Systemd/src/core/cgroup.c

1989 lines
69 KiB
C
Raw Normal View History

2010-03-31 16:29:55 +02:00
/***
This file is part of systemd.
Copyright 2013 Lennart Poettering
2010-03-31 16:29:55 +02:00
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
2010-03-31 16:29:55 +02:00
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
2010-03-31 16:29:55 +02:00
You should have received a copy of the GNU Lesser General Public License
2010-03-31 16:29:55 +02:00
along with systemd; If not, see <http://www.gnu.org/licenses/>.
***/
#include <fcntl.h>
#include <fnmatch.h>
#include "alloc-util.h"
#include "cgroup-util.h"
#include "cgroup.h"
#include "fd-util.h"
#include "fileio.h"
#include "fs-util.h"
#include "parse-util.h"
2012-05-07 21:36:12 +02:00
#include "path-util.h"
#include "process-util.h"
#include "special.h"
#include "string-table.h"
#include "string-util.h"
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
#include "stdio-util.h"
2010-03-31 16:29:55 +02:00
#define CGROUP_CPU_QUOTA_PERIOD_USEC ((usec_t) 100 * USEC_PER_MSEC)
2016-06-24 15:59:24 +02:00
static void cgroup_compat_warn(void) {
static bool cgroup_compat_warned = false;
if (cgroup_compat_warned)
return;
log_warning("cgroup compatibility translation between legacy and unified hierarchy settings activated. See cgroup-compat debug messages for details.");
cgroup_compat_warned = true;
}
#define log_cgroup_compat(unit, fmt, ...) do { \
cgroup_compat_warn(); \
log_unit_debug(unit, "cgroup-compat: " fmt, ##__VA_ARGS__); \
2016-06-24 15:59:24 +02:00
} while (false)
void cgroup_context_init(CGroupContext *c) {
assert(c);
/* Initialize everything to the kernel defaults, assuming the
* structure is preinitialized to 0 */
c->cpu_shares = CGROUP_CPU_SHARES_INVALID;
c->startup_cpu_shares = CGROUP_CPU_SHARES_INVALID;
c->cpu_quota_per_sec_usec = USEC_INFINITY;
c->memory_high = CGROUP_LIMIT_MAX;
c->memory_max = CGROUP_LIMIT_MAX;
c->memory_limit = CGROUP_LIMIT_MAX;
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
c->io_weight = CGROUP_WEIGHT_INVALID;
c->startup_io_weight = CGROUP_WEIGHT_INVALID;
c->blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID;
c->startup_blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID;
c->tasks_max = (uint64_t) -1;
}
2010-03-31 16:29:55 +02:00
void cgroup_context_free_device_allow(CGroupContext *c, CGroupDeviceAllow *a) {
assert(c);
assert(a);
LIST_REMOVE(device_allow, c->device_allow, a);
free(a->path);
free(a);
}
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
void cgroup_context_free_io_device_weight(CGroupContext *c, CGroupIODeviceWeight *w) {
assert(c);
assert(w);
LIST_REMOVE(device_weights, c->io_device_weights, w);
free(w->path);
free(w);
}
void cgroup_context_free_io_device_limit(CGroupContext *c, CGroupIODeviceLimit *l) {
assert(c);
assert(l);
LIST_REMOVE(device_limits, c->io_device_limits, l);
free(l->path);
free(l);
}
void cgroup_context_free_blockio_device_weight(CGroupContext *c, CGroupBlockIODeviceWeight *w) {
assert(c);
assert(w);
LIST_REMOVE(device_weights, c->blockio_device_weights, w);
free(w->path);
free(w);
}
void cgroup_context_free_blockio_device_bandwidth(CGroupContext *c, CGroupBlockIODeviceBandwidth *b) {
assert(c);
2010-03-31 16:29:55 +02:00
assert(b);
LIST_REMOVE(device_bandwidths, c->blockio_device_bandwidths, b);
free(b->path);
free(b);
}
void cgroup_context_done(CGroupContext *c) {
assert(c);
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
while (c->io_device_weights)
cgroup_context_free_io_device_weight(c, c->io_device_weights);
while (c->io_device_limits)
cgroup_context_free_io_device_limit(c, c->io_device_limits);
while (c->blockio_device_weights)
cgroup_context_free_blockio_device_weight(c, c->blockio_device_weights);
while (c->blockio_device_bandwidths)
cgroup_context_free_blockio_device_bandwidth(c, c->blockio_device_bandwidths);
while (c->device_allow)
cgroup_context_free_device_allow(c, c->device_allow);
}
void cgroup_context_dump(CGroupContext *c, FILE* f, const char *prefix) {
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
CGroupIODeviceLimit *il;
CGroupIODeviceWeight *iw;
CGroupBlockIODeviceBandwidth *b;
CGroupBlockIODeviceWeight *w;
CGroupDeviceAllow *a;
char u[FORMAT_TIMESPAN_MAX];
assert(c);
assert(f);
prefix = strempty(prefix);
fprintf(f,
"%sCPUAccounting=%s\n"
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
"%sIOAccounting=%s\n"
"%sBlockIOAccounting=%s\n"
"%sMemoryAccounting=%s\n"
"%sTasksAccounting=%s\n"
"%sCPUShares=%" PRIu64 "\n"
"%sStartupCPUShares=%" PRIu64 "\n"
"%sCPUQuotaPerSecSec=%s\n"
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
"%sIOWeight=%" PRIu64 "\n"
"%sStartupIOWeight=%" PRIu64 "\n"
"%sBlockIOWeight=%" PRIu64 "\n"
"%sStartupBlockIOWeight=%" PRIu64 "\n"
"%sMemoryLow=%" PRIu64 "\n"
"%sMemoryHigh=%" PRIu64 "\n"
"%sMemoryMax=%" PRIu64 "\n"
"%sMemoryLimit=%" PRIu64 "\n"
"%sTasksMax=%" PRIu64 "\n"
"%sDevicePolicy=%s\n"
"%sDelegate=%s\n",
prefix, yes_no(c->cpu_accounting),
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
prefix, yes_no(c->io_accounting),
prefix, yes_no(c->blockio_accounting),
prefix, yes_no(c->memory_accounting),
prefix, yes_no(c->tasks_accounting),
prefix, c->cpu_shares,
prefix, c->startup_cpu_shares,
prefix, format_timespan(u, sizeof(u), c->cpu_quota_per_sec_usec, 1),
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
prefix, c->io_weight,
prefix, c->startup_io_weight,
prefix, c->blockio_weight,
prefix, c->startup_blockio_weight,
prefix, c->memory_low,
prefix, c->memory_high,
prefix, c->memory_max,
prefix, c->memory_limit,
prefix, c->tasks_max,
prefix, cgroup_device_policy_to_string(c->device_policy),
prefix, yes_no(c->delegate));
LIST_FOREACH(device_allow, a, c->device_allow)
fprintf(f,
