd = safe_close(m->time_change_fd);
return 0;
}
r = sd_event_add_io(m->event, &m->time_change_event_source, m->time_change_fd, EPOLLIN, manager_dispatch_time_change_fd, m);
if (r < 0)
return log_error_errno(r, "Failed to create time change event source: %m");
2015-04-29 16:05:32 +02:00
(void) sd_event_source_set_description(m->time_change_event_source, "manager-time-change");
log_debug("Set up TFD_TIMER_CANCEL_ON_SET timerfd.");
return 0;
}
static int enable_special_signals(Manager *m) {
_cleanup_close_ int fd = -1;
assert(m);
if (m->test_run)
return 0;
/* Enable that we get SIGINT on control-alt-del. In containers
* this will fail with EPERM (older) or EINVAL (newer), so
* ignore that. */
if (reboot(RB_DISABLE_CAD) < 0 && errno != EPERM && errno != EINVAL)
log_warning_errno(errno, "Failed to enable ctrl-alt-del handling: %m");
fd = open_terminal("/dev/tty0", O_RDWR|O_NOCTTY|O_CLOEXEC);
if (fd < 0) {
/* Support systems without virtual console */
if (fd != -ENOENT)
log_warning_errno(errno, "Failed to open /dev/tty0: %m");
} else {
/* Enable that we get SIGWINCH on kbrequest */
if (ioctl(fd, KDSIGACCEPT, SIGWINCH) < 0)
log_warning_errno(errno, "Failed to enable kbrequest handling: %m");
}
return 0;
}
2010-01-28 02:01:15 +01:00
static int manager_setup_signals(Manager *m) {
struct sigaction sa = {
.sa_handler = SIG_DFL,
.sa_flags = SA_NOCLDSTOP|SA_RESTART,
};
sigset_t mask;
int r;
2009-11-18 00:42:52 +01:00
2010-01-28 02:01:15 +01:00
assert(m);
assert_se(sigaction(SIGCHLD, &sa, NULL) == 0);
/* We make liberal use of realtime signals here. On
* Linux/glibc we have 30 of them (with the exception of Linux
* on hppa, see below), between SIGRTMIN+0 ... SIGRTMIN+30
* (aka SIGRTMAX). */
assert_se(sigemptyset(&mask) == 0);
sigset_add_many(&mask,
SIGCHLD, /* Child died */
SIGTERM, /* Reexecute daemon */
SIGHUP, /* Reload configuration */
SIGUSR1, /* systemd/upstart: reconnect to D-Bus */
SIGUSR2, /* systemd: dump status */
SIGINT, /* Kernel sends us this on control-alt-del */
SIGWINCH, /* Kernel sends us this on kbrequest (alt-arrowup) */
SIGPWR, /* Some kernel drivers and upsd send us this on power failure */
SIGRTMIN+0, /* systemd: start default.target */
SIGRTMIN+1, /* systemd: isolate rescue.target */
SIGRTMIN+2, /* systemd: isolate emergency.target */
SIGRTMIN+3, /* systemd: start halt.target */
SIGRTMIN+4, /* systemd: start poweroff.target */
SIGRTMIN+5, /* systemd: start reboot.target */
SIGRTMIN+6, /* systemd: start kexec.target */
/* ... space for more special targets ... */
SIGRTMIN+13, /* systemd: Immediate halt */
SIGRTMIN+14, /* systemd: Immediate poweroff */
SIGRTMIN+15, /* systemd: Immediate reboot */
SIGRTMIN+16, /* systemd: Immediate kexec */
/* ... space for more immediate system state changes ... */
SIGRTMIN+20, /* systemd: enable status messages */
SIGRTMIN+21, /* systemd: disable status messages */
SIGRTMIN+22, /* systemd: set log level to LOG_DEBUG */
SIGRTMIN+23, /* systemd: set log level to LOG_INFO */
SIGRTMIN+24, /* systemd: Immediate exit (--user only) */
/* .. one free signal here ... */
#if !defined(__hppa64__) && !defined(__hppa__)
/* Apparently Linux on hppa has fewer RT
* signals (SIGRTMAX is SIGRTMIN+25 there),
* hence let's not try to make use of them
* here. Since these commands are accessible
* by different means and only really a safety
* net, the missing functionality on hppa
* shouldn't matter. */
SIGRTMIN+26, /* systemd: set log target to journal-or-kmsg */
SIGRTMIN+27, /* systemd: set log target to console */
SIGRTMIN+28, /* systemd: set log target to kmsg */
SIGRTMIN+29, /* systemd: set log target to syslog-or-kmsg (obsolete) */
/* ... one free signal here SIGRTMIN+30 ... */
#endif
-1);
2010-01-28 02:01:15 +01:00
assert_se(sigprocmask(SIG_SETMASK, &mask, NULL) == 0);
m->signal_fd = signalfd(-1, &mask, SFD_NONBLOCK|SFD_CLOEXEC);
if (m->signal_fd < 0)
2010-01-28 02:01:15 +01:00
return -errno;
r = sd_event_add_io(m->event, &m->signal_event_source, m->signal_fd, EPOLLIN, manager_dispatch_signal_fd, m);
if (r < 0)
return r;
2010-01-28 02:01:15 +01:00
2015-04-29 16:05:32 +02:00
(void) sd_event_source_set_description(m->signal_event_source, "manager-signal");
core: use an AF_UNIX/SOCK_DGRAM socket for cgroup agent notification dbus-daemon currently uses a backlog of 30 on its D-bus system bus socket. On overloaded systems this means that only 30 connections may be queued without dbus-daemon processing them before further connection attempts fail. Our cgroups-agent binary so far used D-Bus for its messaging, and hitting this limit hence may result in us losing cgroup empty messages. This patch adds a seperate cgroup agent socket of type AF_UNIX/SOCK_DGRAM. Since sockets of these types need no connection set up, no listen() backlog applies. Our cgroup-agent binary will hence simply block as long as it can't enqueue its datagram message, so that we won't lose cgroup empty messages as likely anymore. This also rearranges the ordering of the processing of SIGCHLD signals, service notification messages (sd_notify()...) and the two types of cgroup notifications (inotify for the unified hierarchy support, and agent for the classic hierarchy support). We now always process events for these in the following order: 1. service notification messages (SD_EVENT_PRIORITY_NORMAL-7) 2. SIGCHLD signals (SD_EVENT_PRIORITY_NORMAL-6) 3. cgroup inotify and cgroup agent (SD_EVENT_PRIORITY_NORMAL-5) This is because when receiving SIGCHLD we invalidate PID information, which we need to process the service notification messages which are bound to PIDs. Hence the order between the first two items. And we want to process SIGCHLD metadata to detect whether a service is gone, before using cgroup notifications, to decide when a service is gone, since the former carries more useful metadata. Related to this: https://bugs.freedesktop.org/show_bug.cgi?id=95264 https://github.com/systemd/systemd/issues/1961
2016-05-04 20:43:23 +02:00
/* Process signals a bit earlier than the rest of things, but later than notify_fd processing, so that the
* notify processing can still figure out to which process/service a message belongs, before we reap the
* process. Also, process this before handling cgroup notifications, so that we always collect child exit
* status information before detecting that there's no process in a cgroup. */
r = sd_event_source_set_priority(m->signal_event_source, SD_EVENT_PRIORITY_NORMAL-6);
if (r < 0)
return r;
if (MANAGER_IS_SYSTEM(m))
return enable_special_signals(m);
2010-01-28 02:01:15 +01:00
return 0;
}
static void manager_clean_environment(Manager *m) {
assert(m);
/* Let's remove some environment variables that we
* need ourselves to communicate with our clients */
strv_env_unset_many(
m->environment,
"NOTIFY_SOCKET",
"MAINPID",
"MANAGERPID",
"LISTEN_PID",
"LISTEN_FDS",
"LISTEN_FDNAMES",
"WATCHDOG_PID",
"WATCHDOG_USEC",
core: add "invocation ID" concept to service manager This adds a new invocation ID concept to the service manager. The invocation ID identifies each runtime cycle of a unit uniquely. A new randomized 128bit ID is generated each time a unit moves from and inactive to an activating or active state. The primary usecase for this concept is to connect the runtime data PID 1 maintains about a service with the offline data the journal stores about it. Previously we'd use the unit name plus start/stop times, which however is highly racy since the journal will generally process log data after the service already ended. The "invocation ID" kinda matches the "boot ID" concept of the Linux kernel, except that it applies to an individual unit instead of the whole system. The invocation ID is passed to the activated processes as environment variable. It is additionally stored as extended attribute on the cgroup of the unit. The latter is used by journald to automatically retrieve it for each log logged message and attach it to the log entry. The environment variable is very easily accessible, even for unprivileged services. OTOH the extended attribute is only accessible to privileged processes (this is because cgroupfs only supports the "trusted." xattr namespace, not "user."). The environment variable may be altered by services, the extended attribute may not be, hence is the better choice for the journal. Note that reading the invocation ID off the extended attribute from journald is racy, similar to the way reading the unit name for a logging process is. This patch adds APIs to read the invocation ID to sd-id128: sd_id128_get_invocation() may be used in a similar fashion to sd_id128_get_boot(). PID1's own logging is updated to always include the invocation ID when it logs information about a unit. A new bus call GetUnitByInvocationID() is added that allows retrieving a bus path to a unit by its invocation ID. The bus path is built using the invocation ID, thus providing a path for referring to a unit that is valid only for the current runtime cycleof it. Outlook for the future: should the kernel eventually allow passing of cgroup information along AF_UNIX/SOCK_DGRAM messages via a unique cgroup id, then we can alter the invocation ID to be generated as hash from that rather than entirely randomly. This way we can derive the invocation race-freely from the messages.
2016-08-30 23:18:46 +02:00
"INVOCATION_ID",
NULL);
}
static int manager_default_environment(Manager *m) {
assert(m);
if (MANAGER_IS_SYSTEM(m)) {
/* The system manager always starts with a clean
* environment for its children. It does not import
2017-02-10 21:41:42 +01:00
* the kernel's or the parents' exported variables.
*
2017-02-10 21:41:42 +01:00
* The initial passed environment is untouched to keep
* /proc/self/environ valid; it is used for tagging
* the init process inside containers. */
m->environment = strv_new("PATH=" DEFAULT_PATH,
NULL);
/* Import locale variables LC_*= from configuration */
locale_setup(&m->environment);
2017-02-10 21:41:42 +01:00
} else
/* The user manager passes its own environment
* along to its children. */
m->environment = strv_copy(environ);
if (!m->environment)
return -ENOMEM;
manager_clean_environment(m);
strv_sort(m->environment);
return 0;
}
static int manager_setup_prefix(Manager *m) {
struct table_entry {
uint64_t type;
const char *suffix;
};
static const struct table_entry paths_system[_EXEC_DIRECTORY_MAX] = {
[EXEC_DIRECTORY_RUNTIME] = { SD_PATH_SYSTEM_RUNTIME, NULL },
[EXEC_DIRECTORY_STATE] = { SD_PATH_SYSTEM_STATE_PRIVATE, NULL },
[EXEC_DIRECTORY_CACHE] = { SD_PATH_SYSTEM_STATE_CACHE, NULL },
[EXEC_DIRECTORY_LOGS] = { SD_PATH_SYSTEM_STATE_LOGS, NULL },
[EXEC_DIRECTORY_CONFIGURATION] = { SD_PATH_SYSTEM_CONFIGURATION, NULL },
};
static const struct table_entry paths_user[_EXEC_DIRECTORY_MAX] = {
[EXEC_DIRECTORY_RUNTIME] = { SD_PATH_USER_RUNTIME, NULL },
[EXEC_DIRECTORY_STATE] = { SD_PATH_USER_CONFIGURATION, NULL },
[EXEC_DIRECTORY_CACHE] = { SD_PATH_SYSTEM_STATE_CACHE, NULL },
[EXEC_DIRECTORY_LOGS] = { SD_PATH_SYSTEM_CONFIGURATION, "log" },
[EXEC_DIRECTORY_CONFIGURATION] = { SD_PATH_SYSTEM_CONFIGURATION, NULL },
};
const struct table_entry *p;
ExecDirectoryType i;
int r;
assert(m);
if (MANAGER_IS_SYSTEM(m))
p = paths_system;
else
p = paths_user;
for (i = 0; i < _EXEC_DIRECTORY_MAX; i++) {
r = sd_path_home(p[i].type, p[i].suffix, &m->prefix[i]);
if (r < 0)
return r;
}
return 0;
}
int manager_new(UnitFileScope scope, bool test_run, Manager **_m) {
2010-01-28 02:01:15 +01:00
Manager *m;
int r;
2010-03-31 16:29:55 +02:00
assert(_m);
assert(IN_SET(scope, UNIT_FILE_SYSTEM, UNIT_FILE_USER));
2010-01-28 02:01:15 +01:00
m = new0(Manager, 1);
if (!m)
2010-03-31 16:29:55 +02:00
return -ENOMEM;
2009-11-18 00:42:52 +01:00
m->unit_file_scope = scope;
2010-04-21 03:27:44 +02:00
m->exit_code = _MANAGER_EXIT_CODE_INVALID;
m->default_timer_accuracy_usec = USEC_PER_MINUTE;
m->default_tasks_accounting = true;
m->default_tasks_max = UINT64_MAX;
#ifdef ENABLE_EFI
if (MANAGER_IS_SYSTEM(m) && detect_container() <= 0)
boot_timestamps(&m->userspace_timestamp, &m->firmware_timestamp, &m->loader_timestamp);
#endif
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
/* Prepare log fields we can use for structured logging */
if (MANAGER_IS_SYSTEM(m)) {
m->unit_log_field = "UNIT=";
m->unit_log_format_string = "UNIT=%s";
core: add "invocation ID" concept to service manager This adds a new invocation ID concept to the service manager. The invocation ID identifies each runtime cycle of a unit uniquely. A new randomized 128bit ID is generated each time a unit moves from and inactive to an activating or active state. The primary usecase for this concept is to connect the runtime data PID 1 maintains about a service with the offline data the journal stores about it. Previously we'd use the unit name plus start/stop times, which however is highly racy since the journal will generally process log data after the service already ended. The "invocation ID" kinda matches the "boot ID" concept of the Linux kernel, except that it applies to an individual unit instead of the whole system. The invocation ID is passed to the activated processes as environment variable. It is additionally stored as extended attribute on the cgroup of the unit. The latter is used by journald to automatically retrieve it for each log logged message and attach it to the log entry. The environment variable is very easily accessible, even for unprivileged services. OTOH the extended attribute is only accessible to privileged processes (this is because cgroupfs only supports the "trusted." xattr namespace, not "user."). The environment variable may be altered by services, the extended attribute may not be, hence is the better choice for the journal. Note that reading the invocation ID off the extended attribute from journald is racy, similar to the way reading the unit name for a logging process is. This patch adds APIs to read the invocation ID to sd-id128: sd_id128_get_invocation() may be used in a similar fashion to sd_id128_get_boot(). PID1's own logging is updated to always include the invocation ID when it logs information about a unit. A new bus call GetUnitByInvocationID() is added that allows retrieving a bus path to a unit by its invocation ID. The bus path is built using the invocation ID, thus providing a path for referring to a unit that is valid only for the current runtime cycleof it. Outlook for the future: should the kernel eventually allow passing of cgroup information along AF_UNIX/SOCK_DGRAM messages via a unique cgroup id, then we can alter the invocation ID to be generated as hash from that rather than entirely randomly. This way we can derive the invocation race-freely from the messages.
2016-08-30 23:18:46 +02:00
m->invocation_log_field = "INVOCATION_ID=";
m->invocation_log_format_string = "INVOCATION_ID=" SD_ID128_FORMAT_STR;
} else {
m->unit_log_field = "USER_UNIT=";
m->unit_log_format_string = "USER_UNIT=%s";
core: add "invocation ID" concept to service manager This adds a new invocation ID concept to the service manager. The invocation ID identifies each runtime cycle of a unit uniquely. A new randomized 128bit ID is generated each time a unit moves from and inactive to an activating or active state. The primary usecase for this concept is to connect the runtime data PID 1 maintains about a service with the offline data the journal stores about it. Previously we'd use the unit name plus start/stop times, which however is highly racy since the journal will generally process log data after the service already ended. The "invocation ID" kinda matches the "boot ID" concept of the Linux kernel, except that it applies to an individual unit instead of the whole system. The invocation ID is passed to the activated processes as environment variable. It is additionally stored as extended attribute on the cgroup of the unit. The latter is used by journald to automatically retrieve it for each log logged message and attach it to the log entry. The environment variable is very easily accessible, even for unprivileged services. OTOH the extended attribute is only accessible to privileged processes (this is because cgroupfs only supports the "trusted." xattr namespace, not "user."). The environment variable may be altered by services, the extended attribute may not be, hence is the better choice for the journal. Note that reading the invocation ID off the extended attribute from journald is racy, similar to the way reading the unit name for a logging process is. This patch adds APIs to read the invocation ID to sd-id128: sd_id128_get_invocation() may be used in a similar fashion to sd_id128_get_boot(). PID1's own logging is updated to always include the invocation ID when it logs information about a unit. A new bus call GetUnitByInvocationID() is added that allows retrieving a bus path to a unit by its invocation ID. The bus path is built using the invocation ID, thus providing a path for referring to a unit that is valid only for the current runtime cycleof it. Outlook for the future: should the kernel eventually allow passing of cgroup information along AF_UNIX/SOCK_DGRAM messages via a unique cgroup id, then we can alter the invocation ID to be generated as hash from that rather than entirely randomly. This way we can derive the invocation race-freely from the messages.