"%sDeviceAllow=%s %s%s%s\n",
prefix,
a->path,
a->r ? "r" : "", a->w ? "w" : "", a->m ? "m" : "");
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
LIST_FOREACH(device_weights, iw, c->io_device_weights)
fprintf(f,
"%sIODeviceWeight=%s %" PRIu64,
prefix,
iw->path,
iw->weight);
LIST_FOREACH(device_limits, il, c->io_device_limits) {
char buf[FORMAT_BYTES_MAX];
CGroupIOLimitType type;
for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
if (il->limits[type] != cgroup_io_limit_defaults[type])
fprintf(f,
"%s%s=%s %s\n",
prefix,
cgroup_io_limit_type_to_string(type),
il->path,
format_bytes(buf, sizeof(buf), il->limits[type]));
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
}
LIST_FOREACH(device_weights, w, c->blockio_device_weights)
fprintf(f,
"%sBlockIODeviceWeight=%s %" PRIu64,
prefix,
w->path,
w->weight);
LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
char buf[FORMAT_BYTES_MAX];
if (b->rbps != CGROUP_LIMIT_MAX)
fprintf(f,
"%sBlockIOReadBandwidth=%s %s\n",
prefix,
b->path,
format_bytes(buf, sizeof(buf), b->rbps));
if (b->wbps != CGROUP_LIMIT_MAX)
fprintf(f,
"%sBlockIOWriteBandwidth=%s %s\n",
prefix,
b->path,
format_bytes(buf, sizeof(buf), b->wbps));
}
}
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
static int lookup_block_device(const char *p, dev_t *dev) {
struct stat st;
int r;
assert(p);
assert(dev);
r = stat(p, &st);
if (r < 0)
return log_warning_errno(errno, "Couldn't stat device %s: %m", p);
2010-03-31 16:29:55 +02:00
if (S_ISBLK(st.st_mode))
*dev = st.st_rdev;
else if (major(st.st_dev) != 0) {
/* If this is not a device node then find the block
* device this file is stored on */
*dev = st.st_dev;
/* If this is a partition, try to get the originating
* block device */
block_get_whole_disk(*dev, dev);
} else {
log_warning("%s is not a block device and file system block device cannot be determined or is not local.", p);
return -ENODEV;
}
2010-03-31 16:29:55 +02:00
return 0;
}
static int whitelist_device(const char *path, const char *node, const char *acc) {
char buf[2+DECIMAL_STR_MAX(dev_t)*2+2+4];
struct stat st;
int r;
2010-03-31 16:29:55 +02:00
assert(path);
assert(acc);
2010-03-31 16:29:55 +02:00
if (stat(node, &st) < 0) {
log_warning("Couldn't stat device %s", node);
return -errno;
}
if (!S_ISCHR(st.st_mode) && !S_ISBLK(st.st_mode)) {
log_warning("%s is not a device.", node);
return -ENODEV;
}
sprintf(buf,
"%c %u:%u %s",
S_ISCHR(st.st_mode) ? 'c' : 'b',
major(st.st_rdev), minor(st.st_rdev),
acc);
r = cg_set_attribute("devices", path, "devices.allow", buf);
if (r < 0)
log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to set devices.allow on %s: %m", path);
return r;
2010-03-31 16:29:55 +02:00
}
static int whitelist_major(const char *path, const char *name, char type, const char *acc) {
_cleanup_fclose_ FILE *f = NULL;
char line[LINE_MAX];
bool good = false;
int r;
assert(path);
assert(acc);
assert(type == 'b' || type == 'c');
f = fopen("/proc/devices", "re");
if (!f)
return log_warning_errno(errno, "Cannot open /proc/devices to resolve %s (%c): %m", name, type);
FOREACH_LINE(line, f, goto fail) {
char buf[2+DECIMAL_STR_MAX(unsigned)+3+4], *p, *w;
unsigned maj;
truncate_nl(line);
if (type == 'c' && streq(line, "Character devices:")) {
good = true;
continue;
}
if (type == 'b' && streq(line, "Block devices:")) {
good = true;
continue;
}
if (isempty(line)) {
good = false;
continue;
}
if (!good)
continue;
p = strstrip(line);
w = strpbrk(p, WHITESPACE);
if (!w)
continue;
*w = 0;
r = safe_atou(p, &maj);
if (r < 0)
continue;
if (maj <= 0)
continue;
w++;
w += strspn(w, WHITESPACE);
if (fnmatch(name, w, 0) != 0)
continue;
sprintf(buf,
"%c %u:* %s",
type,
maj,
acc);
r = cg_set_attribute("devices", path, "devices.allow", buf);
if (r < 0)
log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to set devices.allow on %s: %m", path);
}
return 0;
fail:
log_warning_errno(errno, "Failed to read /proc/devices: %m");
return -errno;
}
static bool cgroup_context_has_io_config(CGroupContext *c) {
return c->io_accounting ||
c->io_weight != CGROUP_WEIGHT_INVALID ||
c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
c->io_device_weights ||
c->io_device_limits;
}
static bool cgroup_context_has_blockio_config(CGroupContext *c) {
return c->blockio_accounting ||
c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
c->blockio_device_weights ||
c->blockio_device_bandwidths;
}
static uint64_t cgroup_context_io_weight(CGroupContext *c, ManagerState state) {
if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
c->startup_io_weight != CGROUP_WEIGHT_INVALID)
return c->startup_io_weight;
else if (c->io_weight != CGROUP_WEIGHT_INVALID)
return c->io_weight;
else
return CGROUP_WEIGHT_DEFAULT;
}
static uint64_t cgroup_context_blkio_weight(CGroupContext *c, ManagerState state) {
if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
return c->startup_blockio_weight;
else if (c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
return c->blockio_weight;
else
return CGROUP_BLKIO_WEIGHT_DEFAULT;
}
static uint64_t cgroup_weight_blkio_to_io(uint64_t blkio_weight) {
return CLAMP(blkio_weight * CGROUP_WEIGHT_DEFAULT / CGROUP_BLKIO_WEIGHT_DEFAULT,
CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
}
static uint64_t cgroup_weight_io_to_blkio(uint64_t io_weight) {
return CLAMP(io_weight * CGROUP_BLKIO_WEIGHT_DEFAULT / CGROUP_WEIGHT_DEFAULT,
CGROUP_BLKIO_WEIGHT_MIN, CGROUP_BLKIO_WEIGHT_MAX);
}
static void cgroup_apply_io_device_weight(Unit *u, const char *dev_path, uint64_t io_weight) {
char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
dev_t dev;
int r;
r = lookup_block_device(dev_path, &dev);
if (r < 0)
return;
xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), io_weight);
r = cg_set_attribute("io", u->cgroup_path, "io.weight", buf);
if (r < 0)
log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to set io.weight: %m");
}
static void cgroup_apply_blkio_device_weight(Unit *u, const char *dev_path, uint64_t blkio_weight) {
char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
dev_t dev;
int r;
r = lookup_block_device(dev_path, &dev);
if (r < 0)
return;
xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), blkio_weight);
r = cg_set_attribute("blkio", u->cgroup_path, "blkio.weight_device", buf);
if (r < 0)
log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to set blkio.weight_device: %m");
}
static unsigned cgroup_apply_io_device_limit(Unit *u, const char *dev_path, uint64_t *limits) {
char limit_bufs[_CGROUP_IO_LIMIT_TYPE_MAX][DECIMAL_STR_MAX(uint64_t)];
char buf[DECIMAL_STR_MAX(dev_t)*2+2+(6+DECIMAL_STR_MAX(uint64_t)+1)*4];
CGroupIOLimitType type;
dev_t dev;
unsigned n = 0;
int r;
r = lookup_block_device(dev_path, &dev);
if (r < 0)
return 0;
for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++) {
if (limits[type] != cgroup_io_limit_defaults[type]) {
xsprintf(limit_bufs[type], "%" PRIu64, limits[type]);
n++;
} else {
xsprintf(limit_bufs[type], "%s", limits[type] == CGROUP_LIMIT_MAX ? "max" : "0");
}
}
xsprintf(buf, "%u:%u rbps=%s wbps=%s riops=%s wiops=%s\n", major(dev), minor(dev),
limit_bufs[CGROUP_IO_RBPS_MAX], limit_bufs[CGROUP_IO_WBPS_MAX],
limit_bufs[CGROUP_IO_RIOPS_MAX], limit_bufs[CGROUP_IO_WIOPS_MAX]);
r = cg_set_attribute("io", u->cgroup_path, "io.max", buf);
if (r < 0)
log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to set io.max: %m");
return n;
}
static unsigned cgroup_apply_blkio_device_limit(Unit *u, const char *dev_path, uint64_t rbps, uint64_t wbps) {
char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
dev_t dev;
unsigned n = 0;
int r;
r = lookup_block_device(dev_path, &dev);
if (r < 0)
return 0;
if (rbps != CGROUP_LIMIT_MAX)
n++;
sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), rbps);
r = cg_set_attribute("blkio", u->cgroup_path, "blkio.throttle.read_bps_device", buf);
if (r < 0)
log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to set blkio.throttle.read_bps_device: %m");
if (wbps != CGROUP_LIMIT_MAX)
n++;
sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), wbps);
r = cg_set_attribute("blkio", u->cgroup_path, "blkio.throttle.write_bps_device", buf);
if (r < 0)
log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to set blkio.throttle.write_bps_device: %m");
return n;
}
static bool cgroup_context_has_unified_memory_config(CGroupContext *c) {
return c->memory_low > 0 || c->memory_high != CGROUP_LIMIT_MAX || c->memory_max != CGROUP_LIMIT_MAX;
}
static void cgroup_apply_unified_memory_limit(Unit *u, const char *file, uint64_t v) {
char buf[DECIMAL_STR_MAX(uint64_t) + 1] = "max";
int r;
if (v != CGROUP_LIMIT_MAX)
xsprintf(buf, "%" PRIu64 "\n", v);
r = cg_set_attribute("memory", u->cgroup_path, file, buf);
if (r < 0)
log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to set %s: %m", file);
}
static void cgroup_context_apply(Unit *u, CGroupMask mask, ManagerState state) {
const char *path;
CGroupContext *c;
bool is_root;
int r;
assert(u);
c = unit_get_cgroup_context(u);
path = u->cgroup_path;
assert(c);
assert(path);
2010-03-31 16:29:55 +02:00
if (mask == 0)
return;
2010-03-31 16:29:55 +02:00
2015-01-16 13:44:32 +01:00
/* Some cgroup attributes are not supported on the root cgroup,
* hence silently ignore */
is_root = isempty(path) || path_equal(path, "/");
if (is_root)
/* Make sure we don't try to display messages with an empty path. */
path = "/";
/* We generally ignore errors caused by read-only mounted
* cgroup trees (assuming we are running in a container then),
* and missing cgroups, i.e. EROFS and ENOENT. */
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
if ((mask & CGROUP_MASK_CPU) && !is_root) {
char buf[MAX(DECIMAL_STR_MAX(uint64_t), DECIMAL_STR_MAX(usec_t)) + 1];
2010-03-31 16:29:55 +02:00
sprintf(buf, "%" PRIu64 "\n",
IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) && c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID ? c->startup_cpu_shares :
c->cpu_shares != CGROUP_CPU_SHARES_INVALID ? c->cpu_shares : CGROUP_CPU_SHARES_DEFAULT);
r = cg_set_attribute("cpu", path, "cpu.shares", buf);
if (r < 0)
log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to set cpu.shares: %m");
sprintf(buf, USEC_FMT "\n", CGROUP_CPU_QUOTA_PERIOD_USEC);
r = cg_set_attribute("cpu", path, "cpu.cfs_period_us", buf);
if (r < 0)
log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to set cpu.cfs_period_us: %m");
if (c->cpu_quota_per_sec_usec != USEC_INFINITY) {
sprintf(buf, USEC_FMT "\n", c->cpu_quota_per_sec_usec * CGROUP_CPU_QUOTA_PERIOD_USEC / USEC_PER_SEC);
r = cg_set_attribute("cpu", path, "cpu.cfs_quota_us", buf);
} else
r = cg_set_attribute("cpu", path, "cpu.cfs_quota_us", "-1");
if (r < 0)
log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to set cpu.cfs_quota_us: %m");
}
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
if (mask & CGROUP_MASK_IO) {
bool has_io = cgroup_context_has_io_config(c);
bool has_blockio = cgroup_context_has_blockio_config(c);
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
if (!is_root) {
char buf[8+DECIMAL_STR_MAX(uint64_t)+1];
uint64_t weight;
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
if (has_io)
weight = cgroup_context_io_weight(c, state);
else if (has_blockio) {
uint64_t blkio_weight = cgroup_context_blkio_weight(c, state);
weight = cgroup_weight_blkio_to_io(blkio_weight);
log_cgroup_compat(u, "Applying [Startup]BlockIOWeight %" PRIu64 " as [Startup]IOWeight %" PRIu64,
blkio_weight, weight);
} else
weight = CGROUP_WEIGHT_DEFAULT;