2016-08-30 23:18:46 +02:00
m->invocation_log_field = "USER_INVOCATION_ID=";
m->invocation_log_format_string = "USER_INVOCATION_ID=" SD_ID128_FORMAT_STR;
}
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
m->idle_pipe[0] = m->idle_pipe[1] = m->idle_pipe[2] = m->idle_pipe[3] = -1;
core: use an AF_UNIX/SOCK_DGRAM socket for cgroup agent notification dbus-daemon currently uses a backlog of 30 on its D-bus system bus socket. On overloaded systems this means that only 30 connections may be queued without dbus-daemon processing them before further connection attempts fail. Our cgroups-agent binary so far used D-Bus for its messaging, and hitting this limit hence may result in us losing cgroup empty messages. This patch adds a seperate cgroup agent socket of type AF_UNIX/SOCK_DGRAM. Since sockets of these types need no connection set up, no listen() backlog applies. Our cgroup-agent binary will hence simply block as long as it can't enqueue its datagram message, so that we won't lose cgroup empty messages as likely anymore. This also rearranges the ordering of the processing of SIGCHLD signals, service notification messages (sd_notify()...) and the two types of cgroup notifications (inotify for the unified hierarchy support, and agent for the classic hierarchy support). We now always process events for these in the following order: 1. service notification messages (SD_EVENT_PRIORITY_NORMAL-7) 2. SIGCHLD signals (SD_EVENT_PRIORITY_NORMAL-6) 3. cgroup inotify and cgroup agent (SD_EVENT_PRIORITY_NORMAL-5) This is because when receiving SIGCHLD we invalidate PID information, which we need to process the service notification messages which are bound to PIDs. Hence the order between the first two items. And we want to process SIGCHLD metadata to detect whether a service is gone, before using cgroup notifications, to decide when a service is gone, since the former carries more useful metadata. Related to this: https://bugs.freedesktop.org/show_bug.cgi?id=95264 https://github.com/systemd/systemd/issues/1961
2016-05-04 20:43:23 +02:00
m->pin_cgroupfs_fd = m->notify_fd = m->cgroups_agent_fd = m->signal_fd = m->time_change_fd =
m->dev_autofs_fd = m->private_listen_fd = m->cgroup_inotify_fd =
core: use an AF_UNIX/SOCK_DGRAM socket for cgroup agent notification dbus-daemon currently uses a backlog of 30 on its D-bus system bus socket. On overloaded systems this means that only 30 connections may be queued without dbus-daemon processing them before further connection attempts fail. Our cgroups-agent binary so far used D-Bus for its messaging, and hitting this limit hence may result in us losing cgroup empty messages. This patch adds a seperate cgroup agent socket of type AF_UNIX/SOCK_DGRAM. Since sockets of these types need no connection set up, no listen() backlog applies. Our cgroup-agent binary will hence simply block as long as it can't enqueue its datagram message, so that we won't lose cgroup empty messages as likely anymore. This also rearranges the ordering of the processing of SIGCHLD signals, service notification messages (sd_notify()...) and the two types of cgroup notifications (inotify for the unified hierarchy support, and agent for the classic hierarchy support). We now always process events for these in the following order: 1. service notification messages (SD_EVENT_PRIORITY_NORMAL-7) 2. SIGCHLD signals (SD_EVENT_PRIORITY_NORMAL-6) 3. cgroup inotify and cgroup agent (SD_EVENT_PRIORITY_NORMAL-5) This is because when receiving SIGCHLD we invalidate PID information, which we need to process the service notification messages which are bound to PIDs. Hence the order between the first two items. And we want to process SIGCHLD metadata to detect whether a service is gone, before using cgroup notifications, to decide when a service is gone, since the former carries more useful metadata. Related to this: https://bugs.freedesktop.org/show_bug.cgi?id=95264 https://github.com/systemd/systemd/issues/1961
2016-05-04 20:43:23 +02:00
m->ask_password_inotify_fd = -1;
m->user_lookup_fds[0] = m->user_lookup_fds[1] = -1;
m->current_job_id = 1; /* start as id #1, so that we can leave #0 around as "null-like" value */
2010-01-24 00:39:29 +01:00
m->have_ask_password = -EINVAL; /* we don't know */
m->first_boot = -1;
m->test_run = test_run;
/* Reboot immediately if the user hits C-A-D more often than 7x per 2s */
RATELIMIT_INIT(m->ctrl_alt_del_ratelimit, 2 * USEC_PER_SEC, 7);
r = manager_default_environment(m);
if (r < 0)
goto fail;
r = hashmap_ensure_allocated(&m->units, &string_hash_ops);
if (r < 0)
2009-11-18 00:42:52 +01:00
goto fail;
r = hashmap_ensure_allocated(&m->jobs, NULL);
if (r < 0)
2009-11-18 00:42:52 +01:00
goto fail;
r = hashmap_ensure_allocated(&m->cgroup_unit, &string_hash_ops);
if (r < 0)
2010-01-24 00:39:29 +01:00
goto fail;
r = hashmap_ensure_allocated(&m->watch_bus, &string_hash_ops);
if (r < 0)
goto fail;
r = sd_event_default(&m->event);
if (r < 0)
goto fail;
r = sd_event_add_defer(m->event, &m->run_queue_event_source, manager_dispatch_run_queue, m);
if (r < 0)
goto fail;
r = sd_event_source_set_priority(m->run_queue_event_source, SD_EVENT_PRIORITY_IDLE);
if (r < 0)
goto fail;
r = sd_event_source_set_enabled(m->run_queue_event_source, SD_EVENT_OFF);
if (r < 0)
goto fail;
2015-04-29 16:05:32 +02:00
(void) sd_event_source_set_description(m->run_queue_event_source, "manager-run-queue");
r = manager_setup_signals(m);
if (r < 0)
2010-01-24 00:39:29 +01:00
goto fail;
r = manager_setup_cgroup(m);
if (r < 0)
2010-03-31 16:29:55 +02:00
goto fail;
r = manager_setup_time_change(m);
if (r < 0)
goto fail;
m->udev = udev_new();
if (!m->udev) {
r = -ENOMEM;
goto fail;
}
/* Note that we do not set up the notify fd here. We do that after deserialization,
* since they might have gotten serialized across the reexec. */
2011-03-30 00:47:50 +02:00
m->taint_usr = dir_is_empty("/usr") > 0;
r = manager_setup_prefix(m);
if (r < 0)
goto fail;
2010-03-31 16:29:55 +02:00
*_m = m;
return 0;
2009-11-18 00:42:52 +01:00
fail:
manager_free(m);
2010-03-31 16:29:55 +02:00
return r;
2009-11-18 00:42:52 +01:00
}
static int manager_setup_notify(Manager *m) {
int r;
if (m->test_run)
return 0;
if (m->notify_fd < 0) {
_cleanup_close_ int fd = -1;
2015-06-08 20:53:16 +02:00
union sockaddr_union sa = {
.sa.sa_family = AF_UNIX,
};
static const int one = 1;
/* First free all secondary fields */
m->notify_socket = mfree(m->notify_socket);
m->notify_event_source = sd_event_source_unref(m->notify_event_source);
fd = socket(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0);
if (fd < 0)
return log_error_errno(errno, "Failed to allocate notification socket: %m");
fd_inc_rcvbuf(fd, NOTIFY_RCVBUF_SIZE);
m->notify_socket = strappend(m->prefix[EXEC_DIRECTORY_RUNTIME], "/systemd/notify");
if (!m->notify_socket)
return log_oom();
(void) mkdir_parents_label(m->notify_socket, 0755);
(void) unlink(m->notify_socket);
strncpy(sa.un.sun_path, m->notify_socket, sizeof(sa.un.sun_path)-1);
r = bind(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un));
if (r < 0)
return log_error_errno(errno, "bind(%s) failed: %m", sa.un.sun_path);
r = setsockopt(fd, SOL_SOCKET, SO_PASSCRED, &one, sizeof(one));
if (r < 0)
return log_error_errno(errno, "SO_PASSCRED failed: %m");
m->notify_fd = fd;
fd = -1;
log_debug("Using notification socket %s", m->notify_socket);
}
if (!m->notify_event_source) {
r = sd_event_add_io(m->event, &m->notify_event_source, m->notify_fd, EPOLLIN, manager_dispatch_notify_fd, m);
if (r < 0)
return log_error_errno(r, "Failed to allocate notify event source: %m");
core: use an AF_UNIX/SOCK_DGRAM socket for cgroup agent notification dbus-daemon currently uses a backlog of 30 on its D-bus system bus socket. On overloaded systems this means that only 30 connections may be queued without dbus-daemon processing them before further connection attempts fail. Our cgroups-agent binary so far used D-Bus for its messaging, and hitting this limit hence may result in us losing cgroup empty messages. This patch adds a seperate cgroup agent socket of type AF_UNIX/SOCK_DGRAM. Since sockets of these types need no connection set up, no listen() backlog applies. Our cgroup-agent binary will hence simply block as long as it can't enqueue its datagram message, so that we won't lose cgroup empty messages as likely anymore. This also rearranges the ordering of the processing of SIGCHLD signals, service notification messages (sd_notify()...) and the two types of cgroup notifications (inotify for the unified hierarchy support, and agent for the classic hierarchy support). We now always process events for these in the following order: 1. service notification messages (SD_EVENT_PRIORITY_NORMAL-7) 2. SIGCHLD signals (SD_EVENT_PRIORITY_NORMAL-6) 3. cgroup inotify and cgroup agent (SD_EVENT_PRIORITY_NORMAL-5) This is because when receiving SIGCHLD we invalidate PID information, which we need to process the service notification messages which are bound to PIDs. Hence the order between the first two items. And we want to process SIGCHLD metadata to detect whether a service is gone, before using cgroup notifications, to decide when a service is gone, since the former carries more useful metadata. Related to this: https://bugs.freedesktop.org/show_bug.cgi?id=95264 https://github.com/systemd/systemd/issues/1961
2016-05-04 20:43:23 +02:00
/* Process notification messages a bit earlier than SIGCHLD, so that we can still identify to which
* service an exit message belongs. */
r = sd_event_source_set_priority(m->notify_event_source, SD_EVENT_PRIORITY_NORMAL-7);
if (r < 0)
return log_error_errno(r, "Failed to set priority of notify event source: %m");
2015-04-29 16:05:32 +02:00
(void) sd_event_source_set_description(m->notify_event_source, "manager-notify");
}
return 0;
}
core: use an AF_UNIX/SOCK_DGRAM socket for cgroup agent notification dbus-daemon currently uses a backlog of 30 on its D-bus system bus socket. On overloaded systems this means that only 30 connections may be queued without dbus-daemon processing them before further connection attempts fail. Our cgroups-agent binary so far used D-Bus for its messaging, and hitting this limit hence may result in us losing cgroup empty messages. This patch adds a seperate cgroup agent socket of type AF_UNIX/SOCK_DGRAM. Since sockets of these types need no connection set up, no listen() backlog applies. Our cgroup-agent binary will hence simply block as long as it can't enqueue its datagram message, so that we won't lose cgroup empty messages as likely anymore. This also rearranges the ordering of the processing of SIGCHLD signals, service notification messages (sd_notify()...) and the two types of cgroup notifications (inotify for the unified hierarchy support, and agent for the classic hierarchy support). We now always process events for these in the following order: 1. service notification messages (SD_EVENT_PRIORITY_NORMAL-7) 2. SIGCHLD signals (SD_EVENT_PRIORITY_NORMAL-6) 3. cgroup inotify and cgroup agent (SD_EVENT_PRIORITY_NORMAL-5) This is because when receiving SIGCHLD we invalidate PID information, which we need to process the service notification messages which are bound to PIDs. Hence the order between the first two items. And we want to process SIGCHLD metadata to detect whether a service is gone, before using cgroup notifications, to decide when a service is gone, since the former carries more useful metadata. Related to this: https://bugs.freedesktop.org/show_bug.cgi?id=95264 https://github.com/systemd/systemd/issues/1961
2016-05-04 20:43:23 +02:00
static int manager_setup_cgroups_agent(Manager *m) {
static const union sockaddr_union sa = {
.un.sun_family = AF_UNIX,
.un.sun_path = "/run/systemd/cgroups-agent",
};
int r;
/* This creates a listening socket we receive cgroups agent messages on. We do not use D-Bus for delivering
* these messages from the cgroups agent binary to PID 1, as the cgroups agent binary is very short-living, and
* each instance of it needs a new D-Bus connection. Since D-Bus connections are SOCK_STREAM/AF_UNIX, on
* overloaded systems the backlog of the D-Bus socket becomes relevant, as not more than the configured number
* of D-Bus connections may be queued until the kernel will start dropping further incoming connections,
* possibly resulting in lost cgroups agent messages. To avoid this, we'll use a private SOCK_DGRAM/AF_UNIX
* socket, where no backlog is relevant as communication may take place without an actual connect() cycle, and
* we thus won't lose messages.
*
* Note that PID 1 will forward the agent message to system bus, so that the user systemd instance may listen
* to it. The system instance hence listens on this special socket, but the user instances listen on the system
* bus for these messages. */
if (m->test_run)
return 0;
if (!MANAGER_IS_SYSTEM(m))
return 0;
r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
if (r < 0)
return log_error_errno(r, "Failed to determine whether unified cgroups hierarchy is used: %m");
if (r > 0) /* We don't need this anymore on the unified hierarchy */
core: use an AF_UNIX/SOCK_DGRAM socket for cgroup agent notification dbus-daemon currently uses a backlog of 30 on its D-bus system bus socket. On overloaded systems this means that only 30 connections may be queued without dbus-daemon processing them before further connection attempts fail. Our cgroups-agent binary so far used D-Bus for its messaging, and hitting this limit hence may result in us losing cgroup empty messages. This patch adds a seperate cgroup agent socket of type AF_UNIX/SOCK_DGRAM. Since sockets of these types need no connection set up, no listen() backlog applies. Our cgroup-agent binary will hence simply block as long as it can't enqueue its datagram message, so that we won't lose cgroup empty messages as likely anymore. This also rearranges the ordering of the processing of SIGCHLD signals, service notification messages (sd_notify()...) and the two types of cgroup notifications (inotify for the unified hierarchy support, and agent for the classic hierarchy support). We now always process events for these in the following order: 1. service notification messages (SD_EVENT_PRIORITY_NORMAL-7) 2. SIGCHLD signals (SD_EVENT_PRIORITY_NORMAL-6) 3. cgroup inotify and cgroup agent (SD_EVENT_PRIORITY_NORMAL-5) This is because when receiving SIGCHLD we invalidate PID information, which we need to process the service notification messages which are bound to PIDs. Hence the order between the first two items. And we want to process SIGCHLD metadata to detect whether a service is gone, before using cgroup notifications, to decide when a service is gone, since the former carries more useful metadata. Related to this: https://bugs.freedesktop.org/show_bug.cgi?id=95264 https://github.com/systemd/systemd/issues/1961
2016-05-04 20:43:23 +02:00
return 0;
if (m->cgroups_agent_fd < 0) {
_cleanup_close_ int fd = -1;
/* First free all secondary fields */
m->cgroups_agent_event_source = sd_event_source_unref(m->cgroups_agent_event_source);
fd = socket(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0);
if (fd < 0)
return log_error_errno(errno, "Failed to allocate cgroups agent socket: %m");
fd_inc_rcvbuf(fd, CGROUPS_AGENT_RCVBUF_SIZE);
(void) unlink(sa.un.sun_path);
/* Only allow root to connect to this socket */
RUN_WITH_UMASK(0077)
r = bind(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un));
core: use an AF_UNIX/SOCK_DGRAM socket for cgroup agent notification dbus-daemon currently uses a backlog of 30 on its D-bus system bus socket. On overloaded systems this means that only 30 connections may be queued without dbus-daemon processing them before further connection attempts fail. Our cgroups-agent binary so far used D-Bus for its messaging, and hitting this limit hence may result in us losing cgroup empty messages. This patch adds a seperate cgroup agent socket of type AF_UNIX/SOCK_DGRAM. Since sockets of these types need no connection set up, no listen() backlog applies. Our cgroup-agent binary will hence simply block as long as it can't enqueue its datagram message, so that we won't lose cgroup empty messages as likely anymore. This also rearranges the ordering of the processing of SIGCHLD signals, service notification messages (sd_notify()...) and the two types of cgroup notifications (inotify for the unified hierarchy support, and agent for the classic hierarchy support). We now always process events for these in the following order: 1. service notification messages (SD_EVENT_PRIORITY_NORMAL-7) 2. SIGCHLD signals (SD_EVENT_PRIORITY_NORMAL-6) 3. cgroup inotify and cgroup agent (SD_EVENT_PRIORITY_NORMAL-5) This is because when receiving SIGCHLD we invalidate PID information, which we need to process the service notification messages which are bound to PIDs. Hence the order between the first two items. And we want to process SIGCHLD metadata to detect whether a service is gone, before using cgroup notifications, to decide when a service is gone, since the former carries more useful metadata. Related to this: https://bugs.freedesktop.org/show_bug.cgi?id=95264 https://github.com/systemd/systemd/issues/1961
2016-05-04 20:43:23 +02:00
if (r < 0)
return log_error_errno(errno, "bind(%s) failed: %m", sa.un.sun_path);
m->cgroups_agent_fd = fd;
fd = -1;
}
if (!m->cgroups_agent_event_source) {
r = sd_event_add_io(m->event, &m->cgroups_agent_event_source, m->cgroups_agent_fd, EPOLLIN, manager_dispatch_cgroups_agent_fd, m);
if (r < 0)
return log_error_errno(r, "Failed to allocate cgroups agent event source: %m");
/* Process cgroups notifications early, but after having processed service notification messages or
* SIGCHLD signals, so that a cgroup running empty is always just the last safety net of notification,
* and we collected the metadata the notification and SIGCHLD stuff offers first. Also see handling of
* cgroup inotify for the unified cgroup stuff. */
r = sd_event_source_set_priority(m->cgroups_agent_event_source, SD_EVENT_PRIORITY_NORMAL-5);
if (r < 0)
return log_error_errno(r, "Failed to set priority of cgroups agent event source: %m");
(void) sd_event_source_set_description(m->cgroups_agent_event_source, "manager-cgroups-agent");
}
return 0;
}
static int manager_setup_user_lookup_fd(Manager *m) {
int r;
assert(m);
/* Set up the socket pair used for passing UID/GID resolution results from forked off processes to PID
* 1. Background: we can't do name lookups (NSS) from PID 1, since it might involve IPC and thus activation,
* and we might hence deadlock on ourselves. Hence we do all user/group lookups asynchronously from the forked
* off processes right before executing the binaries to start. In order to be able to clean up any IPC objects
* created by a unit (see RemoveIPC=) we need to know in PID 1 the used UID/GID of the executed processes,
* hence we establish this communication channel so that forked off processes can pass their UID/GID
* information back to PID 1. The forked off processes send their resolved UID/GID to PID 1 in a simple
* datagram, along with their unit name, so that we can share one communication socket pair among all units for
* this purpose.
*
* You might wonder why we need a communication channel for this that is independent of the usual notification
* socket scheme (i.e. $NOTIFY_SOCKET). The primary difference is about trust: data sent via the $NOTIFY_SOCKET
* channel is only accepted if it originates from the right unit and if reception was enabled for it. The user
* lookup socket OTOH is only accessible by PID 1 and its children until they exec(), and always available.