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
xsprintf(buf, "default %" PRIu64 "\n", weight);
r = cg_set_attribute("io", path, "io.weight", buf);
if (r < 0)
log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to set io.weight: %m");
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
if (has_io) {
CGroupIODeviceWeight *w;
/* FIXME: no way to reset this list */
LIST_FOREACH(device_weights, w, c->io_device_weights)
cgroup_apply_io_device_weight(u, w->path, w->weight);
} else if (has_blockio) {
CGroupBlockIODeviceWeight *w;
/* FIXME: no way to reset this list */
LIST_FOREACH(device_weights, w, c->blockio_device_weights) {
weight = cgroup_weight_blkio_to_io(w->weight);
log_cgroup_compat(u, "Applying BlockIODeviceWeight %" PRIu64 " as IODeviceWeight %" PRIu64 " for %s",
w->weight, weight, w->path);
cgroup_apply_io_device_weight(u, w->path, weight);
}
}
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
}
/* Apply limits and free ones without config. */
if (has_io) {
CGroupIODeviceLimit *l, *next;
LIST_FOREACH_SAFE(device_limits, l, next, c->io_device_limits) {
if (!cgroup_apply_io_device_limit(u, l->path, l->limits))
cgroup_context_free_io_device_limit(c, l);
}
} else if (has_blockio) {
CGroupBlockIODeviceBandwidth *b, *next;
LIST_FOREACH_SAFE(device_bandwidths, b, next, c->blockio_device_bandwidths) {
uint64_t limits[_CGROUP_IO_LIMIT_TYPE_MAX];
CGroupIOLimitType type;
for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
limits[type] = cgroup_io_limit_defaults[type];
limits[CGROUP_IO_RBPS_MAX] = b->rbps;
limits[CGROUP_IO_WBPS_MAX] = b->wbps;
log_cgroup_compat(u, "Applying BlockIO{Read|Write}Bandwidth %" PRIu64 " %" PRIu64 " as IO{Read|Write}BandwidthMax for %s",
b->rbps, b->wbps, b->path);
if (!cgroup_apply_io_device_limit(u, b->path, limits))
cgroup_context_free_blockio_device_bandwidth(c, b);
}
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
}
}
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
if (mask & CGROUP_MASK_BLKIO) {
bool has_io = cgroup_context_has_io_config(c);
bool has_blockio = cgroup_context_has_blockio_config(c);
if (!is_root) {
char buf[DECIMAL_STR_MAX(uint64_t)+1];
uint64_t weight;
if (has_blockio)
weight = cgroup_context_blkio_weight(c, state);
else if (has_io) {
uint64_t io_weight = cgroup_context_io_weight(c, state);
weight = cgroup_weight_io_to_blkio(cgroup_context_io_weight(c, state));
log_cgroup_compat(u, "Applying [Startup]IOWeight %" PRIu64 " as [Startup]BlockIOWeight %" PRIu64,
io_weight, weight);
} else
weight = CGROUP_BLKIO_WEIGHT_DEFAULT;
xsprintf(buf, "%" PRIu64 "\n", weight);
r = cg_set_attribute("blkio", path, "blkio.weight", buf);
if (r < 0)
log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to set blkio.weight: %m");
if (has_blockio) {
CGroupBlockIODeviceWeight *w;
/* FIXME: no way to reset this list */
LIST_FOREACH(device_weights, w, c->blockio_device_weights)
cgroup_apply_blkio_device_weight(u, w->path, w->weight);
} else if (has_io) {
CGroupIODeviceWeight *w;
/* FIXME: no way to reset this list */
LIST_FOREACH(device_weights, w, c->io_device_weights) {
weight = cgroup_weight_io_to_blkio(w->weight);
log_cgroup_compat(u, "Applying IODeviceWeight %" PRIu64 " as BlockIODeviceWeight %" PRIu64 " for %s",
w->weight, weight, w->path);
cgroup_apply_blkio_device_weight(u, w->path, weight);
}
}
}
/* Apply limits and free ones without config. */
if (has_blockio) {
CGroupBlockIODeviceBandwidth *b, *next;
LIST_FOREACH_SAFE(device_bandwidths, b, next, c->blockio_device_bandwidths) {
if (!cgroup_apply_blkio_device_limit(u, b->path, b->rbps, b->wbps))
cgroup_context_free_blockio_device_bandwidth(c, b);
}
} else if (has_io) {
CGroupIODeviceLimit *l, *next;
LIST_FOREACH_SAFE(device_limits, l, next, c->io_device_limits) {
log_cgroup_compat(u, "Applying IO{Read|Write}Bandwidth %" PRIu64 " %" PRIu64 " as BlockIO{Read|Write}BandwidthMax for %s",
l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX], l->path);
if (!cgroup_apply_blkio_device_limit(u, l->path, l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX]))
cgroup_context_free_io_device_limit(c, l);
}
}
2010-03-31 16:29:55 +02:00
}
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
if ((mask & CGROUP_MASK_MEMORY) && !is_root) {
if (cg_unified() > 0) {
uint64_t max = c->memory_max;
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
if (cgroup_context_has_unified_memory_config(c))
max = c->memory_max;
else {
max = c->memory_limit;
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
if (max != CGROUP_LIMIT_MAX)
log_cgroup_compat(u, "Applying MemoryLimit %" PRIu64 " as MemoryMax", max);
}
cgroup_apply_unified_memory_limit(u, "memory.low", c->memory_low);
cgroup_apply_unified_memory_limit(u, "memory.high", c->memory_high);
cgroup_apply_unified_memory_limit(u, "memory.max", max);
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
} else {
char buf[DECIMAL_STR_MAX(uint64_t) + 1];
cgroup: fix memory cgroup limit regression on kernel 3.10 (#3673) Commit da4d897e ("core: add cgroup memory controller support on the unified hierarchy (#3315)") changed the code in src/core/cgroup.c to always write the real numeric value from the cgroup parameters to the "memory.limit_in_bytes" attribute file. For parameters set to CGROUP_LIMIT_MAX, this results in the string "18446744073709551615" being written into that file, which is UINT64_MAX. Before that commit, CGROUP_LIMIT_MAX was special-cased to the string "-1". This causes a regression on CentOS 7, which is based on kernel 3.10, as the value is interpreted as *signed* 64 bit, and clamped to 0: [root@n54 ~]# echo 18446744073709551615 >/sys/fs/cgroup/memory/user.slice/memory.limit_in_bytes [root@n54 ~]# cat /sys/fs/cgroup/memory/user.slice/memory.limit_in_bytes 0 [root@n54 ~]# echo -1 >/sys/fs/cgroup/memory/user.slice/memory.limit_in_bytes [root@n54 ~]# cat /sys/fs/cgroup/memory/user.slice/memory.limit_in_bytes 9223372036854775807 Hence, all units that are subject to the limits enforced by the memory controller will crash immediately, even though they have no actual limit set. This happens to for the user.slice, for instance: [ 453.577153] Hardware name: SeaMicro SM15000-64-CC-AA-1Ox1/AMD Server CRB, BIOS Estoc.3.72.19.0018 08/19/2014 [ 453.587024] ffff880810c56780 00000000aae9501f ffff880813d7fcd0 ffffffff816360fc [ 453.594544] ffff880813d7fd60 ffffffff8163109c ffff88080ffc5000 ffff880813d7fd28 [ 453.602120] ffffffff00000202 fffeefff00000000 0000000000000001 ffff880810c56c03 [ 453.609680] Call Trace: [ 453.612156] [<ffffffff816360fc>] dump_stack+0x19/0x1b [ 453.617324] [<ffffffff8163109c>] dump_header+0x8e/0x214 [ 453.622671] [<ffffffff8116d20e>] oom_kill_process+0x24e/0x3b0 [ 453.628559] [<ffffffff81088dae>] ? has_capability_noaudit+0x1e/0x30 [ 453.634969] [<ffffffff811d4155>] mem_cgroup_oom_synchronize+0x575/0x5a0 [ 453.641721] [<ffffffff811d3520>] ? mem_cgroup_charge_common+0xc0/0xc0 [ 453.648299] [<ffffffff8116da84>] pagefault_out_of_memory+0x14/0x90 [ 453.654621] [<ffffffff8162f4cc>] mm_fault_error+0x68/0x12b [ 453.660233] [<ffffffff81642012>] __do_page_fault+0x3e2/0x450 [ 453.666017] [<ffffffff816420a3>] do_page_fault+0x23/0x80 [ 453.671467] [<ffffffff8163e308>] page_fault+0x28/0x30 [ 453.676656] Task in /user.slice/user-0.slice/user@0.service killed as a result of limit of /user.slice/user-0.slice/user@0.service [ 453.688477] memory: usage 0kB, limit 0kB, failcnt 7 [ 453.693391] memory+swap: usage 0kB, limit 9007199254740991kB, failcnt 0 [ 453.700039] kmem: usage 0kB, limit 9007199254740991kB, failcnt 0 [ 453.706076] Memory cgroup stats for /user.slice/user-0.slice/user@0.service: cache:0KB rss:0KB rss_huge:0KB mapped_file:0KB swap:0KB inactive_anon:0KB active_anon:0KB inactive_file:0KB active_file:0KB unevictable:0KB [ 453.725702] [ pid ] uid tgid total_vm rss nr_ptes swapents oom_score_adj name [ 453.733614] [ 2837] 0 2837 11950 899 23 0 0 (systemd) [ 453.741919] Memory cgroup out of memory: Kill process 2837 ((systemd)) score 1 or sacrifice child [ 453.750831] Killed process 2837 ((systemd)) total-vm:47800kB, anon-rss:3188kB, file-rss:408kB Fix this issue by special-casing the UINT64_MAX case again.
2016-07-08 04:29:35 +02:00
uint64_t val = c->memory_limit;
cgroup: fix memory cgroup limit regression on kernel 3.10 (#3673) Commit da4d897e ("core: add cgroup memory controller support on the unified hierarchy (#3315)") changed the code in src/core/cgroup.c to always write the real numeric value from the cgroup parameters to the "memory.limit_in_bytes" attribute file. For parameters set to CGROUP_LIMIT_MAX, this results in the string "18446744073709551615" being written into that file, which is UINT64_MAX. Before that commit, CGROUP_LIMIT_MAX was special-cased to the string "-1". This causes a regression on CentOS 7, which is based on kernel 3.10, as the value is interpreted as *signed* 64 bit, and clamped to 0: [root@n54 ~]# echo 18446744073709551615 >/sys/fs/cgroup/memory/user.slice/memory.limit_in_bytes [root@n54 ~]# cat /sys/fs/cgroup/memory/user.slice/memory.limit_in_bytes 0 [root@n54 ~]# echo -1 >/sys/fs/cgroup/memory/user.slice/memory.limit_in_bytes [root@n54 ~]# cat /sys/fs/cgroup/memory/user.slice/memory.limit_in_bytes 9223372036854775807 Hence, all units that are subject to the limits enforced by the memory controller will crash immediately, even though they have no actual limit set. This happens to for the user.slice, for instance: [ 453.577153] Hardware name: SeaMicro SM15000-64-CC-AA-1Ox1/AMD Server CRB, BIOS Estoc.3.72.19.0018 08/19/2014 [ 453.587024] ffff880810c56780 00000000aae9501f ffff880813d7fcd0 ffffffff816360fc [ 453.594544] ffff880813d7fd60 ffffffff8163109c ffff88080ffc5000 ffff880813d7fd28 [ 453.602120] ffffffff00000202 fffeefff00000000 0000000000000001 ffff880810c56c03 [ 453.609680] Call Trace: [ 453.612156] [<ffffffff816360fc>] dump_stack+0x19/0x1b [ 453.617324] [<ffffffff8163109c>] dump_header+0x8e/0x214 [ 453.622671] [<ffffffff8116d20e>] oom_kill_process+0x24e/0x3b0 [ 453.628559] [<ffffffff81088dae>] ? has_capability_noaudit+0x1e/0x30 [ 453.634969] [<ffffffff811d4155>] mem_cgroup_oom_synchronize+0x575/0x5a0 [ 453.641721] [<ffffffff811d3520>] ? mem_cgroup_charge_common+0xc0/0xc0 [ 453.648299] [<ffffffff8116da84>] pagefault_out_of_memory+0x14/0x90 [ 453.654621] [<ffffffff8162f4cc>] mm_fault_error+0x68/0x12b [ 453.660233] [<ffffffff81642012>] __do_page_fault+0x3e2/0x450 [ 453.666017] [<ffffffff816420a3>] do_page_fault+0x23/0x80 [ 453.671467] [<ffffffff8163e308>] page_fault+0x28/0x30 [ 453.676656] Task in /user.slice/user-0.slice/user@0.service killed as a result of limit of /user.slice/user-0.slice/user@0.service [ 453.688477] memory: usage 0kB, limit 0kB, failcnt 7 [ 453.693391] memory+swap: usage 0kB, limit 9007199254740991kB, failcnt 0 [ 453.700039] kmem: usage 0kB, limit 9007199254740991kB, failcnt 0 [ 453.706076] Memory cgroup stats for /user.slice/user-0.slice/user@0.service: cache:0KB rss:0KB rss_huge:0KB mapped_file:0KB swap:0KB inactive_anon:0KB active_anon:0KB inactive_file:0KB active_file:0KB unevictable:0KB [ 453.725702] [ pid ] uid tgid total_vm rss nr_ptes swapents oom_score_adj name [ 453.733614] [ 2837] 0 2837 11950 899 23 0 0 (systemd) [ 453.741919] Memory cgroup out of memory: Kill process 2837 ((systemd)) score 1 or sacrifice child [ 453.750831] Killed process 2837 ((systemd)) total-vm:47800kB, anon-rss:3188kB, file-rss:408kB Fix this issue by special-casing the UINT64_MAX case again.