*
* Note that this function is called under two circumstances: when we first initialize (in which case we
* allocate both the socket pair and the event source to listen on it), and when we deserialize after a reload
* (in which case the socket pair already exists but we still need to allocate the event source for it). */
if (m->user_lookup_fds[0] < 0) {
/* Free all secondary fields */
safe_close_pair(m->user_lookup_fds);
m->user_lookup_event_source = sd_event_source_unref(m->user_lookup_event_source);
if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, m->user_lookup_fds) < 0)
return log_error_errno(errno, "Failed to allocate user lookup socket: %m");
(void) fd_inc_rcvbuf(m->user_lookup_fds[0], NOTIFY_RCVBUF_SIZE);
}
if (!m->user_lookup_event_source) {
r = sd_event_add_io(m->event, &m->user_lookup_event_source, m->user_lookup_fds[0], EPOLLIN, manager_dispatch_user_lookup_fd, m);
if (r < 0)
return log_error_errno(errno, "Failed to allocate user lookup event source: %m");
/* Process even earlier than the notify event source, so that we always know first about valid UID/GID
* resolutions */
r = sd_event_source_set_priority(m->user_lookup_event_source, SD_EVENT_PRIORITY_NORMAL-8);
if (r < 0)
return log_error_errno(errno, "Failed to set priority ot user lookup event source: %m");
(void) sd_event_source_set_description(m->user_lookup_event_source, "user-lookup");
}
return 0;
}
static int manager_connect_bus(Manager *m, bool reexecuting) {
bool try_bus_connect;
assert(m);
if (m->test_run)
return 0;
try_bus_connect =
reexecuting ||
(MANAGER_IS_USER(m) && getenv("DBUS_SESSION_BUS_ADDRESS"));
/* Try to connect to the buses, if possible. */
return bus_init(m, try_bus_connect);
}
2010-04-06 02:43:58 +02:00
static unsigned manager_dispatch_cleanup_queue(Manager *m) {
Unit *u;
2010-04-06 02:43:58 +02:00
unsigned n = 0;
assert(m);
while ((u = m->cleanup_queue)) {
assert(u->in_cleanup_queue);
2010-04-06 02:43:58 +02:00
unit_free(u);
2010-04-06 02:43:58 +02:00
n++;
}
return n;
}
2010-04-23 18:47:49 +02:00
enum {
GC_OFFSET_IN_PATH, /* This one is on the path we were traveling */
2010-04-23 18:47:49 +02:00
GC_OFFSET_UNSURE, /* No clue */
GC_OFFSET_GOOD, /* We still need this unit */
GC_OFFSET_BAD, /* We don't need this unit anymore */
_GC_OFFSET_MAX
};
static void unit_gc_mark_good(Unit *u, unsigned gc_marker) {
Iterator i;
Unit *other;
u->gc_marker = gc_marker + GC_OFFSET_GOOD;
/* Recursively mark referenced units as GOOD as well */
SET_FOREACH(other, u->dependencies[UNIT_REFERENCES], i)
if (other->gc_marker == gc_marker + GC_OFFSET_UNSURE)
unit_gc_mark_good(other, gc_marker);
}
2010-04-23 18:47:49 +02:00
static void unit_gc_sweep(Unit *u, unsigned gc_marker) {
Iterator i;
Unit *other;
2010-04-23 18:47:49 +02:00
bool is_bad;
assert(u);
if (u->gc_marker == gc_marker + GC_OFFSET_GOOD ||
u->gc_marker == gc_marker + GC_OFFSET_BAD ||
u->gc_marker == gc_marker + GC_OFFSET_UNSURE ||
u->gc_marker == gc_marker + GC_OFFSET_IN_PATH)
return;
if (u->in_cleanup_queue)
goto bad;
if (unit_check_gc(u))
goto good;
u->gc_marker = gc_marker + GC_OFFSET_IN_PATH;
2010-04-23 18:47:49 +02:00
is_bad = true;
SET_FOREACH(other, u->dependencies[UNIT_REFERENCED_BY], i) {
unit_gc_sweep(other, gc_marker);
if (other->gc_marker == gc_marker + GC_OFFSET_GOOD)
goto good;
2010-04-23 18:47:49 +02:00
if (other->gc_marker != gc_marker + GC_OFFSET_BAD)
2010-04-23 18:47:49 +02:00
is_bad = false;
}
2010-04-23 18:47:49 +02:00
if (is_bad)
goto bad;
/* We were unable to find anything out about this entry, so
* let's investigate it later */
u->gc_marker = gc_marker + GC_OFFSET_UNSURE;
2010-04-23 18:47:49 +02:00
unit_add_to_gc_queue(u);
return;
bad:
2010-04-23 18:47:49 +02:00
/* We definitely know that this one is not useful anymore, so
* let's mark it for deletion */
u->gc_marker = gc_marker + GC_OFFSET_BAD;
2010-04-23 18:47:49 +02:00
unit_add_to_cleanup_queue(u);
return;
good:
unit_gc_mark_good(u, gc_marker);
}
static unsigned manager_dispatch_gc_unit_queue(Manager *m) {
unsigned n = 0, gc_marker;
Unit *u;
assert(m);
/* log_debug("Running GC..."); */
2010-04-23 18:47:49 +02:00
m->gc_marker += _GC_OFFSET_MAX;
if (m->gc_marker + _GC_OFFSET_MAX <= _GC_OFFSET_MAX)
2010-04-22 02:41:14 +02:00
m->gc_marker = 1;
2010-04-23 18:47:49 +02:00
gc_marker = m->gc_marker;
while ((u = m->gc_unit_queue)) {
assert(u->in_gc_queue);
unit_gc_sweep(u, gc_marker);
2010-04-23 18:47:49 +02:00
LIST_REMOVE(gc_queue, m->gc_unit_queue, u);
u->in_gc_queue = false;
n++;
if (u->gc_marker == gc_marker + GC_OFFSET_BAD ||
u->gc_marker == gc_marker + GC_OFFSET_UNSURE) {
if (u->id)
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_debug(u, "Collecting.");
u->gc_marker = gc_marker + GC_OFFSET_BAD;
unit_add_to_cleanup_queue(u);
}
}
return n;
}
static unsigned manager_dispatch_gc_job_queue(Manager *m) {
unsigned n = 0;
Job *j;
assert(m);
while ((j = m->gc_job_queue)) {
assert(j->in_gc_queue);
LIST_REMOVE(gc_queue, m->gc_job_queue, j);
j->in_gc_queue = false;
n++;
if (job_check_gc(j))
continue;
log_unit_debug(j->unit, "Collecting job.");
(void) job_finish_and_invalidate(j, JOB_COLLECTED, false, false);
}
return n;
}
2010-04-21 03:27:44 +02:00
static void manager_clear_jobs_and_units(Manager *m) {
Unit *u;
2009-11-18 00:42:52 +01:00
assert(m);
2010-01-26 21:39:06 +01:00
while ((u = hashmap_first(m->units)))
unit_free(u);
manager_dispatch_cleanup_queue(m);
assert(!m->load_queue);
assert(!m->run_queue);
assert(!m->dbus_unit_queue);
assert(!m->dbus_job_queue);
assert(!m->cleanup_queue);
assert(!m->gc_unit_queue);
assert(!m->gc_job_queue);
assert(hashmap_isempty(m->jobs));
assert(hashmap_isempty(m->units));
m->n_on_console = 0;
m->n_running_jobs = 0;
2010-04-21 03:27:44 +02:00
}
Manager* manager_free(Manager *m) {
2010-04-21 03:27:44 +02:00
UnitType c;
int i;
2010-01-26 21:39:06 +01:00
if (!m)
return NULL;
2010-04-21 03:27:44 +02:00
manager_clear_jobs_and_units(m);
2010-04-06 02:43:58 +02:00
for (c = 0; c < _UNIT_TYPE_MAX; c++)
if (unit_vtable[c]->shutdown)
unit_vtable[c]->shutdown(m);
2010-04-21 03:27:44 +02:00
/* If we reexecute ourselves, we keep the root cgroup
* around */
manager_shutdown_cgroup(m, m->exit_code != MANAGER_REEXECUTE);
2010-03-31 16:29:55 +02:00
lookup_paths_flush_generator(&m->lookup_paths);
2010-11-11 21:28:33 +01:00
bus_done(m);
dynamic_user_vacuum(m, false);
hashmap_free(m->dynamic_users);
2010-01-26 21:39:06 +01:00
hashmap_free(m->units);
core: add "invocation ID" concept to service manager This adds a new invocation ID concept to the service manager. The invocation ID identifies each runtime cycle of a unit uniquely. A new randomized 128bit ID is generated each time a unit moves from and inactive to an activating or active state. The primary usecase for this concept is to connect the runtime data PID 1 maintains about a service with the offline data the journal stores about it. Previously we'd use the unit name plus start/stop times, which however is highly racy since the journal will generally process log data after the service already ended. The "invocation ID" kinda matches the "boot ID" concept of the Linux kernel, except that it applies to an individual unit instead of the whole system. The invocation ID is passed to the activated processes as environment variable. It is additionally stored as extended attribute on the cgroup of the unit. The latter is used by journald to automatically retrieve it for each log logged message and attach it to the log entry. The environment variable is very easily accessible, even for unprivileged services. OTOH the extended attribute is only accessible to privileged processes (this is because cgroupfs only supports the "trusted." xattr namespace, not "user."). The environment variable may be altered by services, the extended attribute may not be, hence is the better choice for the journal. Note that reading the invocation ID off the extended attribute from journald is racy, similar to the way reading the unit name for a logging process is. This patch adds APIs to read the invocation ID to sd-id128: sd_id128_get_invocation() may be used in a similar fashion to sd_id128_get_boot(). PID1's own logging is updated to always include the invocation ID when it logs information about a unit. A new bus call GetUnitByInvocationID() is added that allows retrieving a bus path to a unit by its invocation ID. The bus path is built using the invocation ID, thus providing a path for referring to a unit that is valid only for the current runtime cycleof it. Outlook for the future: should the kernel eventually allow passing of cgroup information along AF_UNIX/SOCK_DGRAM messages via a unique cgroup id, then we can alter the invocation ID to be generated as hash from that rather than entirely randomly. This way we can derive the invocation race-freely from the messages.
2016-08-30 23:18:46 +02:00
hashmap_free(m->units_by_invocation_id);
2009-11-18 00:42:52 +01:00
hashmap_free(m->jobs);
hashmap_free(m->watch_pids1);
hashmap_free(m->watch_pids2);
hashmap_free(m->watch_bus);
2010-01-24 00:39:29 +01:00
set_free(m->startup_units);
set_free(m->failed_units);
sd_event_source_unref(m->signal_event_source);
sd_event_source_unref(m->notify_event_source);
core: use an AF_UNIX/SOCK_DGRAM socket for cgroup agent notification dbus-daemon currently uses a backlog of 30 on its D-bus system bus socket. On overloaded systems this means that only 30 connections may be queued without dbus-daemon processing them before further connection attempts fail. Our cgroups-agent binary so far used D-Bus for its messaging, and hitting this limit hence may result in us losing cgroup empty messages. This patch adds a seperate cgroup agent socket of type AF_UNIX/SOCK_DGRAM. Since sockets of these types need no connection set up, no listen() backlog applies. Our cgroup-agent binary will hence simply block as long as it can't enqueue its datagram message, so that we won't lose cgroup empty messages as likely anymore. This also rearranges the ordering of the processing of SIGCHLD signals, service notification messages (sd_notify()...) and the two types of cgroup notifications (inotify for the unified hierarchy support, and agent for the classic hierarchy support). We now always process events for these in the following order: 1. service notification messages (SD_EVENT_PRIORITY_NORMAL-7) 2. SIGCHLD signals (SD_EVENT_PRIORITY_NORMAL-6) 3. cgroup inotify and cgroup agent (SD_EVENT_PRIORITY_NORMAL-5) This is because when receiving SIGCHLD we invalidate PID information, which we need to process the service notification messages which are bound to PIDs. Hence the order between the first two items. And we want to process SIGCHLD metadata to detect whether a service is gone, before using cgroup notifications, to decide when a service is gone, since the former carries more useful metadata. Related to this: https://bugs.freedesktop.org/show_bug.cgi?id=95264 https://github.com/systemd/systemd/issues/1961
2016-05-04 20:43:23 +02:00
sd_event_source_unref(m->cgroups_agent_event_source);
sd_event_source_unref(m->time_change_event_source);
sd_event_source_unref(m->jobs_in_progress_event_source);
sd_event_source_unref(m->run_queue_event_source);
sd_event_source_unref(m->user_lookup_event_source);
safe_close(m->signal_fd);
safe_close(m->notify_fd);
core: use an AF_UNIX/SOCK_DGRAM socket for cgroup agent notification dbus-daemon currently uses a backlog of 30 on its D-bus system bus socket. On overloaded systems this means that only 30 connections may be queued without dbus-daemon processing them before further connection attempts fail. Our cgroups-agent binary so far used D-Bus for its messaging, and hitting this limit hence may result in us losing cgroup empty messages. This patch adds a seperate cgroup agent socket of type AF_UNIX/SOCK_DGRAM. Since sockets of these types need no connection set up, no listen() backlog applies. Our cgroup-agent binary will hence simply block as long as it can't enqueue its datagram message, so that we won't lose cgroup empty messages as likely anymore. This also rearranges the ordering of the processing of SIGCHLD signals, service notification messages (sd_notify()...) and the two types of cgroup notifications (inotify for the unified hierarchy support, and agent for the classic hierarchy support). We now always process events for these in the following order: 1. service notification messages (SD_EVENT_PRIORITY_NORMAL-7) 2. SIGCHLD signals (SD_EVENT_PRIORITY_NORMAL-6) 3. cgroup inotify and cgroup agent (SD_EVENT_PRIORITY_NORMAL-5) This is because when receiving SIGCHLD we invalidate PID information, which we need to process the service notification messages which are bound to PIDs. Hence the order between the first two items. And we want to process SIGCHLD metadata to detect whether a service is gone, before using cgroup notifications, to decide when a service is gone, since the former carries more useful metadata. Related to this: https://bugs.freedesktop.org/show_bug.cgi?id=95264 https://github.com/systemd/systemd/issues/1961
2016-05-04 20:43:23 +02:00
safe_close(m->cgroups_agent_fd);
safe_close(m->time_change_fd);
safe_close_pair(m->user_lookup_fds);
manager_close_ask_password(m);
manager_close_idle_pipe(m);
udev_unref(m->udev);
sd_event_unref(m->event);
2009-11-18 00:42:52 +01:00
free(m->notify_socket);
lookup_paths_free(&m->lookup_paths);
strv_free(m->environment);
2010-02-13 01:07:02 +01:00
hashmap_free(m->cgroup_unit);
set_free_free(m->unit_path_cache);
free(m->switch_root);
free(m->switch_root_init);
for (i = 0; i < _RLIMIT_MAX; i++)
m->rlimit[i] = mfree(m->rlimit[i]);
assert(hashmap_isempty(m->units_requiring_mounts_for));
hashmap_free(m->units_requiring_mounts_for);
hashmap_free(m->uid_refs);
hashmap_free(m->gid_refs);
2016-10-17 00:28:30 +02:00
return mfree(m);
2009-11-18 00:42:52 +01:00
}
void manager_enumerate(Manager *m) {
2010-01-29 03:18:09 +01:00
UnitType c;
assert(m);
2010-04-21 03:27:44 +02:00
/* Let's ask every type to load all units from disk/kernel
* that it might know */
for (c = 0; c < _UNIT_TYPE_MAX; c++) {
if (!unit_type_supported(c)) {
log_debug("Unit type .%s is not supported on this system.", unit_type_to_string(c));
continue;
}
2010-01-29 03:18:09 +01:00
if (!unit_vtable[c]->enumerate)
continue;
unit_vtable[c]->enumerate(m);
}
2010-01-29 03:18:09 +01:00
manager_dispatch_load_queue(m);
2010-04-21 03:27:44 +02:00
}
static void manager_coldplug(Manager *m) {
2010-04-21 03:27:44 +02:00
Iterator i;
Unit *u;
char *k;
int r;
2010-04-21 03:27:44 +02:00
assert(m);
2010-01-29 03:18:09 +01:00
/* Then, let's set up their initial state. */
HASHMAP_FOREACH_KEY(u, k, m->units, i) {
/* ignore aliases */
if (u->id != k)
2010-01-29 03:18:09 +01:00
continue;
r = unit_coldplug(u);
if (r < 0)
log_warning_errno(r, "We couldn't coldplug %s, proceeding anyway: %m", u->id);
2010-01-29 03:18:09 +01:00
}
2010-04-21 03:27:44 +02:00
}
static void manager_build_unit_path_cache(Manager *m) {
char **i;
int r;
assert(m);
set_free_free(m->unit_path_cache);
m->unit_path_cache = set_new(&string_hash_ops);
if (!m->unit_path_cache) {
r = -ENOMEM;
goto fail;
}
/* This simply builds a list of files we know exist, so that
* we don't always have to go to disk */
STRV_FOREACH(i, m->lookup_paths.search_path) {
_cleanup_closedir_ DIR *d = NULL;
struct dirent *de;
2013-01-02 22:03:35 +01:00
d = opendir(*i);
if (!d) {
if (errno != ENOENT)
log_warning_errno(errno, "Failed to open directory %s, ignoring: %m", *i);
continue;
}
FOREACH_DIRENT(de, d, r = -errno; goto fail) {
char *p;
p = strjoin(streq(*i, "/") ? "" : *i, "/", de->d_name);
if (!p) {
r = -ENOMEM;
goto fail;
}
r = set_consume(m->unit_path_cache, p);
if (r < 0)
goto fail;
}
}
return;
fail:
log_warning_errno(r, "Failed to build unit path cache, proceeding without: %m");
m->unit_path_cache = set_free_free(m->unit_path_cache);
}
static void manager_distribute_fds(Manager *m, FDSet *fds) {
Iterator i;
Unit *u;
assert(m);
HASHMAP_FOREACH(u, m->units, i) {
if (fdset_size(fds) <= 0)
break;
if (!UNIT_VTABLE(u)->distribute_fds)
continue;
UNIT_VTABLE(u)->distribute_fds(u, fds);
}
}
2010-04-21 03:27:44 +02:00
int manager_startup(Manager *m, FILE *serialization, FDSet *fds) {
int r, q;
assert(m);
r = lookup_paths_init(&m->lookup_paths, m->unit_file_scope, 0, NULL);
if (r < 0)
return r;
2010-11-11 21:28:33 +01:00
r = manager_run_environment_generators(m);
if (r < 0)
return r;
/* Make sure the transient directory always exists, so that it remains in the search path */
if (!m->test_run) {
r = mkdir_p_label(m->lookup_paths.transient, 0755);
if (r < 0)
return r;
}
dual_timestamp_get(&m->generators_start_timestamp);
r = manager_run_generators(m);
dual_timestamp_get(&m->generators_finish_timestamp);
if (r < 0)
return r;
lookup_paths_reduce(&m->lookup_paths);
manager_build_unit_path_cache(m);
/* If we will deserialize make sure that during enumeration
* this is already known, so we increase the counter here
* already */
if (serialization)
m->n_reloading++;
2010-04-21 03:27:44 +02:00
/* First, enumerate what we can from all config files */
dual_timestamp_get(&m->units_load_start_timestamp);
manager_enumerate(m);
dual_timestamp_get(&m->units_load_finish_timestamp);
2010-04-21 03:27:44 +02:00
/* Second, deserialize if there is something to deserialize */
if (serialization)
r = manager_deserialize(m, serialization, fds);
2010-04-21 03:27:44 +02:00
/* Any fds left? Find some unit which wants them. This is
* useful to allow container managers to pass some file
* descriptors to us pre-initialized. This enables
* socket-based activation of entire containers. */
manager_distribute_fds(m, fds);
/* We might have deserialized the notify fd, but if we didn't
* then let's create the bus now */
q = manager_setup_notify(m);
if (q < 0 && r == 0)
r = q;
core: use an AF_UNIX/SOCK_DGRAM socket for cgroup agent notification dbus-daemon currently uses a backlog of 30 on its D-bus system bus socket. On overloaded systems this means that only 30 connections may be queued without dbus-daemon processing them before further connection attempts fail. Our cgroups-agent binary so far used D-Bus for its messaging, and hitting this limit hence may result in us losing cgroup empty messages. This patch adds a seperate cgroup agent socket of type AF_UNIX/SOCK_DGRAM. Since sockets of these types need no connection set up, no listen() backlog applies. Our cgroup-agent binary will hence simply block as long as it can't enqueue its datagram message, so that we won't lose cgroup empty messages as likely anymore. This also rearranges the ordering of the processing of SIGCHLD signals, service notification messages (sd_notify()...) and the two types of cgroup notifications (inotify for the unified hierarchy support, and agent for the classic hierarchy support). We now always process events for these in the following order: 1. service notification messages (SD_EVENT_PRIORITY_NORMAL-7) 2. SIGCHLD signals (SD_EVENT_PRIORITY_NORMAL-6) 3. cgroup inotify and cgroup agent (SD_EVENT_PRIORITY_NORMAL-5) This is because when receiving SIGCHLD we invalidate PID information, which we need to process the service notification messages which are bound to PIDs. Hence the order between the first two items. And we want to process SIGCHLD metadata to detect whether a service is gone, before using cgroup notifications, to decide when a service is gone, since the former carries more useful metadata. Related to this: https://bugs.freedesktop.org/show_bug.cgi?id=95264 https://github.com/systemd/systemd/issues/1961
2016-05-04 20:43:23 +02:00
q = manager_setup_cgroups_agent(m);
if (q < 0 && r == 0)
r = q;
q = manager_setup_user_lookup_fd(m);
if (q < 0 && r == 0)
r = q;
/* Let's connect to the bus now. */
(void) manager_connect_bus(m, !!serialization);
(void) bus_track_coldplug(m, &m->subscribed, false, m->deserialized_subscribed);
m->deserialized_subscribed = strv_free(m->deserialized_subscribed);
2010-04-21 03:27:44 +02:00
/* Third, fire things up! */
manager_coldplug(m);
2010-04-21 03:27:44 +02:00
/* Release any dynamic users no longer referenced */
dynamic_user_vacuum(m, true);
/* Release any references to UIDs/GIDs no longer referenced, and destroy any IPC owned by them */
manager_vacuum_uid_refs(m);
manager_vacuum_gid_refs(m);
if (serialization) {
assert(m->n_reloading > 0);
m->n_reloading--;
/* Let's wait for the UnitNew/JobNew messages being
* sent, before we notify that the reload is
* finished */
m->send_reloading_done = true;
}
2010-04-21 03:27:44 +02:00
return r;
2010-01-29 03:18:09 +01:00
}
int manager_add_job(Manager *m, JobType type, Unit *unit, JobMode mode, sd_bus_error *e, Job **_ret) {
2010-01-20 02:12:51 +01:00
int r;
Transaction *tr;
2010-01-20 02:12:51 +01:00
assert(m);
assert(type < _JOB_TYPE_MAX);
2010-01-26 21:39:06 +01:00
assert(unit);
2010-01-20 02:12:51 +01:00
assert(mode < _JOB_MODE_MAX);
2009-11-18 00:42:52 +01:00
if (mode == JOB_ISOLATE && type != JOB_START)
return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Isolate is only valid for start.");
if (mode == JOB_ISOLATE && !unit->allow_isolate)
return sd_bus_error_setf(e, BUS_ERROR_NO_ISOLATION, "Operation refused, unit may not be isolated.");
2010-08-30 22:45:46 +02:00
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_debug(unit, "Trying to enqueue job %s/%s/%s", unit->id, job_type_to_string(type), job_mode_to_string(mode));
2010-01-29 04:11:36 +01:00
type = job_type_collapse(type, unit);
core: add NOP jobs, job type collapsing Two of our current job types are special: JOB_TRY_RESTART, JOB_RELOAD_OR_START. They differ from other job types by being sensitive to the unit active state. They perform some action when the unit is active and some other action otherwise. This raises a question: when exactly should the unit state be checked to make the decision? Currently the unit state is checked when the job becomes runnable. It's more sensible to check the state immediately when the job is added by the user. When the user types "systemctl try-restart foo.service", he really intends to restart the service if it's running right now. If it isn't running right now, the restart is pointless. Consider the example (from Bugzilla[1]): sleep.service takes some time to start. hello.service has After=sleep.service. Both services get started. Two jobs will appear: hello.service/start waiting sleep.service/start running Then someone runs "systemctl try-restart hello.service". Currently the try-restart operation will block and wait for sleep.service/start to complete. The correct result is to complete the try-restart operation immediately with success, because hello.service is not running. The two original jobs must not be disturbed by this. To fix this we introduce two new concepts: - a new job type: JOB_NOP A JOB_NOP job does not do anything to the unit. It does not pull in any dependencies. It is always immediately runnable. When installed to a unit, it sits in a special slot (u->nop_job) where it never conflicts with the installed job (u->job) of a different type. It never merges with jobs of other types, but it can merge into an already installed JOB_NOP job. - "collapsing" of job types When a job of one of the two special types is added, the state of the unit is checked immediately and the job type changes: JOB_TRY_RESTART -> JOB_RESTART or JOB_NOP JOB_RELOAD_OR_START -> JOB_RELOAD or JOB_START Should a job type JOB_RELOAD_OR_START appear later during job merging, it collapses immediately afterwards. Collapsing actually makes some things simpler, because there are now fewer job types that are allowed in the transaction. [1] Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=753586
2012-04-25 11:58:27 +02:00
tr = transaction_new(mode == JOB_REPLACE_IRREVERSIBLY);
if (!tr)
return -ENOMEM;
2010-01-19 04:15:20 +01:00
r = transaction_add_job_and_dependencies(tr, type, unit, NULL, true, false,
mode == JOB_IGNORE_DEPENDENCIES || mode == JOB_IGNORE_REQUIREMENTS,
mode == JOB_IGNORE_DEPENDENCIES, e);
if (r < 0)
goto tr_abort;
if (mode == JOB_ISOLATE) {
r = transaction_add_isolate_jobs(tr, m);
if (r < 0)
goto tr_abort;
}
r = transaction_activate(tr, m, mode, e);
if (r < 0)
goto tr_abort;
2010-01-20 02:12:51 +01:00
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_debug(unit,
2013-01-05 18:00:35 +01:00
"Enqueued job %s/%s as %u", unit->id,
job_type_to_string(type), (unsigned) tr->anchor_job->id);
2010-01-29 03:18:09 +01:00
2010-01-20 02:12:51 +01:00
if (_ret)
*_ret = tr->anchor_job;
2009-11-18 00:42:52 +01:00
transaction_free(tr);
2010-01-20 02:12:51 +01:00
return 0;
tr_abort:
transaction_abort(tr);
transaction_free(tr);
return r;
2010-01-20 02:12:51 +01:00
}
2009-11-18 00:42:52 +01:00
int manager_add_job_by_name(Manager *m, JobType type, const char *name, JobMode mode, sd_bus_error *e, Job **ret) {
Unit *unit = NULL; /* just to appease gcc, initialization is not really necessary */
int r;
assert(m);
assert(type < _JOB_TYPE_MAX);
assert(name);
assert(mode < _JOB_MODE_MAX);
r = manager_load_unit(m, name, NULL, NULL, &unit);
if (r < 0)
return r;
assert(unit);
return manager_add_job(m, type, unit, mode, e, ret);
}
int manager_add_job_by_name_and_warn(Manager *m, JobType type, const char *name, JobMode mode, Job **ret) {
_cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
int r;
assert(m);
assert(type < _JOB_TYPE_MAX);
assert(name);
assert(mode < _JOB_MODE_MAX);
r = manager_add_job_by_name(m, type, name, mode, &error, ret);
if (r < 0)
return log_warning_errno(r, "Failed to enqueue %s job for %s: %s", job_mode_to_string(mode), name, bus_error_message(&error, r));
return r;
}
2009-11-18 00:42:52 +01:00
Job *manager_get_job(Manager *m, uint32_t id) {
assert(m);
return hashmap_get(m->jobs, UINT32_TO_PTR(id));
}
2010-01-26 21:39:06 +01:00
Unit *manager_get_unit(Manager *m, const char *name) {
2009-11-18 00:42:52 +01:00
assert(m);
assert(name);
2010-01-26 21:39:06 +01:00
return hashmap_get(m->units, name);
2009-11-18 00:42:52 +01:00
}
unsigned manager_dispatch_load_queue(Manager *m) {
Unit *u;
unsigned n = 0;
2009-11-18 00:42:52 +01:00
assert(m);
/* Make sure we are not run recursively */
if (m->dispatching_load_queue)
return 0;
m->dispatching_load_queue = true;
2010-01-26 21:39:06 +01:00
/* Dispatches the load queue. Takes a unit from the queue and
2009-11-18 00:42:52 +01:00
* tries to load its data until the queue is empty */
while ((u = m->load_queue)) {
assert(u->in_load_queue);
unit_load(u);
n++;
2009-11-18 00:42:52 +01:00
}
m->dispatching_load_queue = false;
return n;
2009-11-18 00:42:52 +01:00
}
int manager_load_unit_prepare(
Manager *m,
const char *name,
const char *path,
sd_bus_error *e,
Unit **_ret) {
2010-01-26 21:39:06 +01:00
Unit *ret;
UnitType t;
2009-11-18 00:42:52 +01:00
int r;
assert(m);
2010-04-15 03:11:11 +02:00
assert(name || path);
assert(_ret);
2009-11-18 00:42:52 +01:00
/* This will prepare the unit for loading, but not actually
* load anything from disk. */
2010-01-27 00:15:56 +01:00
if (path && !is_path(path))
return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Path %s is not absolute.", path);
2010-04-15 03:11:11 +02:00
if (!name)
name = basename(path);
2010-04-15 03:11:11 +02:00
t = unit_name_to_type(name);
if (t == _UNIT_TYPE_INVALID || !unit_name_is_valid(name, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE)) {
if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE))
return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Unit name %s is missing the instance name.", name);
return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Unit name %s is not valid.", name);
}
2009-11-18 00:42:52 +01:00
ret = manager_get_unit(m, name);
if (ret) {
*_ret = ret;
return 1;
}
2009-11-18 00:42:52 +01:00
ret = unit_new(m, unit_vtable[t]->object_size);
if (!ret)
2009-11-18 00:42:52 +01:00
return -ENOMEM;
if (path) {
ret->fragment_path = strdup(path);
if (!ret->fragment_path) {
2010-01-27 00:15:56 +01:00
unit_free(ret);
return -ENOMEM;
}
}
2010-01-27 00:15:56 +01:00
r = unit_add_name(ret, name);
if (r < 0) {
2010-01-26 21:39:06 +01:00
unit_free(ret);
2010-01-21 00:51:37 +01:00
return r;
2009-11-18 00:42:52 +01:00
}
2010-01-26 21:39:06 +01:00
unit_add_to_load_queue(ret);
unit_add_to_dbus_queue(ret);
unit_add_to_gc_queue(ret);
*_ret = ret;
return 0;
}
int manager_load_unit(
Manager *m,
const char *name,
const char *path,
sd_bus_error *e,
Unit **_ret) {
int r;
assert(m);
assert(_ret);
/* This will load the service information files, but not actually
* start any services or anything. */
r = manager_load_unit_prepare(m, name, path, e, _ret);
if (r != 0)
return r;
2010-01-29 03:18:09 +01:00
manager_dispatch_load_queue(m);
2009-11-18 00:42:52 +01:00
*_ret = unit_follow_merge(*_ret);
2010-04-15 03:11:11 +02:00
2009-11-18 00:42:52 +01:00
return 0;
}
2010-01-19 00:22:34 +01:00
2010-01-20 04:02:39 +01:00
void manager_dump_jobs(Manager *s, FILE *f, const char *prefix) {
Iterator i;
2010-01-19 00:22:34 +01:00
Job *j;
assert(s);
assert(f);
HASHMAP_FOREACH(j, s->jobs, i)
2010-01-20 04:02:39 +01:00
job_dump(j, f, prefix);
2010-01-19 00:22:34 +01:00
}
2010-01-26 21:39:06 +01:00
void manager_dump_units(Manager *s, FILE *f, const char *prefix) {
Iterator i;
2010-01-26 21:39:06 +01:00
Unit *u;
2010-01-19 04:15:20 +01:00
const char *t;
2010-01-19 00:22:34 +01:00
assert(s);
assert(f);
2010-01-26 21:39:06 +01:00
HASHMAP_FOREACH_KEY(u, t, s->units, i)
if (u->id == t)
2010-01-26 21:39:06 +01:00
unit_dump(u, f, prefix);
2010-01-19 00:22:34 +01:00
}
void manager_clear_jobs(Manager *m) {
Job *j;
assert(m);
while ((j = hashmap_first(m->jobs)))
/* No need to recurse. We're cancelling all jobs. */
job_finish_and_invalidate(j, JOB_CANCELED, false, false);
}
2010-01-23 22:56:47 +01:00
static int manager_dispatch_run_queue(sd_event_source *source, void *userdata) {
Manager *m = userdata;
2010-01-23 22:56:47 +01:00
Job *j;
assert(source);
assert(m);
2010-01-24 00:39:29 +01:00
while ((j = m->run_queue)) {
2010-01-26 19:25:02 +01:00
assert(j->installed);
assert(j->in_run_queue);
job_run_and_invalidate(j);
2010-01-24 00:39:29 +01:00
}
if (m->n_running_jobs > 0)
manager_watch_jobs_in_progress(m);
if (m->n_on_console > 0)
manager_watch_idle_pipe(m);
return 1;
}
static unsigned manager_dispatch_dbus_queue(Manager *m) {
Job *j;
Unit *u;
unsigned n = 0;
assert(m);
if (m->dispatching_dbus_queue)
return 0;
m->dispatching_dbus_queue = true;
while ((u = m->dbus_unit_queue)) {
assert(u->in_dbus_queue);
bus_unit_send_change_signal(u);
n++;
}
while ((j = m->dbus_job_queue)) {
assert(j->in_dbus_queue);
bus_job_send_change_signal(j);
n++;
}
m->dispatching_dbus_queue = false;
if (m->send_reloading_done) {
m->send_reloading_done = false;
bus_manager_send_reloading(m, false);
}
if (m->queued_message)
bus_send_queued_message(m);
return n;
2010-01-24 00:39:29 +01:00
}
core: use an AF_UNIX/SOCK_DGRAM socket for cgroup agent notification dbus-daemon currently uses a backlog of 30 on its D-bus system bus socket. On overloaded systems this means that only 30 connections may be queued without dbus-daemon processing them before further connection attempts fail. Our cgroups-agent binary so far used D-Bus for its messaging, and hitting this limit hence may result in us losing cgroup empty messages. This patch adds a seperate cgroup agent socket of type AF_UNIX/SOCK_DGRAM. Since sockets of these types need no connection set up, no listen() backlog applies. Our cgroup-agent binary will hence simply block as long as it can't enqueue its datagram message, so that we won't lose cgroup empty messages as likely anymore. This also rearranges the ordering of the processing of SIGCHLD signals, service notification messages (sd_notify()...) and the two types of cgroup notifications (inotify for the unified hierarchy support, and agent for the classic hierarchy support). We now always process events for these in the following order: 1. service notification messages (SD_EVENT_PRIORITY_NORMAL-7) 2. SIGCHLD signals (SD_EVENT_PRIORITY_NORMAL-6) 3. cgroup inotify and cgroup agent (SD_EVENT_PRIORITY_NORMAL-5) This is because when receiving SIGCHLD we invalidate PID information, which we need to process the service notification messages which are bound to PIDs. Hence the order between the first two items. And we want to process SIGCHLD metadata to detect whether a service is gone, before using cgroup notifications, to decide when a service is gone, since the former carries more useful metadata. Related to this: https://bugs.freedesktop.org/show_bug.cgi?id=95264 https://github.com/systemd/systemd/issues/1961
2016-05-04 20:43:23 +02:00
static int manager_dispatch_cgroups_agent_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
Manager *m = userdata;
char buf[PATH_MAX+1];
ssize_t n;
n = recv(fd, buf, sizeof(buf), 0);
if (n < 0)
return log_error_errno(errno, "Failed to read cgroups agent message: %m");
if (n == 0) {
log_error("Got zero-length cgroups agent message, ignoring.");
return 0;
}
if ((size_t) n >= sizeof(buf)) {
log_error("Got overly long cgroups agent message, ignoring.");
return 0;
}
if (memchr(buf, 0, n)) {
log_error("Got cgroups agent message with embedded NUL byte, ignoring.");
return 0;
}
buf[n] = 0;
manager_notify_cgroup_empty(m, buf);
bus_forward_agent_released(m, buf);
return 0;
}
static void manager_invoke_notify_message(Manager *m, Unit *u, pid_t pid, const char *buf, FDSet *fds) {
_cleanup_strv_free_ char **tags = NULL;
assert(m);
assert(u);
assert(buf);
tags = strv_split(buf, "\n\r");
if (!tags) {
log_oom();
return;
}
if (UNIT_VTABLE(u)->notify_message)
UNIT_VTABLE(u)->notify_message(u, pid, tags, fds);
else if (_unlikely_(log_get_max_level() >= LOG_DEBUG)) {
_cleanup_free_ char *x = NULL, *y = NULL;
x = cescape(buf);
if (x)
y = ellipsize(x, 20, 90);
log_unit_debug(u, "Got notification message \"%s\", ignoring.", strnull(y));
}
}
static int manager_dispatch_notify_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
2016-05-23 15:57:18 +02:00
_cleanup_fdset_free_ FDSet *fds = NULL;
Manager *m = userdata;
char buf[NOTIFY_BUFFER_MAX+1];
struct iovec iovec = {
.iov_base = buf,
.iov_len = sizeof(buf)-1,
};
union {
struct cmsghdr cmsghdr;
uint8_t buf[CMSG_SPACE(sizeof(struct ucred)) +
CMSG_SPACE(sizeof(int) * NOTIFY_FD_MAX)];
} control = {};
struct msghdr msghdr = {
.msg_iov = &iovec,
.msg_iovlen = 1,
.msg_control = &control,
.msg_controllen = sizeof(control),
};
struct cmsghdr *cmsg;
struct ucred *ucred = NULL;
Unit *u1, *u2, *u3;
int r, *fd_array = NULL;
unsigned n_fds = 0;
ssize_t n;
assert(m);
assert(m->notify_fd == fd);
if (revents != EPOLLIN) {
log_warning("Got unexpected poll event for notify fd.");
return 0;
}
n = recvmsg(m->notify_fd, &msghdr, MSG_DONTWAIT|MSG_CMSG_CLOEXEC|MSG_TRUNC);
if (n < 0) {
if (IN_SET(errno, EAGAIN, EINTR))
return 0; /* Spurious wakeup, try again */
/* If this is any other, real error, then let's stop processing this socket. This of course means we
* won't take notification messages anymore, but that's still better than busy looping around this:
* being woken up over and over again but being unable to actually read the message off the socket. */
return log_error_errno(errno, "Failed to receive notification message: %m");
}
CMSG_FOREACH(cmsg, &msghdr) {
if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
fd_array = (int*) CMSG_DATA(cmsg);
n_fds = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(int);
} else if (cmsg->cmsg_level == SOL_SOCKET &&
cmsg->cmsg_type == SCM_CREDENTIALS &&
cmsg->cmsg_len == CMSG_LEN(sizeof(struct ucred))) {
ucred = (struct ucred*) CMSG_DATA(cmsg);
}
}
if (n_fds > 0) {
assert(fd_array);
r = fdset_new_array(&fds, fd_array, n_fds);
if (r < 0) {
close_many(fd_array, n_fds);
log_oom();
return 0;
}
}
if (!ucred || ucred->pid <= 0) {
log_warning("Received notify message without valid credentials. Ignoring.");
return 0;
}
if ((size_t) n >= sizeof(buf) || (msghdr.msg_flags & MSG_TRUNC)) {
log_warning("Received notify message exceeded maximum size. Ignoring.");
return 0;
}
/* As extra safety check, let's make sure the string we get doesn't contain embedded NUL bytes. We permit one
* trailing NUL byte in the message, but don't expect it. */
if (n > 1 && memchr(buf, 0, n-1)) {
log_warning("Received notify message with embedded NUL bytes. Ignoring.");
return 0;
}
/* Make sure it's NUL-terminated. */
buf[n] = 0;
/* Notify every unit that might be interested, but try
* to avoid notifying the same one multiple times. */
u1 = manager_get_unit_by_pid_cgroup(m, ucred->pid);
if (u1)
manager_invoke_notify_message(m, u1, ucred->pid, buf, fds);
u2 = hashmap_get(m->watch_pids1, PID_TO_PTR(ucred->pid));
if (u2 && u2 != u1)
manager_invoke_notify_message(m, u2, ucred->pid, buf, fds);
u3 = hashmap_get(m->watch_pids2, PID_TO_PTR(ucred->pid));
if (u3 && u3 != u2 && u3 != u1)
manager_invoke_notify_message(m, u3, ucred->pid, buf, fds);
if (!u1 && !u2 && !u3)
log_warning("Cannot find unit for notify message of PID "PID_FMT".", ucred->pid);
if (fdset_size(fds) > 0)
log_warning("Got extra auxiliary fds with notification message, closing them.");
return 0;
}
2015-10-28 12:43:52 +01:00
static void invoke_sigchld_event(Manager *m, Unit *u, const siginfo_t *si) {