2016-07-08 04:29:35 +02:00
if (val == CGROUP_LIMIT_MAX) {
val = c->memory_max;
2010-03-31 16:29:55 +02:00
cgroup: fix memory cgroup limit regression on kernel 3.10 (#3673) Commit da4d897e ("core: add cgroup memory controller support on the unified hierarchy (#3315)") changed the code in src/core/cgroup.c to always write the real numeric value from the cgroup parameters to the "memory.limit_in_bytes" attribute file. For parameters set to CGROUP_LIMIT_MAX, this results in the string "18446744073709551615" being written into that file, which is UINT64_MAX. Before that commit, CGROUP_LIMIT_MAX was special-cased to the string "-1". This causes a regression on CentOS 7, which is based on kernel 3.10, as the value is interpreted as *signed* 64 bit, and clamped to 0: [root@n54 ~]# echo 18446744073709551615 >/sys/fs/cgroup/memory/user.slice/memory.limit_in_bytes [root@n54 ~]# cat /sys/fs/cgroup/memory/user.slice/memory.limit_in_bytes 0 [root@n54 ~]# echo -1 >/sys/fs/cgroup/memory/user.slice/memory.limit_in_bytes [root@n54 ~]# cat /sys/fs/cgroup/memory/user.slice/memory.limit_in_bytes 9223372036854775807 Hence, all units that are subject to the limits enforced by the memory controller will crash immediately, even though they have no actual limit set. This happens to for the user.slice, for instance: [ 453.577153] Hardware name: SeaMicro SM15000-64-CC-AA-1Ox1/AMD Server CRB, BIOS Estoc.3.72.19.0018 08/19/2014 [ 453.587024] ffff880810c56780 00000000aae9501f ffff880813d7fcd0 ffffffff816360fc [ 453.594544] ffff880813d7fd60 ffffffff8163109c ffff88080ffc5000 ffff880813d7fd28 [ 453.602120] ffffffff00000202 fffeefff00000000 0000000000000001 ffff880810c56c03 [ 453.609680] Call Trace: [ 453.612156] [<ffffffff816360fc>] dump_stack+0x19/0x1b [ 453.617324] [<ffffffff8163109c>] dump_header+0x8e/0x214 [ 453.622671] [<ffffffff8116d20e>] oom_kill_process+0x24e/0x3b0 [ 453.628559] [<ffffffff81088dae>] ? has_capability_noaudit+0x1e/0x30 [ 453.634969] [<ffffffff811d4155>] mem_cgroup_oom_synchronize+0x575/0x5a0 [ 453.641721] [<ffffffff811d3520>] ? mem_cgroup_charge_common+0xc0/0xc0 [ 453.648299] [<ffffffff8116da84>] pagefault_out_of_memory+0x14/0x90 [ 453.654621] [<ffffffff8162f4cc>] mm_fault_error+0x68/0x12b [ 453.660233] [<ffffffff81642012>] __do_page_fault+0x3e2/0x450 [ 453.666017] [<ffffffff816420a3>] do_page_fault+0x23/0x80 [ 453.671467] [<ffffffff8163e308>] page_fault+0x28/0x30 [ 453.676656] Task in /user.slice/user-0.slice/user@0.service killed as a result of limit of /user.slice/user-0.slice/user@0.service [ 453.688477] memory: usage 0kB, limit 0kB, failcnt 7 [ 453.693391] memory+swap: usage 0kB, limit 9007199254740991kB, failcnt 0 [ 453.700039] kmem: usage 0kB, limit 9007199254740991kB, failcnt 0 [ 453.706076] Memory cgroup stats for /user.slice/user-0.slice/user@0.service: cache:0KB rss:0KB rss_huge:0KB mapped_file:0KB swap:0KB inactive_anon:0KB active_anon:0KB inactive_file:0KB active_file:0KB unevictable:0KB [ 453.725702] [ pid ] uid tgid total_vm rss nr_ptes swapents oom_score_adj name [ 453.733614] [ 2837] 0 2837 11950 899 23 0 0 (systemd) [ 453.741919] Memory cgroup out of memory: Kill process 2837 ((systemd)) score 1 or sacrifice child [ 453.750831] Killed process 2837 ((systemd)) total-vm:47800kB, anon-rss:3188kB, file-rss:408kB Fix this issue by special-casing the UINT64_MAX case again.