uint64_t iteration;
assert(m);
assert(u);
assert(si);
sd_event_get_iteration(m->event, &iteration);
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_debug(u, "Child "PID_FMT" belongs to %s", si->si_pid, u->id);
unit_unwatch_pid(u, si->si_pid);
if (UNIT_VTABLE(u)->sigchld_event) {
if (set_size(u->pids) <= 1 ||
iteration != u->sigchldgen ||
unit_main_pid(u) == si->si_pid ||
unit_control_pid(u) == si->si_pid) {
UNIT_VTABLE(u)->sigchld_event(u, si->si_pid, si->si_code, si->si_status);
u->sigchldgen = iteration;
} else
log_debug("%s already issued a sigchld this iteration %" PRIu64 ", skipping. Pids still being watched %d", u->id, iteration, set_size(u->pids));
}
}
static int manager_dispatch_sigchld(Manager *m) {
2010-01-24 00:39:29 +01:00
assert(m);
for (;;) {
siginfo_t si = {};
2010-01-24 00:39:29 +01:00
/* First we call waitd() for a PID and do not reap the
* zombie. That way we can still access /proc/$PID for
* it while it is a zombie. */
if (waitid(P_ALL, 0, &si, WEXITED|WNOHANG|WNOWAIT) < 0) {
2010-01-27 04:31:52 +01:00
if (errno == ECHILD)
break;
if (errno == EINTR)
continue;
2010-01-24 00:39:29 +01:00
return -errno;
2010-01-27 04:31:52 +01:00
}
2010-01-24 00:39:29 +01:00
if (si.si_pid <= 0)
2010-01-24 00:39:29 +01:00
break;
if (si.si_code == CLD_EXITED || si.si_code == CLD_KILLED || si.si_code == CLD_DUMPED) {
_cleanup_free_ char *name = NULL;
Unit *u1, *u2, *u3;
get_process_comm(si.si_pid, &name);
log_debug("Child "PID_FMT" (%s) died (code=%s, status=%i/%s)",
si.si_pid, strna(name),
sigchld_code_to_string(si.si_code),
si.si_status,
strna(si.si_code == CLD_EXITED
? exit_status_to_string(si.si_status, EXIT_STATUS_FULL)
: signal_to_string(si.si_status)));
/* And now figure out the unit this belongs
* to, it might be multiple... */
u1 = manager_get_unit_by_pid_cgroup(m, si.si_pid);
if (u1)
invoke_sigchld_event(m, u1, &si);
u2 = hashmap_get(m->watch_pids1, PID_TO_PTR(si.si_pid));
if (u2 && u2 != u1)
invoke_sigchld_event(m, u2, &si);
u3 = hashmap_get(m->watch_pids2, PID_TO_PTR(si.si_pid));
if (u3 && u3 != u2 && u3 != u1)
invoke_sigchld_event(m, u3, &si);
}
/* And now, we actually reap the zombie. */
if (waitid(P_PID, si.si_pid, &si, WEXITED) < 0) {
if (errno == EINTR)
continue;
return -errno;
}
2010-01-24 00:39:29 +01:00
}
return 0;
}
static int manager_start_target(Manager *m, const char *name, JobMode mode) {
_cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
int r;
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_debug("Activating special unit %s", name);
r = manager_add_job_by_name(m, JOB_START, name, mode, &error, NULL);
2013-01-02 22:03:35 +01:00
if (r < 0)
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_error("Failed to enqueue %s job: %s", name, bus_error_message(&error, r));
return r;
}
static void manager_handle_ctrl_alt_del(Manager *m) {
/* If the user presses C-A-D more than
* 7 times within 2s, we reboot/shutdown immediately,
* unless it was disabled in system.conf */
if (ratelimit_test(&m->ctrl_alt_del_ratelimit) || m->cad_burst_action == EMERGENCY_ACTION_NONE)
manager_start_target(m, SPECIAL_CTRL_ALT_DEL_TARGET, JOB_REPLACE_IRREVERSIBLY);
else
emergency_action(m, m->cad_burst_action, NULL,
"Ctrl-Alt-Del was pressed more than 7 times within 2s");
}
static int manager_dispatch_signal_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
Manager *m = userdata;
2010-01-24 00:39:29 +01:00
ssize_t n;
struct signalfd_siginfo sfsi;
bool sigchld = false;
int r;
2010-01-24 00:39:29 +01:00
assert(m);
assert(m->signal_fd == fd);
if (revents != EPOLLIN) {
log_warning("Got unexpected events from signal file descriptor.");
return 0;
}
2010-01-24 00:39:29 +01:00
for (;;) {
n = read(m->signal_fd, &sfsi, sizeof(sfsi));
if (n != sizeof(sfsi)) {
if (n >= 0) {
log_warning("Truncated read from signal fd (%zu bytes)!", n);
return 0;
}
2010-01-24 00:39:29 +01:00
if (IN_SET(errno, EINTR, EAGAIN))
2010-01-27 04:31:52 +01:00
break;
2010-01-24 00:39:29 +01:00
/* We return an error here, which will kill this handler,
* to avoid a busy loop on read error. */
return log_error_errno(errno, "Reading from signal fd failed: %m");
2010-01-24 00:39:29 +01:00
}
2014-02-10 02:08:55 +01:00
log_received_signal(sfsi.ssi_signo == SIGCHLD ||
(sfsi.ssi_signo == SIGTERM && MANAGER_IS_USER(m))
2014-02-10 02:08:55 +01:00
? LOG_DEBUG : LOG_INFO,
&sfsi);
2010-01-27 04:36:30 +01:00
switch (sfsi.ssi_signo) {
case SIGCHLD:
2010-01-24 00:39:29 +01:00
sigchld = true;
2010-01-27 04:36:30 +01:00
break;
2010-01-27 05:31:53 +01:00
case SIGTERM:
if (MANAGER_IS_SYSTEM(m)) {
/* This is for compatibility with the
* original sysvinit */
r = verify_run_space_and_log("Refusing to reexecute");
if (r >= 0)
m->exit_code = MANAGER_REEXECUTE;
break;
}
/* Fall through */
case SIGINT:
if (MANAGER_IS_SYSTEM(m)) {
manager_handle_ctrl_alt_del(m);
break;
}
/* Run the exit target if there is one, if not, just exit. */
if (manager_start_target(m, SPECIAL_EXIT_TARGET, JOB_REPLACE) < 0) {
m->exit_code = MANAGER_EXIT;
return 0;
}
break;
case SIGWINCH:
if (MANAGER_IS_SYSTEM(m))
manager_start_target(m, SPECIAL_KBREQUEST_TARGET, JOB_REPLACE);
/* This is a nop on non-init */
break;
case SIGPWR:
if (MANAGER_IS_SYSTEM(m))
manager_start_target(m, SPECIAL_SIGPWR_TARGET, JOB_REPLACE);
/* This is a nop on non-init */
break;
2010-01-27 05:31:53 +01:00
case SIGUSR1: {
2010-04-13 03:20:22 +02:00
Unit *u;
u = manager_get_unit(m, SPECIAL_DBUS_SERVICE);
if (!u || UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u))) {
log_info("Trying to reconnect to bus...");
bus_init(m, true);
2010-04-13 03:20:22 +02:00
}
if (!u || !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u))) {
log_info("Loading D-Bus service...");
manager_start_target(m, SPECIAL_DBUS_SERVICE, JOB_REPLACE);
2010-04-13 03:20:22 +02:00
}
break;
}
case SIGUSR2: {
_cleanup_free_ char *dump = NULL;
_cleanup_fclose_ FILE *f = NULL;
size_t size;
f = open_memstream(&dump, &size);
if (!f) {
log_warning_errno(errno, "Failed to allocate memory stream: %m");
break;
}
manager_dump_units(m, f, "\t");
manager_dump_jobs(m, f, "\t");
r = fflush_and_check(f);
if (r < 0) {
log_warning_errno(r, "Failed to write status stream: %m");
break;
}
log_dump(LOG_INFO, dump);
break;
}
2010-04-21 03:27:44 +02:00
case SIGHUP:
r = verify_run_space_and_log("Refusing to reload");
if (r >= 0)
m->exit_code = MANAGER_RELOAD;
2010-04-21 03:27:44 +02:00
break;
default: {
/* Starting SIGRTMIN+0 */
static const char * const target_table[] = {
[0] = SPECIAL_DEFAULT_TARGET,
[1] = SPECIAL_RESCUE_TARGET,
2010-07-12 23:49:20 +02:00
[2] = SPECIAL_EMERGENCY_TARGET,
[3] = SPECIAL_HALT_TARGET,
[4] = SPECIAL_POWEROFF_TARGET,
[5] = SPECIAL_REBOOT_TARGET,
[6] = SPECIAL_KEXEC_TARGET
};
/* Starting SIGRTMIN+13, so that target halt and system halt are 10 apart */
static const ManagerExitCode code_table[] = {
[0] = MANAGER_HALT,
[1] = MANAGER_POWEROFF,
[2] = MANAGER_REBOOT,
[3] = MANAGER_KEXEC
};
if ((int) sfsi.ssi_signo >= SIGRTMIN+0 &&
(int) sfsi.ssi_signo < SIGRTMIN+(int) ELEMENTSOF(target_table)) {
int idx = (int) sfsi.ssi_signo - SIGRTMIN;
manager_start_target(m, target_table[idx],
(idx == 1 || idx == 2) ? JOB_ISOLATE : JOB_REPLACE);
break;
}
if ((int) sfsi.ssi_signo >= SIGRTMIN+13 &&
(int) sfsi.ssi_signo < SIGRTMIN+13+(int) ELEMENTSOF(code_table)) {
m->exit_code = code_table[sfsi.ssi_signo - SIGRTMIN - 13];
break;
}
switch (sfsi.ssi_signo - SIGRTMIN) {
case 20:
manager_set_show_status(m, SHOW_STATUS_YES);
break;
case 21:
manager_set_show_status(m, SHOW_STATUS_NO);
break;
case 22:
log_set_max_level(LOG_DEBUG);
log_info("Setting log level to debug.");
break;
case 23:
log_set_max_level(LOG_INFO);
log_info("Setting log level to info.");
break;
case 24:
if (MANAGER_IS_USER(m)) {
m->exit_code = MANAGER_EXIT;
return 0;
}
/* This is a nop on init */
break;
case 26:
case 29: /* compatibility: used to be mapped to LOG_TARGET_SYSLOG_OR_KMSG */
log_set_target(LOG_TARGET_JOURNAL_OR_KMSG);
log_notice("Setting log target to journal-or-kmsg.");
break;
case 27:
log_set_target(LOG_TARGET_CONSOLE);
log_notice("Setting log target to console.");
break;
case 28:
log_set_target(LOG_TARGET_KMSG);
log_notice("Setting log target to kmsg.");
break;
default:
log_warning("Got unhandled signal <%s>.", signal_to_string(sfsi.ssi_signo));
}
2010-01-27 04:36:30 +01:00
}
}
2010-01-24 00:39:29 +01:00
}
if (sigchld)
manager_dispatch_sigchld(m);
return 0;
}
static int manager_dispatch_time_change_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
Manager *m = userdata;
Iterator i;
Unit *u;
assert(m);
assert(m->time_change_fd == fd);
log_struct(LOG_DEBUG,
tree-wide: add SD_ID128_MAKE_STR, remove LOG_MESSAGE_ID Embedding sd_id128_t's in constant strings was rather cumbersome. We had SD_ID128_CONST_STR which returned a const char[], but it had two problems: - it wasn't possible to statically concatanate this array with a normal string - gcc wasn't really able to optimize this, and generated code to perform the "conversion" at runtime. Because of this, even our own code in coredumpctl wasn't using SD_ID128_CONST_STR. Add a new macro to generate a constant string: SD_ID128_MAKE_STR. It is not as elegant as SD_ID128_CONST_STR, because it requires a repetition of the numbers, but in practice it is more convenient to use, and allows gcc to generate smarter code: $ size .libs/systemd{,-logind,-journald}{.old,} text data bss dec hex filename 1265204 149564 4808 1419576 15a938 .libs/systemd.old 1260268 149564 4808 1414640 1595f0 .libs/systemd 246805 13852 209 260866 3fb02 .libs/systemd-logind.old 240973 13852 209 255034 3e43a .libs/systemd-logind 146839 4984 34 151857 25131 .libs/systemd-journald.old 146391 4984 34 151409 24f71 .libs/systemd-journald It is also much easier to check if a certain binary uses a certain MESSAGE_ID: $ strings .libs/systemd.old|grep MESSAGE_ID MESSAGE_ID=%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x MESSAGE_ID=%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x MESSAGE_ID=%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x MESSAGE_ID=%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x $ strings .libs/systemd|grep MESSAGE_ID MESSAGE_ID=c7a787079b354eaaa9e77b371893cd27 MESSAGE_ID=b07a249cd024414a82dd00cd181378ff MESSAGE_ID=641257651c1b4ec9a8624d7a40a9e1e7 MESSAGE_ID=de5b426a63be47a7b6ac3eaac82e2f6f MESSAGE_ID=d34d037fff1847e6ae669a370e694725 MESSAGE_ID=7d4958e842da4a758f6c1cdc7b36dcc5 MESSAGE_ID=1dee0369c7fc4736b7099b38ecb46ee7 MESSAGE_ID=39f53479d3a045ac8e11786248231fbf MESSAGE_ID=be02cf6855d2428ba40df7e9d022f03d MESSAGE_ID=7b05ebc668384222baa8881179cfda54 MESSAGE_ID=9d1aaa27d60140bd96365438aad20286
2016-11-06 18:48:23 +01:00
"MESSAGE_ID=" SD_MESSAGE_TIME_CHANGE_STR,
LOG_MESSAGE("Time has been changed"),
NULL);
/* Restart the watch */
m->time_change_event_source = sd_event_source_unref(m->time_change_event_source);
m->time_change_fd = safe_close(m->time_change_fd);
2010-01-29 06:04:08 +01:00
manager_setup_time_change(m);
HASHMAP_FOREACH(u, m->units, i)
if (UNIT_VTABLE(u)->time_change)
UNIT_VTABLE(u)->time_change(u);
return 0;
}
static int manager_dispatch_idle_pipe_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
Manager *m = userdata;
assert(m);
assert(m->idle_pipe[2] == fd);
m->no_console_output = m->n_on_console > 0;
manager_close_idle_pipe(m);
return 0;
}
static int manager_dispatch_jobs_in_progress(sd_event_source *source, usec_t usec, void *userdata) {
Manager *m = userdata;
int r;
uint64_t next;
assert(m);
assert(source);
2010-01-24 00:39:29 +01:00
manager_print_jobs_in_progress(m);
next = now(CLOCK_MONOTONIC) + JOBS_IN_PROGRESS_PERIOD_USEC;
r = sd_event_source_set_time(source, next);
if (r < 0)
return r;
return sd_event_source_set_enabled(source, SD_EVENT_ONESHOT);
2010-01-24 00:39:29 +01:00
}
int manager_loop(Manager *m) {
int r;
2011-03-30 20:15:45 +02:00
RATELIMIT_DEFINE(rl, 1*USEC_PER_SEC, 50000);
2010-01-24 00:39:29 +01:00
assert(m);
m->exit_code = MANAGER_OK;
2010-01-24 00:39:29 +01:00
/* Release the path cache */
2015-10-28 18:23:07 +01:00
m->unit_path_cache = set_free_free(m->unit_path_cache);
2010-09-21 04:14:38 +02:00
manager_check_finished(m);
/* There might still be some zombies hanging around from
2013-11-06 11:03:18 +01:00
* before we were exec()'ed. Let's reap them. */
r = manager_dispatch_sigchld(m);
if (r < 0)
return r;
while (m->exit_code == MANAGER_OK) {
usec_t wait_usec;
2010-01-24 00:39:29 +01:00
if (m->runtime_watchdog > 0 && m->runtime_watchdog != USEC_INFINITY && MANAGER_IS_SYSTEM(m))
watchdog_ping();
if (!ratelimit_test(&rl)) {
/* Yay, something is going seriously wrong, pause a little */
log_warning("Looping too fast. Throttling execution a little.");
sleep(1);
}
if (manager_dispatch_load_queue(m) > 0)
2010-04-06 02:43:58 +02:00
continue;
if (manager_dispatch_gc_job_queue(m) > 0)
continue;
if (manager_dispatch_gc_unit_queue(m) > 0)
continue;
if (manager_dispatch_cleanup_queue(m) > 0)
continue;
if (manager_dispatch_cgroup_queue(m) > 0)
continue;
if (manager_dispatch_dbus_queue(m) > 0)
continue;
/* Sleep for half the watchdog time */
if (m->runtime_watchdog > 0 && m->runtime_watchdog != USEC_INFINITY && MANAGER_IS_SYSTEM(m)) {
wait_usec = m->runtime_watchdog / 2;
if (wait_usec <= 0)
wait_usec = 1;
} else
wait_usec = USEC_INFINITY;
2010-01-24 00:39:29 +01:00
r = sd_event_run(m->event, wait_usec);
if (r < 0)
return log_error_errno(r, "Failed to run event loop: %m");
2010-04-21 03:27:44 +02:00
}
2010-04-21 03:27:44 +02:00
return m->exit_code;
2010-01-23 22:56:47 +01:00
}
int manager_load_unit_from_dbus_path(Manager *m, const char *s, sd_bus_error *e, Unit **_u) {
_cleanup_free_ char *n = NULL;
core: add "invocation ID" concept to service manager This adds a new invocation ID concept to the service manager. The invocation ID identifies each runtime cycle of a unit uniquely. A new randomized 128bit ID is generated each time a unit moves from and inactive to an activating or active state. The primary usecase for this concept is to connect the runtime data PID 1 maintains about a service with the offline data the journal stores about it. Previously we'd use the unit name plus start/stop times, which however is highly racy since the journal will generally process log data after the service already ended. The "invocation ID" kinda matches the "boot ID" concept of the Linux kernel, except that it applies to an individual unit instead of the whole system. The invocation ID is passed to the activated processes as environment variable. It is additionally stored as extended attribute on the cgroup of the unit. The latter is used by journald to automatically retrieve it for each log logged message and attach it to the log entry. The environment variable is very easily accessible, even for unprivileged services. OTOH the extended attribute is only accessible to privileged processes (this is because cgroupfs only supports the "trusted." xattr namespace, not "user."). The environment variable may be altered by services, the extended attribute may not be, hence is the better choice for the journal. Note that reading the invocation ID off the extended attribute from journald is racy, similar to the way reading the unit name for a logging process is. This patch adds APIs to read the invocation ID to sd-id128: sd_id128_get_invocation() may be used in a similar fashion to sd_id128_get_boot(). PID1's own logging is updated to always include the invocation ID when it logs information about a unit. A new bus call GetUnitByInvocationID() is added that allows retrieving a bus path to a unit by its invocation ID. The bus path is built using the invocation ID, thus providing a path for referring to a unit that is valid only for the current runtime cycleof it. Outlook for the future: should the kernel eventually allow passing of cgroup information along AF_UNIX/SOCK_DGRAM messages via a unique cgroup id, then we can alter the invocation ID to be generated as hash from that rather than entirely randomly. This way we can derive the invocation race-freely from the messages.
2016-08-30 23:18:46 +02:00
sd_id128_t invocation_id;
Unit *u;
int r;
assert(m);
assert(s);
assert(_u);
r = unit_name_from_dbus_path(s, &n);
if (r < 0)
return r;
core: add "invocation ID" concept to service manager This adds a new invocation ID concept to the service manager. The invocation ID identifies each runtime cycle of a unit uniquely. A new randomized 128bit ID is generated each time a unit moves from and inactive to an activating or active state. The primary usecase for this concept is to connect the runtime data PID 1 maintains about a service with the offline data the journal stores about it. Previously we'd use the unit name plus start/stop times, which however is highly racy since the journal will generally process log data after the service already ended. The "invocation ID" kinda matches the "boot ID" concept of the Linux kernel, except that it applies to an individual unit instead of the whole system. The invocation ID is passed to the activated processes as environment variable. It is additionally stored as extended attribute on the cgroup of the unit. The latter is used by journald to automatically retrieve it for each log logged message and attach it to the log entry. The environment variable is very easily accessible, even for unprivileged services. OTOH the extended attribute is only accessible to privileged processes (this is because cgroupfs only supports the "trusted." xattr namespace, not "user."). The environment variable may be altered by services, the extended attribute may not be, hence is the better choice for the journal. Note that reading the invocation ID off the extended attribute from journald is racy, similar to the way reading the unit name for a logging process is. This patch adds APIs to read the invocation ID to sd-id128: sd_id128_get_invocation() may be used in a similar fashion to sd_id128_get_boot(). PID1's own logging is updated to always include the invocation ID when it logs information about a unit. A new bus call GetUnitByInvocationID() is added that allows retrieving a bus path to a unit by its invocation ID. The bus path is built using the invocation ID, thus providing a path for referring to a unit that is valid only for the current runtime cycleof it. Outlook for the future: should the kernel eventually allow passing of cgroup information along AF_UNIX/SOCK_DGRAM messages via a unique cgroup id, then we can alter the invocation ID to be generated as hash from that rather than entirely randomly. This way we can derive the invocation race-freely from the messages.
2016-08-30 23:18:46 +02:00
/* Permit addressing units by invocation ID: if the passed bus path is suffixed by a 128bit ID then we use it
* as invocation ID. */
r = sd_id128_from_string(n, &invocation_id);
if (r >= 0) {
u = hashmap_get(m->units_by_invocation_id, &invocation_id);
if (u) {
*_u = u;
return 0;
}
return sd_bus_error_setf(e, BUS_ERROR_NO_UNIT_FOR_INVOCATION_ID, "No unit with the specified invocation ID " SD_ID128_FORMAT_STR " known.", SD_ID128_FORMAT_VAL(invocation_id));
}
/* If this didn't work, we check if this is a unit name */
if (!unit_name_is_valid(n, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE))
return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Unit name %s is neither a valid invocation ID nor unit name.", n);
r = manager_load_unit(m, n, NULL, e, &u);
if (r < 0)
return r;
*_u = u;
return 0;
}
int manager_get_job_from_dbus_path(Manager *m, const char *s, Job **_j) {
const char *p;
unsigned id;
Job *j;
int r;
assert(m);
assert(s);
assert(_j);
p = startswith(s, "/org/freedesktop/systemd1/job/");
if (!p)
return -EINVAL;
r = safe_atou(p, &id);
if (r < 0)
return r;
j = manager_get_job(m, id);
if (!j)
return -ENOENT;
*_j = j;
return 0;
}
void manager_send_unit_audit(Manager *m, Unit *u, int type, bool success) {
#ifdef HAVE_AUDIT
_cleanup_free_ char *p = NULL;
const char *msg;
int audit_fd, r;
if (!MANAGER_IS_SYSTEM(m))
return;
audit_fd = get_audit_fd();
if (audit_fd < 0)
return;
/* Don't generate audit events if the service was already
* started and we're just deserializing */
if (MANAGER_IS_RELOADING(m))
return;
if (u->type != UNIT_SERVICE)
return;
r = unit_name_to_prefix_and_instance(u->id, &p);
if (r < 0) {
log_error_errno(r, "Failed to extract prefix and instance of unit name: %m");
return;
}
msg = strjoina("unit=", p);
if (audit_log_user_comm_message(audit_fd, type, msg, "systemd", NULL, NULL, NULL, success) < 0) {
if (errno == EPERM)
/* We aren't allowed to send audit messages?
* Then let's not retry again. */
close_audit_fd();
else
log_warning_errno(errno, "Failed to send audit message: %m");
}
#endif
}
void manager_send_unit_plymouth(Manager *m, Unit *u) {
static const union sockaddr_union sa = PLYMOUTH_SOCKET;
_cleanup_free_ char *message = NULL;
_cleanup_close_ int fd = -1;
int n = 0;
/* Don't generate plymouth events if the service was already
* started and we're just deserializing */
if (MANAGER_IS_RELOADING(m))
return;
if (!MANAGER_IS_SYSTEM(m))
return;
if (detect_container() > 0)
return;
if (u->type != UNIT_SERVICE &&
u->type != UNIT_MOUNT &&
u->type != UNIT_SWAP)
return;
/* We set SOCK_NONBLOCK here so that we rather drop the
* message then wait for plymouth */
fd = socket(AF_UNIX, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0);
if (fd < 0) {
log_error_errno(errno, "socket() failed: %m");
return;
}
if (connect(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un)) < 0) {
if (!IN_SET(errno, EPIPE, EAGAIN, ENOENT, ECONNREFUSED, ECONNRESET, ECONNABORTED))
log_error_errno(errno, "connect() failed: %m");
return;
}
if (asprintf(&message, "U\002%c%s%n", (int) (strlen(u->id) + 1), u->id, &n) < 0) {
log_oom();
return;
}
errno = 0;
if (write(fd, message, n + 1) != n + 1)
if (!IN_SET(errno, EPIPE, EAGAIN, ENOENT, ECONNREFUSED, ECONNRESET, ECONNABORTED))
log_error_errno(errno, "Failed to write Plymouth message: %m");
}
int manager_open_serialization(Manager *m, FILE **_f) {
int fd;
2010-04-21 03:27:44 +02:00
FILE *f;
assert(_f);
fd = open_serialization_fd("systemd-state");
if (fd < 0)
return fd;
2010-04-21 03:27:44 +02:00
f = fdopen(fd, "w+");
if (!f) {
safe_close(fd);
2010-04-21 03:27:44 +02:00
return -errno;
}
2010-04-21 03:27:44 +02:00
*_f = f;
return 0;
}
int manager_serialize(Manager *m, FILE *f, FDSet *fds, bool switching_root) {
2010-04-21 03:27:44 +02:00
Iterator i;
Unit *u;
const char *t;
int r;
assert(m);
assert(f);
assert(fds);
m->n_reloading++;
fprintf(f, "current-job-id=%"PRIu32"\n", m->current_job_id);
fprintf(f, "taint-usr=%s\n", yes_no(m->taint_usr));
fprintf(f, "n-installed-jobs=%u\n", m->n_installed_jobs);
fprintf(f, "n-failed-jobs=%u\n", m->n_failed_jobs);
dual_timestamp_serialize(f, "firmware-timestamp", &m->firmware_timestamp);
dual_timestamp_serialize(f, "loader-timestamp", &m->loader_timestamp);
dual_timestamp_serialize(f, "kernel-timestamp", &m->kernel_timestamp);
dual_timestamp_serialize(f, "initrd-timestamp", &m->initrd_timestamp);
if (!in_initrd()) {
dual_timestamp_serialize(f, "userspace-timestamp", &m->userspace_timestamp);
dual_timestamp_serialize(f, "finish-timestamp", &m->finish_timestamp);
dual_timestamp_serialize(f, "security-start-timestamp", &m->security_start_timestamp);
dual_timestamp_serialize(f, "security-finish-timestamp", &m->security_finish_timestamp);
dual_timestamp_serialize(f, "generators-start-timestamp", &m->generators_start_timestamp);
dual_timestamp_serialize(f, "generators-finish-timestamp", &m->generators_finish_timestamp);
dual_timestamp_serialize(f, "units-load-start-timestamp", &m->units_load_start_timestamp);
dual_timestamp_serialize(f, "units-load-finish-timestamp", &m->units_load_finish_timestamp);
}
if (!switching_root)
(void) serialize_environment(f, m->environment);
if (m->notify_fd >= 0) {
int copy;
copy = fdset_put_dup(fds, m->notify_fd);
if (copy < 0)
return copy;
fprintf(f, "notify-fd=%i\n", copy);
fprintf(f, "notify-socket=%s\n", m->notify_socket);
}
core: use an AF_UNIX/SOCK_DGRAM socket for cgroup agent notification dbus-daemon currently uses a backlog of 30 on its D-bus system bus socket. On overloaded systems this means that only 30 connections may be queued without dbus-daemon processing them before further connection attempts fail. Our cgroups-agent binary so far used D-Bus for its messaging, and hitting this limit hence may result in us losing cgroup empty messages. This patch adds a seperate cgroup agent socket of type AF_UNIX/SOCK_DGRAM. Since sockets of these types need no connection set up, no listen() backlog applies. Our cgroup-agent binary will hence simply block as long as it can't enqueue its datagram message, so that we won't lose cgroup empty messages as likely anymore. This also rearranges the ordering of the processing of SIGCHLD signals, service notification messages (sd_notify()...) and the two types of cgroup notifications (inotify for the unified hierarchy support, and agent for the classic hierarchy support). We now always process events for these in the following order: 1. service notification messages (SD_EVENT_PRIORITY_NORMAL-7) 2. SIGCHLD signals (SD_EVENT_PRIORITY_NORMAL-6) 3. cgroup inotify and cgroup agent (SD_EVENT_PRIORITY_NORMAL-5) This is because when receiving SIGCHLD we invalidate PID information, which we need to process the service notification messages which are bound to PIDs. Hence the order between the first two items. And we want to process SIGCHLD metadata to detect whether a service is gone, before using cgroup notifications, to decide when a service is gone, since the former carries more useful metadata. Related to this: https://bugs.freedesktop.org/show_bug.cgi?id=95264 https://github.com/systemd/systemd/issues/1961
2016-05-04 20:43:23 +02:00
if (m->cgroups_agent_fd >= 0) {
int copy;
copy = fdset_put_dup(fds, m->cgroups_agent_fd);
if (copy < 0)
return copy;
fprintf(f, "cgroups-agent-fd=%i\n", copy);
}
if (m->user_lookup_fds[0] >= 0) {
int copy0, copy1;
copy0 = fdset_put_dup(fds, m->user_lookup_fds[0]);
if (copy0 < 0)
return copy0;
copy1 = fdset_put_dup(fds, m->user_lookup_fds[1]);
if (copy1 < 0)
return copy1;
fprintf(f, "user-lookup=%i %i\n", copy0, copy1);
}
bus_track_serialize(m->subscribed, f, "subscribed");
r = dynamic_user_serialize(m, f, fds);
if (r < 0)
return r;
manager_serialize_uid_refs(m, f);
manager_serialize_gid_refs(m, f);
fputc('\n', f);
2010-04-21 03:27:44 +02:00
HASHMAP_FOREACH_KEY(u, t, m->units, i) {
if (u->id != t)
2010-04-21 03:27:44 +02:00
continue;
/* Start marker */
fputs(u->id, f);
2010-04-21 03:27:44 +02:00
fputc('\n', f);
r = unit_serialize(u, f, fds, !switching_root);
if (r < 0) {
m->n_reloading--;
2010-04-21 03:27:44 +02:00
return r;
}
2010-04-21 03:27:44 +02:00
}
assert(m->n_reloading > 0);
m->n_reloading--;
2010-04-21 03:27:44 +02:00
if (ferror(f))
return -EIO;
r = bus_fdset_add_all(m, fds);
if (r < 0)
return r;
2010-04-21 03:27:44 +02:00
return 0;
}
int manager_deserialize(Manager *m, FILE *f, FDSet *fds) {
int r = 0;
assert(m);
assert(f);
log_debug("Deserializing state...");
m->n_reloading++;
2010-07-10 04:51:03 +02:00
for (;;) {
char line[LINE_MAX];
const char *val, *l;
if (!fgets(line, sizeof(line), f)) {
if (feof(f))
r = 0;
else
r = -errno;
goto finish;
}
char_array_0(line);
l = strstrip(line);
if (l[0] == 0)
break;
if ((val = startswith(l, "current-job-id="))) {
uint32_t id;
if (safe_atou32(val, &id) < 0)
log_notice("Failed to parse current job id value %s", val);
else
m->current_job_id = MAX(m->current_job_id, id);
} else if ((val = startswith(l, "n-installed-jobs="))) {
uint32_t n;
if (safe_atou32(val, &n) < 0)
log_notice("Failed to parse installed jobs counter %s", val);
else
m->n_installed_jobs += n;
} else if ((val = startswith(l, "n-failed-jobs="))) {
uint32_t n;
if (safe_atou32(val, &n) < 0)
log_notice("Failed to parse failed jobs counter %s", val);
else
m->n_failed_jobs += n;
} else if ((val = startswith(l, "taint-usr="))) {
int b;
b = parse_boolean(val);
if (b < 0)
log_notice("Failed to parse taint /usr flag %s", val);
else
m->taint_usr = m->taint_usr || b;
} else if ((val = startswith(l, "firmware-timestamp=")))
dual_timestamp_deserialize(val, &m->firmware_timestamp);
else if ((val = startswith(l, "loader-timestamp=")))
dual_timestamp_deserialize(val, &m->loader_timestamp);
else if ((val = startswith(l, "kernel-timestamp=")))
dual_timestamp_deserialize(val, &m->kernel_timestamp);
else if ((val = startswith(l, "initrd-timestamp=")))
dual_timestamp_deserialize(val, &m->initrd_timestamp);
else if ((val = startswith(l, "userspace-timestamp=")))
dual_timestamp_deserialize(val, &m->userspace_timestamp);
else if ((val = startswith(l, "finish-timestamp=")))
dual_timestamp_deserialize(val, &m->finish_timestamp);
else if ((val = startswith(l, "security-start-timestamp=")))
dual_timestamp_deserialize(val, &m->security_start_timestamp);
else if ((val = startswith(l, "security-finish-timestamp=")))
dual_timestamp_deserialize(val, &m->security_finish_timestamp);
else if ((val = startswith(l, "generators-start-timestamp=")))
dual_timestamp_deserialize(val, &m->generators_start_timestamp);
else if ((val = startswith(l, "generators-finish-timestamp=")))
dual_timestamp_deserialize(val, &m->generators_finish_timestamp);
else if ((val = startswith(l, "units-load-start-timestamp=")))
dual_timestamp_deserialize(val, &m->units_load_start_timestamp);
else if ((val = startswith(l, "units-load-finish-timestamp=")))
dual_timestamp_deserialize(val, &m->units_load_finish_timestamp);
else if (startswith(l, "env=")) {
r = deserialize_environment(&m->environment, l);
if (r == -ENOMEM)
goto finish;
if (r < 0)
log_notice_errno(r, "Failed to parse environment entry: \"%s\": %m", l);
} else if ((val = startswith(l, "notify-fd="))) {
int fd;
if (safe_atoi(val, &fd) < 0 || fd < 0 || !fdset_contains(fds, fd))
log_notice("Failed to parse notify fd: \"%s\"", val);
else {
m->notify_event_source = sd_event_source_unref(m->notify_event_source);
safe_close(m->notify_fd);
m->notify_fd = fdset_remove(fds, fd);
}
} else if ((val = startswith(l, "notify-socket="))) {
char *n;
n = strdup(val);
if (!n) {
r = -ENOMEM;
goto finish;
}
free(m->notify_socket);
m->notify_socket = n;
} else if ((val = startswith(l, "cgroups-agent-fd="))) {
core: use an AF_UNIX/SOCK_DGRAM socket for cgroup agent notification dbus-daemon currently uses a backlog of 30 on its D-bus system bus socket. On overloaded systems this means that only 30 connections may be queued without dbus-daemon processing them before further connection attempts fail. Our cgroups-agent binary so far used D-Bus for its messaging, and hitting this limit hence may result in us losing cgroup empty messages. This patch adds a seperate cgroup agent socket of type AF_UNIX/SOCK_DGRAM. Since sockets of these types need no connection set up, no listen() backlog applies. Our cgroup-agent binary will hence simply block as long as it can't enqueue its datagram message, so that we won't lose cgroup empty messages as likely anymore. This also rearranges the ordering of the processing of SIGCHLD signals, service notification messages (sd_notify()...) and the two types of cgroup notifications (inotify for the unified hierarchy support, and agent for the classic hierarchy support). We now always process events for these in the following order: 1. service notification messages (SD_EVENT_PRIORITY_NORMAL-7) 2. SIGCHLD signals (SD_EVENT_PRIORITY_NORMAL-6) 3. cgroup inotify and cgroup agent (SD_EVENT_PRIORITY_NORMAL-5) This is because when receiving SIGCHLD we invalidate PID information, which we need to process the service notification messages which are bound to PIDs. Hence the order between the first two items. And we want to process SIGCHLD metadata to detect whether a service is gone, before using cgroup notifications, to decide when a service is gone, since the former carries more useful metadata. Related to this: https://bugs.freedesktop.org/show_bug.cgi?id=95264 https://github.com/systemd/systemd/issues/1961
2016-05-04 20:43:23 +02:00
int fd;
if (safe_atoi(val, &fd) < 0 || fd < 0 || !fdset_contains(fds, fd))
log_notice("Failed to parse cgroups agent fd: %s", val);
core: use an AF_UNIX/SOCK_DGRAM socket for cgroup agent notification dbus-daemon currently uses a backlog of 30 on its D-bus system bus socket. On overloaded systems this means that only 30 connections may be queued without dbus-daemon processing them before further connection attempts fail. Our cgroups-agent binary so far used D-Bus for its messaging, and hitting this limit hence may result in us losing cgroup empty messages. This patch adds a seperate cgroup agent socket of type AF_UNIX/SOCK_DGRAM. Since sockets of these types need no connection set up, no listen() backlog applies. Our cgroup-agent binary will hence simply block as long as it can't enqueue its datagram message, so that we won't lose cgroup empty messages as likely anymore. This also rearranges the ordering of the processing of SIGCHLD signals, service notification messages (sd_notify()...) and the two types of cgroup notifications (inotify for the unified hierarchy support, and agent for the classic hierarchy support). We now always process events for these in the following order: 1. service notification messages (SD_EVENT_PRIORITY_NORMAL-7) 2. SIGCHLD signals (SD_EVENT_PRIORITY_NORMAL-6) 3. cgroup inotify and cgroup agent (SD_EVENT_PRIORITY_NORMAL-5) This is because when receiving SIGCHLD we invalidate PID information, which we need to process the service notification messages which are bound to PIDs. Hence the order between the first two items. And we want to process SIGCHLD metadata to detect whether a service is gone, before using cgroup notifications, to decide when a service is gone, since the former carries more useful metadata. Related to this: https://bugs.freedesktop.org/show_bug.cgi?id=95264 https://github.com/systemd/systemd/issues/1961
2016-05-04 20:43:23 +02:00
else {
m->cgroups_agent_event_source = sd_event_source_unref(m->cgroups_agent_event_source);
safe_close(m->cgroups_agent_fd);
m->cgroups_agent_fd = fdset_remove(fds, fd);
}
} else if ((val = startswith(l, "user-lookup="))) {
int fd0, fd1;
if (sscanf(val, "%i %i", &fd0, &fd1) != 2 || fd0 < 0 || fd1 < 0 || fd0 == fd1 || !fdset_contains(fds, fd0) || !fdset_contains(fds, fd1))
log_notice("Failed to parse user lookup fd: %s", val);
else {
m->user_lookup_event_source = sd_event_source_unref(m->user_lookup_event_source);
safe_close_pair(m->user_lookup_fds);
m->user_lookup_fds[0] = fdset_remove(fds, fd0);
m->user_lookup_fds[1] = fdset_remove(fds, fd1);
}
} else if ((val = startswith(l, "dynamic-user=")))
dynamic_user_deserialize_one(m, val, fds);
else if ((val = startswith(l, "destroy-ipc-uid=")))
manager_deserialize_uid_refs_one(m, val);
else if ((val = startswith(l, "destroy-ipc-gid=")))
manager_deserialize_gid_refs_one(m, val);
else if ((val = startswith(l, "subscribed="))) {
if (strv_extend(&m->deserialized_subscribed, val) < 0)
log_oom();
} else if (!startswith(l, "kdbus-fd=")) /* ignore this one */
log_notice("Unknown serialization item '%s'", l);
}
2010-04-21 03:27:44 +02:00
for (;;) {
Unit *u;
char name[UNIT_NAME_MAX+2];
/* Start marker */
if (!fgets(name, sizeof(name), f)) {
if (feof(f))
r = 0;
else
r = -errno;
2010-04-21 03:27:44 +02:00
2010-07-10 04:51:03 +02:00
goto finish;
2010-04-21 03:27:44 +02:00
}
char_array_0(name);
2013-01-02 22:03:35 +01:00
r = manager_load_unit(m, strstrip(name), NULL, NULL, &u);
if (r < 0)
2010-07-10 04:51:03 +02:00
goto finish;
2010-04-21 03:27:44 +02:00
r = unit_deserialize(u, f, fds);
if (r < 0)
2010-07-10 04:51:03 +02:00
goto finish;
2010-04-21 03:27:44 +02:00
}
finish:
2013-12-10 18:28:26 +01:00
if (ferror(f))
2010-07-10 04:51:03 +02:00
r = -EIO;
2010-04-21 03:27:44 +02:00
assert(m->n_reloading > 0);
m->n_reloading--;
2010-07-10 04:51:03 +02:00
return r;
2010-04-21 03:27:44 +02:00
}
int manager_reload(Manager *m) {
int r, q;
2013-10-12 01:33:48 +02:00
_cleanup_fclose_ FILE *f = NULL;
_cleanup_fdset_free_ FDSet *fds = NULL;
2010-04-21 03:27:44 +02:00
assert(m);
r = manager_open_serialization(m, &f);
if (r < 0)
2010-04-21 03:27:44 +02:00
return r;
m->n_reloading++;
bus_manager_send_reloading(m, true);
fds = fdset_new();
if (!fds) {
m->n_reloading--;
2013-10-12 01:33:48 +02:00
return -ENOMEM;
2010-04-21 03:27:44 +02:00
}
r = manager_serialize(m, f, fds, false);
if (r < 0) {
m->n_reloading--;
2013-10-12 01:33:48 +02:00
return r;
}
2010-04-21 03:27:44 +02:00
if (fseeko(f, 0, SEEK_SET) < 0) {
m->n_reloading--;
2013-10-12 01:33:48 +02:00
return -errno;
2010-04-21 03:27:44 +02:00
}
/* From here on there is no way back. */
manager_clear_jobs_and_units(m);
lookup_paths_flush_generator(&m->lookup_paths);
lookup_paths_free(&m->lookup_paths);
dynamic_user_vacuum(m, false);
m->uid_refs = hashmap_free(m->uid_refs);
m->gid_refs = hashmap_free(m->gid_refs);
q = lookup_paths_init(&m->lookup_paths, m->unit_file_scope, 0, NULL);
if (q < 0 && r >= 0)
r = q;
2010-11-11 21:28:33 +01:00
q = manager_run_environment_generators(m);
if (q < 0 && r >= 0)
r = q;
/* Find new unit paths */
q = manager_run_generators(m);
if (q < 0 && r >= 0)
r = q;
lookup_paths_reduce(&m->lookup_paths);
2010-11-11 21:28:33 +01:00
manager_build_unit_path_cache(m);
2010-04-21 03:27:44 +02:00
/* First, enumerate what we can from all config files */
manager_enumerate(m);
2010-04-21 03:27:44 +02:00
/* Second, deserialize our stored data */
q = manager_deserialize(m, f, fds);
if (q < 0 && r >= 0)
2010-04-21 03:27:44 +02:00
r = q;
fclose(f);
f = NULL;
/* Re-register notify_fd as event source */
q = manager_setup_notify(m);
if (q < 0 && r >= 0)
r = q;