2016-07-08 04:29:35 +02:00
if (val != CGROUP_LIMIT_MAX)
log_cgroup_compat(u, "Applying MemoryMax %" PRIi64 " as MemoryLimit", c->memory_max);
}
cgroup: fix memory cgroup limit regression on kernel 3.10 (#3673) Commit da4d897e ("core: add cgroup memory controller support on the unified hierarchy (#3315)") changed the code in src/core/cgroup.c to always write the real numeric value from the cgroup parameters to the "memory.limit_in_bytes" attribute file. For parameters set to CGROUP_LIMIT_MAX, this results in the string "18446744073709551615" being written into that file, which is UINT64_MAX. Before that commit, CGROUP_LIMIT_MAX was special-cased to the string "-1". This causes a regression on CentOS 7, which is based on kernel 3.10, as the value is interpreted as *signed* 64 bit, and clamped to 0: [root@n54 ~]# echo 18446744073709551615 >/sys/fs/cgroup/memory/user.slice/memory.limit_in_bytes [root@n54 ~]# cat /sys/fs/cgroup/memory/user.slice/memory.limit_in_bytes 0 [root@n54 ~]# echo -1 >/sys/fs/cgroup/memory/user.slice/memory.limit_in_bytes [root@n54 ~]# cat /sys/fs/cgroup/memory/user.slice/memory.limit_in_bytes 9223372036854775807 Hence, all units that are subject to the limits enforced by the memory controller will crash immediately, even though they have no actual limit set. This happens to for the user.slice, for instance: [ 453.577153] Hardware name: SeaMicro SM15000-64-CC-AA-1Ox1/AMD Server CRB, BIOS Estoc.3.72.19.0018 08/19/2014 [ 453.587024] ffff880810c56780 00000000aae9501f ffff880813d7fcd0 ffffffff816360fc [ 453.594544] ffff880813d7fd60 ffffffff8163109c ffff88080ffc5000 ffff880813d7fd28 [ 453.602120] ffffffff00000202 fffeefff00000000 0000000000000001 ffff880810c56c03 [ 453.609680] Call Trace: [ 453.612156] [<ffffffff816360fc>] dump_stack+0x19/0x1b [ 453.617324] [<ffffffff8163109c>] dump_header+0x8e/0x214 [ 453.622671] [<ffffffff8116d20e>] oom_kill_process+0x24e/0x3b0 [ 453.628559] [<ffffffff81088dae>] ? has_capability_noaudit+0x1e/0x30 [ 453.634969] [<ffffffff811d4155>] mem_cgroup_oom_synchronize+0x575/0x5a0 [ 453.641721] [<ffffffff811d3520>] ? mem_cgroup_charge_common+0xc0/0xc0 [ 453.648299] [<ffffffff8116da84>] pagefault_out_of_memory+0x14/0x90 [ 453.654621] [<ffffffff8162f4cc>] mm_fault_error+0x68/0x12b [ 453.660233] [<ffffffff81642012>] __do_page_fault+0x3e2/0x450 [ 453.666017] [<ffffffff816420a3>] do_page_fault+0x23/0x80 [ 453.671467] [<ffffffff8163e308>] page_fault+0x28/0x30 [ 453.676656] Task in /user.slice/user-0.slice/user@0.service killed as a result of limit of /user.slice/user-0.slice/user@0.service [ 453.688477] memory: usage 0kB, limit 0kB, failcnt 7 [ 453.693391] memory+swap: usage 0kB, limit 9007199254740991kB, failcnt 0 [ 453.700039] kmem: usage 0kB, limit 9007199254740991kB, failcnt 0 [ 453.706076] Memory cgroup stats for /user.slice/user-0.slice/user@0.service: cache:0KB rss:0KB rss_huge:0KB mapped_file:0KB swap:0KB inactive_anon:0KB active_anon:0KB inactive_file:0KB active_file:0KB unevictable:0KB [ 453.725702] [ pid ] uid tgid total_vm rss nr_ptes swapents oom_score_adj name [ 453.733614] [ 2837] 0 2837 11950 899 23 0 0 (systemd) [ 453.741919] Memory cgroup out of memory: Kill process 2837 ((systemd)) score 1 or sacrifice child [ 453.750831] Killed process 2837 ((systemd)) total-vm:47800kB, anon-rss:3188kB, file-rss:408kB Fix this issue by special-casing the UINT64_MAX case again.
2016-07-08 04:29:35 +02:00
if (val == CGROUP_LIMIT_MAX)
strncpy(buf, "-1\n", sizeof(buf));
else
xsprintf(buf, "%" PRIu64 "\n", val);
r = cg_set_attribute("memory", path, "memory.limit_in_bytes", buf);
if (r < 0)
log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to set memory.limit_in_bytes: %m");
}
}
2010-03-31 16:29:55 +02:00
if ((mask & CGROUP_MASK_DEVICES) && !is_root) {
CGroupDeviceAllow *a;
2010-03-31 16:29:55 +02:00
/* Changing the devices list of a populated cgroup
* might result in EINVAL, hence ignore EINVAL
* here. */
if (c->device_allow || c->device_policy != CGROUP_AUTO)
r = cg_set_attribute("devices", path, "devices.deny", "a");
else
r = cg_set_attribute("devices", path, "devices.allow", "a");
if (r < 0)
log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to reset devices.list: %m");
2010-07-10 17:34:42 +02:00
if (c->device_policy == CGROUP_CLOSED ||
(c->device_policy == CGROUP_AUTO && c->device_allow)) {
static const char auto_devices[] =
"/dev/null\0" "rwm\0"
"/dev/zero\0" "rwm\0"
"/dev/full\0" "rwm\0"
"/dev/random\0" "rwm\0"
"/dev/urandom\0" "rwm\0"
"/dev/tty\0" "rwm\0"
"/dev/pts/ptmx\0" "rw\0"; /* /dev/pts/ptmx may not be duplicated, but accessed */
const char *x, *y;
NULSTR_FOREACH_PAIR(x, y, auto_devices)
whitelist_device(path, x, y);
whitelist_major(path, "pts", 'c', "rw");
whitelist_major(path, "kdbus", 'c', "rw");
whitelist_major(path, "kdbus/*", 'c', "rw");
}
LIST_FOREACH(device_allow, a, c->device_allow) {
char acc[4];
unsigned k = 0;
if (a->r)
acc[k++] = 'r';
if (a->w)
acc[k++] = 'w';
if (a->m)
acc[k++] = 'm';
2010-07-10 17:34:42 +02:00
if (k == 0)
continue;
2010-07-10 17:34:42 +02:00
acc[k++] = 0;
if (startswith(a->path, "/dev/"))
whitelist_device(path, a->path, acc);
else if (startswith(a->path, "block-"))
whitelist_major(path, a->path + 6, 'b', acc);
else if (startswith(a->path, "char-"))
whitelist_major(path, a->path + 5, 'c', acc);
else
log_unit_debug(u, "Ignoring device %s while writing cgroup attribute.", a->path);
}
}
if ((mask & CGROUP_MASK_PIDS) && !is_root) {
if (c->tasks_max != (uint64_t) -1) {
char buf[DECIMAL_STR_MAX(uint64_t) + 2];
sprintf(buf, "%" PRIu64 "\n", c->tasks_max);
r = cg_set_attribute("pids", path, "pids.max", buf);
} else
r = cg_set_attribute("pids", path, "pids.max", "max");
if (r < 0)
log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to set pids.max: %m");
}
2010-07-10 17:34:42 +02:00
}
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
CGroupMask cgroup_context_get_mask(CGroupContext *c) {
CGroupMask mask = 0;
2010-03-31 16:29:55 +02:00
/* Figure out which controllers we need */
2010-03-31 16:29:55 +02:00
if (c->cpu_accounting ||
c->cpu_shares != CGROUP_CPU_SHARES_INVALID ||
c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID ||
c->cpu_quota_per_sec_usec != USEC_INFINITY)
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
mask |= CGROUP_MASK_CPUACCT | CGROUP_MASK_CPU;
if (cgroup_context_has_io_config(c) || cgroup_context_has_blockio_config(c))
mask |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
if (c->memory_accounting ||
c->memory_limit != CGROUP_LIMIT_MAX ||
cgroup_context_has_unified_memory_config(c))
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
mask |= CGROUP_MASK_MEMORY;
2010-03-31 16:29:55 +02:00
if (c->device_allow ||
c->device_policy != CGROUP_AUTO)
mask |= CGROUP_MASK_DEVICES;
if (c->tasks_accounting ||
c->tasks_max != (uint64_t) -1)
mask |= CGROUP_MASK_PIDS;
return mask;
2010-03-31 16:29:55 +02:00
}
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
CGroupMask unit_get_own_mask(Unit *u) {
CGroupContext *c;
2010-03-31 16:29:55 +02:00
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
/* Returns the mask of controllers the unit needs for itself */
c = unit_get_cgroup_context(u);
if (!c)
return 0;
2010-03-31 16:29:55 +02:00
/* If delegation is turned on, then turn on all cgroups,
* unless we are on the legacy hierarchy and the process we
* fork into it is known to drop privileges, and hence
* shouldn't get access to the controllers.