core: use an AF_UNIX/SOCK_DGRAM socket for cgroup agent notification dbus-daemon currently uses a backlog of 30 on its D-bus system bus socket. On overloaded systems this means that only 30 connections may be queued without dbus-daemon processing them before further connection attempts fail. Our cgroups-agent binary so far used D-Bus for its messaging, and hitting this limit hence may result in us losing cgroup empty messages. This patch adds a seperate cgroup agent socket of type AF_UNIX/SOCK_DGRAM. Since sockets of these types need no connection set up, no listen() backlog applies. Our cgroup-agent binary will hence simply block as long as it can't enqueue its datagram message, so that we won't lose cgroup empty messages as likely anymore. This also rearranges the ordering of the processing of SIGCHLD signals, service notification messages (sd_notify()...) and the two types of cgroup notifications (inotify for the unified hierarchy support, and agent for the classic hierarchy support). We now always process events for these in the following order: 1. service notification messages (SD_EVENT_PRIORITY_NORMAL-7) 2. SIGCHLD signals (SD_EVENT_PRIORITY_NORMAL-6) 3. cgroup inotify and cgroup agent (SD_EVENT_PRIORITY_NORMAL-5) This is because when receiving SIGCHLD we invalidate PID information, which we need to process the service notification messages which are bound to PIDs. Hence the order between the first two items. And we want to process SIGCHLD metadata to detect whether a service is gone, before using cgroup notifications, to decide when a service is gone, since the former carries more useful metadata. Related to this: https://bugs.freedesktop.org/show_bug.cgi?id=95264 https://github.com/systemd/systemd/issues/1961
2016-05-04 20:43:23 +02:00
q = manager_setup_cgroups_agent(m);
if (q < 0 && r >= 0)
r = q;
q = manager_setup_user_lookup_fd(m);
if (q < 0 && r >= 0)
r = q;
2010-04-21 03:27:44 +02:00
/* Third, fire things up! */
manager_coldplug(m);
2010-04-21 03:27:44 +02:00
/* Release any dynamic users no longer referenced */
dynamic_user_vacuum(m, true);
/* Release any references to UIDs/GIDs no longer referenced, and destroy any IPC owned by them */
manager_vacuum_uid_refs(m);
manager_vacuum_gid_refs(m);
/* Sync current state of bus names with our set of listening units */
if (m->api_bus)
manager_sync_bus_names(m, m->api_bus);
assert(m->n_reloading > 0);
m->n_reloading--;
m->send_reloading_done = true;
2010-04-21 03:27:44 +02:00
return r;
}
void manager_reset_failed(Manager *m) {
Unit *u;
Iterator i;
assert(m);
HASHMAP_FOREACH(u, m->units, i)
unit_reset_failed(u);
}
bool manager_unit_inactive_or_pending(Manager *m, const char *name) {
Unit *u;
assert(m);
assert(name);
/* Returns true if the unit is inactive or going down */
2013-01-02 22:03:35 +01:00
u = manager_get_unit(m, name);
if (!u)
return true;
return unit_inactive_or_pending(u);
}
static void manager_notify_finished(Manager *m) {
2012-09-13 19:29:46 +02:00
char userspace[FORMAT_TIMESPAN_MAX], initrd[FORMAT_TIMESPAN_MAX], kernel[FORMAT_TIMESPAN_MAX], sum[FORMAT_TIMESPAN_MAX];
usec_t firmware_usec, loader_usec, kernel_usec, initrd_usec, userspace_usec, total_usec;
2010-09-21 04:14:38 +02:00
if (m->test_run)
2010-09-21 04:14:38 +02:00
return;
if (MANAGER_IS_SYSTEM(m) && detect_container() <= 0) {
/* Note that m->kernel_usec.monotonic is always at 0,
* and m->firmware_usec.monotonic and
* m->loader_usec.monotonic should be considered
* negative values. */
2012-09-13 19:29:46 +02:00
firmware_usec = m->firmware_timestamp.monotonic - m->loader_timestamp.monotonic;
loader_usec = m->loader_timestamp.monotonic - m->kernel_timestamp.monotonic;
userspace_usec = m->finish_timestamp.monotonic - m->userspace_timestamp.monotonic;
2012-09-13 19:29:46 +02:00
total_usec = m->firmware_timestamp.monotonic + m->finish_timestamp.monotonic;
if (dual_timestamp_is_set(&m->initrd_timestamp)) {
kernel_usec = m->initrd_timestamp.monotonic - m->kernel_timestamp.monotonic;
initrd_usec = m->userspace_timestamp.monotonic - m->initrd_timestamp.monotonic;
log_struct(LOG_INFO,
tree-wide: add SD_ID128_MAKE_STR, remove LOG_MESSAGE_ID Embedding sd_id128_t's in constant strings was rather cumbersome. We had SD_ID128_CONST_STR which returned a const char[], but it had two problems: - it wasn't possible to statically concatanate this array with a normal string - gcc wasn't really able to optimize this, and generated code to perform the "conversion" at runtime. Because of this, even our own code in coredumpctl wasn't using SD_ID128_CONST_STR. Add a new macro to generate a constant string: SD_ID128_MAKE_STR. It is not as elegant as SD_ID128_CONST_STR, because it requires a repetition of the numbers, but in practice it is more convenient to use, and allows gcc to generate smarter code: $ size .libs/systemd{,-logind,-journald}{.old,} text data bss dec hex filename 1265204 149564 4808 1419576 15a938 .libs/systemd.old 1260268 149564 4808 1414640 1595f0 .libs/systemd 246805 13852 209 260866 3fb02 .libs/systemd-logind.old 240973 13852 209 255034 3e43a .libs/systemd-logind 146839 4984 34 151857 25131 .libs/systemd-journald.old 146391 4984 34 151409 24f71 .libs/systemd-journald It is also much easier to check if a certain binary uses a certain MESSAGE_ID: $ strings .libs/systemd.old|grep MESSAGE_ID MESSAGE_ID=%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x MESSAGE_ID=%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x MESSAGE_ID=%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x MESSAGE_ID=%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x $ strings .libs/systemd|grep MESSAGE_ID MESSAGE_ID=c7a787079b354eaaa9e77b371893cd27 MESSAGE_ID=b07a249cd024414a82dd00cd181378ff MESSAGE_ID=641257651c1b4ec9a8624d7a40a9e1e7 MESSAGE_ID=de5b426a63be47a7b6ac3eaac82e2f6f MESSAGE_ID=d34d037fff1847e6ae669a370e694725 MESSAGE_ID=7d4958e842da4a758f6c1cdc7b36dcc5 MESSAGE_ID=1dee0369c7fc4736b7099b38ecb46ee7 MESSAGE_ID=39f53479d3a045ac8e11786248231fbf MESSAGE_ID=be02cf6855d2428ba40df7e9d022f03d MESSAGE_ID=7b05ebc668384222baa8881179cfda54 MESSAGE_ID=9d1aaa27d60140bd96365438aad20286
2016-11-06 18:48:23 +01:00
"MESSAGE_ID=" SD_MESSAGE_STARTUP_FINISHED_STR,
"KERNEL_USEC="USEC_FMT, kernel_usec,
"INITRD_USEC="USEC_FMT, initrd_usec,
"USERSPACE_USEC="USEC_FMT, userspace_usec,
LOG_MESSAGE("Startup finished in %s (kernel) + %s (initrd) + %s (userspace) = %s.",
format_timespan(kernel, sizeof(kernel), kernel_usec, USEC_PER_MSEC),
format_timespan(initrd, sizeof(initrd), initrd_usec, USEC_PER_MSEC),
format_timespan(userspace, sizeof(userspace), userspace_usec, USEC_PER_MSEC),
format_timespan(sum, sizeof(sum), total_usec, USEC_PER_MSEC)),
NULL);
} else {
kernel_usec = m->userspace_timestamp.monotonic - m->kernel_timestamp.monotonic;
initrd_usec = 0;
log_struct(LOG_INFO,
tree-wide: add SD_ID128_MAKE_STR, remove LOG_MESSAGE_ID Embedding sd_id128_t's in constant strings was rather cumbersome. We had SD_ID128_CONST_STR which returned a const char[], but it had two problems: - it wasn't possible to statically concatanate this array with a normal string - gcc wasn't really able to optimize this, and generated code to perform the "conversion" at runtime. Because of this, even our own code in coredumpctl wasn't using SD_ID128_CONST_STR. Add a new macro to generate a constant string: SD_ID128_MAKE_STR. It is not as elegant as SD_ID128_CONST_STR, because it requires a repetition of the numbers, but in practice it is more convenient to use, and allows gcc to generate smarter code: $ size .libs/systemd{,-logind,-journald}{.old,} text data bss dec hex filename 1265204 149564 4808 1419576 15a938 .libs/systemd.old 1260268 149564 4808 1414640 1595f0 .libs/systemd 246805 13852 209 260866 3fb02 .libs/systemd-logind.old 240973 13852 209 255034 3e43a .libs/systemd-logind 146839 4984 34 151857 25131 .libs/systemd-journald.old 146391 4984 34 151409 24f71 .libs/systemd-journald It is also much easier to check if a certain binary uses a certain MESSAGE_ID: $ strings .libs/systemd.old|grep MESSAGE_ID MESSAGE_ID=%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x MESSAGE_ID=%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x MESSAGE_ID=%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x MESSAGE_ID=%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x $ strings .libs/systemd|grep MESSAGE_ID MESSAGE_ID=c7a787079b354eaaa9e77b371893cd27 MESSAGE_ID=b07a249cd024414a82dd00cd181378ff MESSAGE_ID=641257651c1b4ec9a8624d7a40a9e1e7 MESSAGE_ID=de5b426a63be47a7b6ac3eaac82e2f6f MESSAGE_ID=d34d037fff1847e6ae669a370e694725 MESSAGE_ID=7d4958e842da4a758f6c1cdc7b36dcc5 MESSAGE_ID=1dee0369c7fc4736b7099b38ecb46ee7 MESSAGE_ID=39f53479d3a045ac8e11786248231fbf MESSAGE_ID=be02cf6855d2428ba40df7e9d022f03d MESSAGE_ID=7b05ebc668384222baa8881179cfda54 MESSAGE_ID=9d1aaa27d60140bd96365438aad20286
2016-11-06 18:48:23 +01:00
"MESSAGE_ID=" SD_MESSAGE_STARTUP_FINISHED_STR,
"KERNEL_USEC="USEC_FMT, kernel_usec,
"USERSPACE_USEC="USEC_FMT, userspace_usec,
LOG_MESSAGE("Startup finished in %s (kernel) + %s (userspace) = %s.",
format_timespan(kernel, sizeof(kernel), kernel_usec, USEC_PER_MSEC),
format_timespan(userspace, sizeof(userspace), userspace_usec, USEC_PER_MSEC),
format_timespan(sum, sizeof(sum), total_usec, USEC_PER_MSEC)),
NULL);
}
} else {
firmware_usec = loader_usec = initrd_usec = kernel_usec = 0;
total_usec = userspace_usec = m->finish_timestamp.monotonic - m->userspace_timestamp.monotonic;
log_struct(LOG_INFO,
tree-wide: add SD_ID128_MAKE_STR, remove LOG_MESSAGE_ID Embedding sd_id128_t's in constant strings was rather cumbersome. We had SD_ID128_CONST_STR which returned a const char[], but it had two problems: - it wasn't possible to statically concatanate this array with a normal string - gcc wasn't really able to optimize this, and generated code to perform the "conversion" at runtime. Because of this, even our own code in coredumpctl wasn't using SD_ID128_CONST_STR. Add a new macro to generate a constant string: SD_ID128_MAKE_STR. It is not as elegant as SD_ID128_CONST_STR, because it requires a repetition of the numbers, but in practice it is more convenient to use, and allows gcc to generate smarter code: $ size .libs/systemd{,-logind,-journald}{.old,} text data bss dec hex filename 1265204 149564 4808 1419576 15a938 .libs/systemd.old 1260268 149564 4808 1414640 1595f0 .libs/systemd 246805 13852 209 260866 3fb02 .libs/systemd-logind.old 240973 13852 209 255034 3e43a .libs/systemd-logind 146839 4984 34 151857 25131 .libs/systemd-journald.old 146391 4984 34 151409 24f71 .libs/systemd-journald It is also much easier to check if a certain binary uses a certain MESSAGE_ID: $ strings .libs/systemd.old|grep MESSAGE_ID MESSAGE_ID=%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x MESSAGE_ID=%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x MESSAGE_ID=%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x MESSAGE_ID=%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x $ strings .libs/systemd|grep MESSAGE_ID MESSAGE_ID=c7a787079b354eaaa9e77b371893cd27 MESSAGE_ID=b07a249cd024414a82dd00cd181378ff MESSAGE_ID=641257651c1b4ec9a8624d7a40a9e1e7 MESSAGE_ID=de5b426a63be47a7b6ac3eaac82e2f6f MESSAGE_ID=d34d037fff1847e6ae669a370e694725 MESSAGE_ID=7d4958e842da4a758f6c1cdc7b36dcc5 MESSAGE_ID=1dee0369c7fc4736b7099b38ecb46ee7 MESSAGE_ID=39f53479d3a045ac8e11786248231fbf MESSAGE_ID=be02cf6855d2428ba40df7e9d022f03d MESSAGE_ID=7b05ebc668384222baa8881179cfda54 MESSAGE_ID=9d1aaa27d60140bd96365438aad20286
2016-11-06 18:48:23 +01:00
"MESSAGE_ID=" SD_MESSAGE_USER_STARTUP_FINISHED_STR,
"USERSPACE_USEC="USEC_FMT, userspace_usec,
LOG_MESSAGE("Startup finished in %s.",
format_timespan(sum, sizeof(sum), total_usec, USEC_PER_MSEC)),
NULL);
}
2010-09-21 04:14:38 +02:00
bus_manager_send_finished(m, firmware_usec, loader_usec, kernel_usec, initrd_usec, userspace_usec, total_usec);
sd_notifyf(false,
"READY=1\n"
"STATUS=Startup finished in %s.",
format_timespan(sum, sizeof(sum), total_usec, USEC_PER_MSEC));
2010-09-21 04:14:38 +02:00
}
void manager_check_finished(Manager *m) {
assert(m);
if (MANAGER_IS_RELOADING(m))
return;
/* Verify that we are actually running currently. Initially
* the exit code is set to invalid, and during operation it is
* then set to MANAGER_OK */
if (m->exit_code != MANAGER_OK)
return;
if (hashmap_size(m->jobs) > 0) {
if (m->jobs_in_progress_event_source)
/* Ignore any failure, this is only for feedback */
(void) sd_event_source_set_time(m->jobs_in_progress_event_source, now(CLOCK_MONOTONIC) + JOBS_IN_PROGRESS_WAIT_USEC);
return;
}
manager_flip_auto_status(m, false);
/* Notify Type=idle units that we are done now */
manager_close_idle_pipe(m);
/* Turn off confirm spawn now */
m->confirm_spawn = NULL;
/* No need to update ask password status when we're going non-interactive */
manager_close_ask_password(m);
/* This is no longer the first boot */
manager_set_first_boot(m, false);
if (dual_timestamp_is_set(&m->finish_timestamp))
return;
dual_timestamp_get(&m->finish_timestamp);
manager_notify_finished(m);
manager_invalidate_startup_units(m);
}
static bool generator_path_any(const char* const* paths) {
char **path;
bool found = false;
/* Optimize by skipping the whole process by not creating output directories
* if no generators are found. */
STRV_FOREACH(path, (char**) paths)
if (access(*path, F_OK) == 0)
found = true;
else if (errno != ENOENT)
log_warning_errno(errno, "Failed to open generator directory %s: %m", *path);
return found;
}
static const char* system_env_generator_binary_paths[] = {
"/run/systemd/system-environment-generators",
"/etc/systemd/system-environment-generators",
"/usr/local/lib/systemd/system-environment-generators",
SYSTEM_ENV_GENERATOR_PATH,
NULL
};
static const char* user_env_generator_binary_paths[] = {
"/run/systemd/user-environment-generators",
"/etc/systemd/user-environment-generators",
"/usr/local/lib/systemd/user-environment-generators",
USER_ENV_GENERATOR_PATH,
NULL
};
static int manager_run_environment_generators(Manager *m) {
char **tmp = NULL; /* this is only used in the forked process, no cleanup here */
const char **paths;
void* args[] = {&tmp, &tmp, &m->environment};
if (m->test_run)
return 0;
paths = MANAGER_IS_SYSTEM(m) ? system_env_generator_binary_paths : user_env_generator_binary_paths;
if (!generator_path_any(paths))
return 0;
return execute_directories(paths, DEFAULT_TIMEOUT_USEC, gather_environment, args, NULL);
}
static int manager_run_generators(Manager *m) {
core: fix memory leak in manager_run_generators() If systemd is built with GCC address sanitizer or leak sanitizer the following memory leak ocurs: May 12 02:02:46 linux.site systemd[326]: ================================================================= May 12 02:02:46 linux.site systemd[326]: ==326==ERROR: LeakSanitizer: detected memory leaks May 12 02:02:46 linux.site systemd[326]: Direct leak of 101 byte(s) in 3 object(s) allocated from: May 12 02:02:46 linux.site systemd[326]: #0 0x7fd1f504993f in strdup (/usr/lib64/libasan.so.2+0x6293f) May 12 02:02:46 linux.site systemd[326]: #1 0x55d6ffac5336 in strv_new_ap src/shared/strv.c:163 May 12 02:02:46 linux.site systemd[326]: #2 0x55d6ffac56a9 in strv_new src/shared/strv.c:185 May 12 02:02:46 linux.site systemd[326]: #3 0x55d6ffa80272 in generator_paths src/shared/path-lookup.c:223 May 12 02:02:46 linux.site systemd[326]: #4 0x55d6ff9bdb0f in manager_run_generators src/core/manager.c:2828 May 12 02:02:46 linux.site systemd[326]: #5 0x55d6ff9b1a10 in manager_startup src/core/manager.c:1121 May 12 02:02:46 linux.site systemd[326]: #6 0x55d6ff9a78e3 in main src/core/main.c:1667 May 12 02:02:46 linux.site systemd[326]: #7 0x7fd1f394e8c4 in __libc_start_main (/lib64/libc.so.6+0x208c4) May 12 02:02:46 linux.site systemd[326]: Direct leak of 29 byte(s) in 1 object(s) allocated from: May 12 02:02:46 linux.site systemd[326]: #0 0x7fd1f504993f in strdup (/usr/lib64/libasan.so.2+0x6293f) May 12 02:02:46 linux.site systemd[326]: #1 0x55d6ffac5288 in strv_new_ap src/shared/strv.c:152 May 12 02:02:46 linux.site systemd[326]: #2 0x55d6ffac56a9 in strv_new src/shared/strv.c:185 May 12 02:02:46 linux.site systemd[326]: #3 0x55d6ffa80272 in generator_paths src/shared/path-lookup.c:223 May 12 02:02:46 linux.site systemd[326]: #4 0x55d6ff9bdb0f in manager_run_generators src/core/manager.c:2828 May 12 02:02:46 linux.site systemd[326]: #5 0x55d6ff9b1a10 in manager_startup src/core/manager.c:1121 May 12 02:02:46 linux.site systemd[326]: #6 0x55d6ff9a78e3 in main src/core/main.c:1667 May 12 02:02:46 linux.site systemd[326]: #7 0x7fd1f394e8c4 in __libc_start_main (/lib64/libc.so.6+0x208c4) May 12 02:02:46 linux.site systemd[326]: SUMMARY: AddressSanitizer: 130 byte(s) leaked in 4 allocation(s). There is a leak due to the the use of cleanup_free instead _cleanup_strv_free_
2015-05-12 04:30:38 +02:00
_cleanup_strv_free_ char **paths = NULL;
const char *argv[5];
int r;
2010-11-11 21:28:33 +01:00
assert(m);
if (m->test_run)
return 0;
paths = generator_binary_paths(m->unit_file_scope);
if (!paths)
return log_oom();
2010-11-11 21:28:33 +01:00
if (!generator_path_any((const char* const*) paths))
return 0;
2010-11-11 21:28:33 +01:00
r = lookup_paths_mkdir_generator(&m->lookup_paths);
if (r < 0)
goto finish;
2010-11-11 21:28:33 +01:00
argv[0] = NULL; /* Leave this empty, execute_directory() will fill something in */
argv[1] = m->lookup_paths.generator;
argv[2] = m->lookup_paths.generator_early;
argv[3] = m->lookup_paths.generator_late;
argv[4] = NULL;
2010-11-11 21:28:33 +01:00
RUN_WITH_UMASK(0022)
execute_directories((const char* const*) paths, DEFAULT_TIMEOUT_USEC,
NULL, NULL, (char**) argv);
2010-11-11 21:28:33 +01:00
finish:
lookup_paths_trim_generator(&m->lookup_paths);
return r;
2010-11-11 21:28:33 +01:00
}
int manager_environment_add(Manager *m, char **minus, char **plus) {
char **a = NULL, **b = NULL, **l;
assert(m);
l = m->environment;
if (!strv_isempty(minus)) {
a = strv_env_delete(l, 1, minus);
if (!a)
return -ENOMEM;
l = a;
}
if (!strv_isempty(plus)) {
b = strv_env_merge(2, l, plus);
if (!b) {
strv_free(a);
return -ENOMEM;
}
l = b;
}
if (m->environment != l)
strv_free(m->environment);
if (a != l)
strv_free(a);
if (b != l)
strv_free(b);
m->environment = l;
manager_clean_environment(m);
strv_sort(m->environment);
return 0;
}
int manager_set_default_rlimits(Manager *m, struct rlimit **default_rlimit) {
int i;
assert(m);
for (i = 0; i < _RLIMIT_MAX; i++) {
m->rlimit[i] = mfree(m->rlimit[i]);
if (!default_rlimit[i])
continue;
m->rlimit[i] = newdup(struct rlimit, default_rlimit[i], 1);
if (!m->rlimit[i])
return log_oom();
}
return 0;
}
void manager_recheck_journal(Manager *m) {
Unit *u;
assert(m);
if (!MANAGER_IS_SYSTEM(m))
return;
u = manager_get_unit(m, SPECIAL_JOURNALD_SOCKET);
if (u && SOCKET(u)->state != SOCKET_RUNNING) {
log_close_journal();
return;
}
u = manager_get_unit(m, SPECIAL_JOURNALD_SERVICE);
if (u && SERVICE(u)->state != SERVICE_RUNNING) {
log_close_journal();
return;
}
/* Hmm, OK, so the socket is fully up and the service is up
* too, then let's make use of the thing. */
log_open();
}
void manager_set_show_status(Manager *m, ShowStatus mode) {
assert(m);
assert(IN_SET(mode, SHOW_STATUS_AUTO, SHOW_STATUS_NO, SHOW_STATUS_YES, SHOW_STATUS_TEMPORARY));
if (!MANAGER_IS_SYSTEM(m))
return;
if (m->show_status != mode)
log_debug("%s showing of status.",
mode == SHOW_STATUS_NO ? "Disabling" : "Enabling");
m->show_status = mode;
if (mode > 0)
(void) touch("/run/systemd/show-status");
else
(void) unlink("/run/systemd/show-status");
}
static bool manager_get_show_status(Manager *m, StatusType type) {
assert(m);
if (!MANAGER_IS_SYSTEM(m))
return false;
if (m->no_console_output)
return false;
if (!IN_SET(manager_state(m), MANAGER_INITIALIZING, MANAGER_STARTING, MANAGER_STOPPING))
return false;
/* If we cannot find out the status properly, just proceed. */
if (type != STATUS_TYPE_EMERGENCY && manager_check_ask_password(m) > 0)
return false;
if (m->show_status > 0)
return true;
return false;
}
const char *manager_get_confirm_spawn(Manager *m) {
static int last_errno = 0;
const char *vc = m->confirm_spawn;
struct stat st;
int r;
/* Here's the deal: we want to test the validity of the console but don't want
* PID1 to go through the whole console process which might block. But we also
* want to warn the user only once if something is wrong with the console so we
* cannot do the sanity checks after spawning our children. So here we simply do
* really basic tests to hopefully trap common errors.
*
* If the console suddenly disappear at the time our children will really it
* then they will simply fail to acquire it and a positive answer will be
* assumed. New children will fallback to /dev/console though.
*
* Note: TTYs are devices that can come and go any time, and frequently aren't
* available yet during early boot (consider a USB rs232 dongle...). If for any
* reason the configured console is not ready, we fallback to the default
* console. */
if (!vc || path_equal(vc, "/dev/console"))
return vc;
r = stat(vc, &st);
if (r < 0)
goto fail;
if (!S_ISCHR(st.st_mode)) {
errno = ENOTTY;
goto fail;
}
last_errno = 0;
return vc;
fail:
if (last_errno != errno) {
last_errno = errno;
log_warning_errno(errno, "Failed to open %s: %m, using default console", vc);
}
return "/dev/console";
}
void manager_set_first_boot(Manager *m, bool b) {
assert(m);
if (!MANAGER_IS_SYSTEM(m))
return;
if (m->first_boot != (int) b) {
if (b)
(void) touch("/run/systemd/first-boot");
else
(void) unlink("/run/systemd/first-boot");
}
m->first_boot = b;
}
void manager_disable_confirm_spawn(void) {
(void) touch("/run/systemd/confirm_spawn_disabled");
}
bool manager_is_confirm_spawn_disabled(Manager *m) {
if (!m->confirm_spawn)
return true;
return access("/run/systemd/confirm_spawn_disabled", F_OK) >= 0;
}
void manager_status_printf(Manager *m, StatusType type, const char *status, const char *format, ...) {
va_list ap;
/* If m is NULL, assume we're after shutdown and let the messages through. */
if (m && !manager_get_show_status(m, type))
return;
/* XXX We should totally drop the check for ephemeral here
* and thus effectively make 'Type=idle' pointless. */
if (type == STATUS_TYPE_EPHEMERAL && m && m->n_on_console > 0)
return;
va_start(ap, format);
status_vprintf(status, true, type == STATUS_TYPE_EPHEMERAL, format, ap);
va_end(ap);
}
Set *manager_get_units_requiring_mounts_for(Manager *m, const char *path) {
char p[strlen(path)+1];
assert(m);
assert(path);
strcpy(p, path);
path_kill_slashes(p);
return hashmap_get(m->units_requiring_mounts_for, streq(p, "/") ? "" : p);
}
int manager_set_exec_params(Manager *m, ExecParameters *p) {
assert(m);
assert(p);
p->environment = m->environment;
p->confirm_spawn = manager_get_confirm_spawn(m);
p->cgroup_supported = m->cgroup_supported;
p->prefix = m->prefix;
return 0;
}
int manager_update_failed_units(Manager *m, Unit *u, bool failed) {
unsigned size;
int r;
assert(m);
assert(u->manager == m);
size = set_size(m->failed_units);
if (failed) {
r = set_ensure_allocated(&m->failed_units, NULL);
if (r < 0)
return log_oom();
if (set_put(m->failed_units, u) < 0)
return log_oom();
} else
(void) set_remove(m->failed_units, u);
if (set_size(m->failed_units) != size)
bus_manager_send_change_signal(m);
return 0;
}
ManagerState manager_state(Manager *m) {
Unit *u;
assert(m);
/* Did we ever finish booting? If not then we are still starting up */
if (!dual_timestamp_is_set(&m->finish_timestamp)) {
u = manager_get_unit(m, SPECIAL_BASIC_TARGET);
if (!u || !UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
return MANAGER_INITIALIZING;
return MANAGER_STARTING;
}
/* Is the special shutdown target queued? If so, we are in shutdown state */
u = manager_get_unit(m, SPECIAL_SHUTDOWN_TARGET);
if (u && u->job && IN_SET(u->job->type, JOB_START, JOB_RESTART, JOB_RELOAD_OR_START))
return MANAGER_STOPPING;
/* Are the rescue or emergency targets active or queued? If so we are in maintenance state */
u = manager_get_unit(m, SPECIAL_RESCUE_TARGET);
if (u && (UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)) ||
(u->job && IN_SET(u->job->type, JOB_START, JOB_RESTART, JOB_RELOAD_OR_START))))
return MANAGER_MAINTENANCE;
u = manager_get_unit(m, SPECIAL_EMERGENCY_TARGET);
if (u && (UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)) ||
(u->job && IN_SET(u->job->type, JOB_START, JOB_RESTART, JOB_RELOAD_OR_START))))
return MANAGER_MAINTENANCE;
/* Are there any failed units? If so, we are in degraded mode */
if (set_size(m->failed_units) > 0)
return MANAGER_DEGRADED;
return MANAGER_RUNNING;
}
#define DESTROY_IPC_FLAG (UINT32_C(1) << 31)
static void manager_unref_uid_internal(
Manager *m,
Hashmap **uid_refs,
uid_t uid,
bool destroy_now,
int (*_clean_ipc)(uid_t uid)) {
uint32_t c, n;
assert(m);
assert(uid_refs);
assert(uid_is_valid(uid));
assert(_clean_ipc);
/* A generic implementation, covering both manager_unref_uid() and manager_unref_gid(), under the assumption
* that uid_t and gid_t are actually defined the same way, with the same validity rules.
*
* We store a hashmap where the UID/GID is they key and the value is a 32bit reference counter, whose highest
* bit is used as flag for marking UIDs/GIDs whose IPC objects to remove when the last reference to the UID/GID
* is dropped. The flag is set to on, once at least one reference from a unit where RemoveIPC= is set is added
* on a UID/GID. It is reset when the UID's/GID's reference counter drops to 0 again. */
assert_cc(sizeof(uid_t) == sizeof(gid_t));
assert_cc(UID_INVALID == (uid_t) GID_INVALID);
if (uid == 0) /* We don't keep track of root, and will never destroy it */
return;
c = PTR_TO_UINT32(hashmap_get(*uid_refs, UID_TO_PTR(uid)));
n = c & ~DESTROY_IPC_FLAG;
assert(n > 0);
n--;
if (destroy_now && n == 0) {
hashmap_remove(*uid_refs, UID_TO_PTR(uid));
if (c & DESTROY_IPC_FLAG) {
log_debug("%s " UID_FMT " is no longer referenced, cleaning up its IPC.",
_clean_ipc == clean_ipc_by_uid ? "UID" : "GID",
uid);
(void) _clean_ipc(uid);
}
} else {
c = n | (c & DESTROY_IPC_FLAG);
assert_se(hashmap_update(*uid_refs, UID_TO_PTR(uid), UINT32_TO_PTR(c)) >= 0);
}
}
void manager_unref_uid(Manager *m, uid_t uid, bool destroy_now) {
manager_unref_uid_internal(m, &m->uid_refs, uid, destroy_now, clean_ipc_by_uid);
}
void manager_unref_gid(Manager *m, gid_t gid, bool destroy_now) {
manager_unref_uid_internal(m, &m->gid_refs, (uid_t) gid, destroy_now, clean_ipc_by_gid);
}
static int manager_ref_uid_internal(
Manager *m,
Hashmap **uid_refs,
uid_t uid,
bool clean_ipc) {
uint32_t c, n;
int r;
assert(m);
assert(uid_refs);
assert(uid_is_valid(uid));
/* A generic implementation, covering both manager_ref_uid() and manager_ref_gid(), under the assumption
* that uid_t and gid_t are actually defined the same way, with the same validity rules. */
assert_cc(sizeof(uid_t) == sizeof(gid_t));
assert_cc(UID_INVALID == (uid_t) GID_INVALID);
if (uid == 0) /* We don't keep track of root, and will never destroy it */
return 0;
r = hashmap_ensure_allocated(uid_refs, &trivial_hash_ops);
if (r < 0)
return r;
c = PTR_TO_UINT32(hashmap_get(*uid_refs, UID_TO_PTR(uid)));
n = c & ~DESTROY_IPC_FLAG;
n++;
if (n & DESTROY_IPC_FLAG) /* check for overflow */
return -EOVERFLOW;
c = n | (c & DESTROY_IPC_FLAG) | (clean_ipc ? DESTROY_IPC_FLAG : 0);
return hashmap_replace(*uid_refs, UID_TO_PTR(uid), UINT32_TO_PTR(c));
}
int manager_ref_uid(Manager *m, uid_t uid, bool clean_ipc) {
return manager_ref_uid_internal(m, &m->uid_refs, uid, clean_ipc);
}
int manager_ref_gid(Manager *m, gid_t gid, bool clean_ipc) {
return manager_ref_uid_internal(m, &m->gid_refs, (uid_t) gid, clean_ipc);
}
static void manager_vacuum_uid_refs_internal(
Manager *m,
Hashmap **uid_refs,
int (*_clean_ipc)(uid_t uid)) {
Iterator i;
void *p, *k;
assert(m);
assert(uid_refs);
assert(_clean_ipc);
HASHMAP_FOREACH_KEY(p, k, *uid_refs, i) {
uint32_t c, n;
uid_t uid;
uid = PTR_TO_UID(k);
c = PTR_TO_UINT32(p);
n = c & ~DESTROY_IPC_FLAG;
if (n > 0)
continue;
if (c & DESTROY_IPC_FLAG) {
log_debug("Found unreferenced %s " UID_FMT " after reload/reexec. Cleaning up.",
_clean_ipc == clean_ipc_by_uid ? "UID" : "GID",
uid);
(void) _clean_ipc(uid);
}
assert_se(hashmap_remove(*uid_refs, k) == p);
}
}
void manager_vacuum_uid_refs(Manager *m) {
manager_vacuum_uid_refs_internal(m, &m->uid_refs, clean_ipc_by_uid);
}
void manager_vacuum_gid_refs(Manager *m) {
manager_vacuum_uid_refs_internal(m, &m->gid_refs, clean_ipc_by_gid);
}
static void manager_serialize_uid_refs_internal(
Manager *m,
FILE *f,
Hashmap **uid_refs,
const char *field_name) {
Iterator i;
void *p, *k;
assert(m);
assert(f);
assert(uid_refs);
assert(field_name);
/* Serialize the UID reference table. Or actually, just the IPC destruction flag of it, as the actual counter
* of it is better rebuild after a reload/reexec. */
HASHMAP_FOREACH_KEY(p, k, *uid_refs, i) {
uint32_t c;
uid_t uid;
uid = PTR_TO_UID(k);
c = PTR_TO_UINT32(p);
if (!(c & DESTROY_IPC_FLAG))
continue;
fprintf(f, "%s=" UID_FMT "\n", field_name, uid);
}
}
void manager_serialize_uid_refs(Manager *m, FILE *f) {
manager_serialize_uid_refs_internal(m, f, &m->uid_refs, "destroy-ipc-uid");
}
void manager_serialize_gid_refs(Manager *m, FILE *f) {
manager_serialize_uid_refs_internal(m, f, &m->gid_refs, "destroy-ipc-gid");
}
static void manager_deserialize_uid_refs_one_internal(
Manager *m,
Hashmap** uid_refs,
const char *value) {
uid_t uid;
uint32_t c;
int r;
assert(m);
assert(uid_refs);
assert(value);
r = parse_uid(value, &uid);
if (r < 0 || uid == 0) {
log_debug("Unable to parse UID reference serialization");
return;
}
r = hashmap_ensure_allocated(uid_refs, &trivial_hash_ops);
if (r < 0) {
log_oom();
return;
}
c = PTR_TO_UINT32(hashmap_get(*uid_refs, UID_TO_PTR(uid)));
if (c & DESTROY_IPC_FLAG)
return;
c |= DESTROY_IPC_FLAG;
r = hashmap_replace(*uid_refs, UID_TO_PTR(uid), UINT32_TO_PTR(c));
if (r < 0) {
log_debug("Failed to add UID reference entry");
return;
}
}
void manager_deserialize_uid_refs_one(Manager *m, const char *value) {
manager_deserialize_uid_refs_one_internal(m, &m->uid_refs, value);
}
void manager_deserialize_gid_refs_one(Manager *m, const char *value) {
manager_deserialize_uid_refs_one_internal(m, &m->gid_refs, value);
}
int manager_dispatch_user_lookup_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
struct buffer {
uid_t uid;
gid_t gid;
char unit_name[UNIT_NAME_MAX+1];
} _packed_ buffer;
Manager *m = userdata;
ssize_t l;
size_t n;
Unit *u;
assert_se(source);
assert_se(m);
/* Invoked whenever a child process succeeded resolving its user/group to use and sent us the resulting UID/GID
* in a datagram. We parse the datagram here and pass it off to the unit, so that it can add a reference to the
* UID/GID so that it can destroy the UID/GID's IPC objects when the reference counter drops to 0. */
l = recv(fd, &buffer, sizeof(buffer), MSG_DONTWAIT);
if (l < 0) {
if (errno == EINTR || errno == EAGAIN)
return 0;
return log_error_errno(errno, "Failed to read from user lookup fd: %m");
}
if ((size_t) l <= offsetof(struct buffer, unit_name)) {
log_warning("Received too short user lookup message, ignoring.");
return 0;
}
if ((size_t) l > offsetof(struct buffer, unit_name) + UNIT_NAME_MAX) {
log_warning("Received too long user lookup message, ignoring.");
return 0;
}
if (!uid_is_valid(buffer.uid) && !gid_is_valid(buffer.gid)) {
log_warning("Got user lookup message with invalid UID/GID pair, ignoring.");
return 0;
}
n = (size_t) l - offsetof(struct buffer, unit_name);
if (memchr(buffer.unit_name, 0, n)) {
log_warning("Received lookup message with embedded NUL character, ignoring.");
return 0;
}
buffer.unit_name[n] = 0;
u = manager_get_unit(m, buffer.unit_name);
if (!u) {
log_debug("Got user lookup message but unit doesn't exist, ignoring.");
return 0;
}
log_unit_debug(u, "User lookup succeeded: uid=" UID_FMT " gid=" GID_FMT, buffer.uid, buffer.gid);
unit_notify_user_lookup(u, buffer.uid, buffer.gid);
return 0;
}
static const char *const manager_state_table[_MANAGER_STATE_MAX] = {
[MANAGER_INITIALIZING] = "initializing",
[MANAGER_STARTING] = "starting",
[MANAGER_RUNNING] = "running",
[MANAGER_DEGRADED] = "degraded",
[MANAGER_MAINTENANCE] = "maintenance",
[MANAGER_STOPPING] = "stopping",
};
DEFINE_STRING_TABLE_LOOKUP(manager_state, ManagerState);