*
* Note that on the unified hierarchy it is safe to delegate
* controllers to unprivileged services. */
if (c->delegate) {
ExecContext *e;
e = unit_get_exec_context(u);
if (!e ||
exec_context_maintains_privileges(e) ||
cg_unified() > 0)
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
return _CGROUP_MASK_ALL;
}
return cgroup_context_get_mask(c);
2010-03-31 16:29:55 +02:00
}
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
CGroupMask unit_get_members_mask(Unit *u) {
assert(u);
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
/* Returns the mask of controllers all of the unit's children
* require, merged */
if (u->cgroup_members_mask_valid)
return u->cgroup_members_mask;
u->cgroup_members_mask = 0;
if (u->type == UNIT_SLICE) {
Unit *member;
Iterator i;
SET_FOREACH(member, u->dependencies[UNIT_BEFORE], i) {
if (member == u)
continue;
2014-02-19 18:20:04 +01:00
if (UNIT_DEREF(member->slice) != u)
continue;
u->cgroup_members_mask |=
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
unit_get_own_mask(member) |
unit_get_members_mask(member);
}
}
u->cgroup_members_mask_valid = true;
return u->cgroup_members_mask;
}
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
CGroupMask unit_get_siblings_mask(Unit *u) {
assert(u);
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
/* Returns the mask of controllers all of the unit's siblings
* require, i.e. the members mask of the unit's parent slice
* if there is one. */
if (UNIT_ISSET(u->slice))
return unit_get_members_mask(UNIT_DEREF(u->slice));
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
return unit_get_own_mask(u) | unit_get_members_mask(u);
}
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
CGroupMask unit_get_subtree_mask(Unit *u) {
/* Returns the mask of this subtree, meaning of the group
* itself and its children. */
return unit_get_own_mask(u) | unit_get_members_mask(u);
}
CGroupMask unit_get_target_mask(Unit *u) {
CGroupMask mask;
/* This returns the cgroup mask of all controllers to enable
* for a specific cgroup, i.e. everything it needs itself,
* plus all that its children need, plus all that its siblings
* need. This is primarily useful on the legacy cgroup
* hierarchy, where we need to duplicate each cgroup in each
* hierarchy that shall be enabled for it. */
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
mask = unit_get_own_mask(u) | unit_get_members_mask(u) | unit_get_siblings_mask(u);
mask &= u->manager->cgroup_supported;
return mask;
}
CGroupMask unit_get_enable_mask(Unit *u) {
CGroupMask mask;
/* This returns the cgroup mask of all controllers to enable
* for the children of a specific cgroup. This is primarily
* useful for the unified cgroup hierarchy, where each cgroup
* controls which controllers are enabled for its children. */
mask = unit_get_members_mask(u);
mask &= u->manager->cgroup_supported;
return mask;
}
/* Recurse from a unit up through its containing slices, propagating
* mask bits upward. A unit is also member of itself. */
void unit_update_cgroup_members_masks(Unit *u) {
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
CGroupMask m;
bool more;
assert(u);
/* Calculate subtree mask */
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
m = unit_get_subtree_mask(u);
/* See if anything changed from the previous invocation. If
* not, we're done. */
if (u->cgroup_subtree_mask_valid && m == u->cgroup_subtree_mask)
return;
more =
u->cgroup_subtree_mask_valid &&
((m & ~u->cgroup_subtree_mask) != 0) &&
((~m & u->cgroup_subtree_mask) == 0);
u->cgroup_subtree_mask = m;
u->cgroup_subtree_mask_valid = true;
if (UNIT_ISSET(u->slice)) {
Unit *s = UNIT_DEREF(u->slice);
if (more)
/* There's more set now than before. We
* propagate the new mask to the parent's mask
* (not caring if it actually was valid or
* not). */
s->cgroup_members_mask |= m;
else
/* There's less set now than before (or we
* don't know), we need to recalculate
* everything, so let's invalidate the
* parent's members mask */
s->cgroup_members_mask_valid = false;
/* And now make sure that this change also hits our
* grandparents */
unit_update_cgroup_members_masks(s);
}
}
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
static const char *migrate_callback(CGroupMask mask, void *userdata) {
Unit *u = userdata;
assert(mask != 0);
assert(u);
while (u) {
if (u->cgroup_path &&
u->cgroup_realized &&
(u->cgroup_realized_mask & mask) == mask)
return u->cgroup_path;
u = UNIT_DEREF(u->slice);
}
return NULL;
}
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
char *unit_default_cgroup_path(Unit *u) {
_cleanup_free_ char *escaped = NULL, *slice = NULL;
int r;
assert(u);
if (unit_has_name(u, SPECIAL_ROOT_SLICE))
return strdup(u->manager->cgroup_root);
if (UNIT_ISSET(u->slice) && !unit_has_name(UNIT_DEREF(u->slice), SPECIAL_ROOT_SLICE)) {
r = cg_slice_to_path(UNIT_DEREF(u->slice)->id, &slice);
if (r < 0)
return NULL;
}
escaped = cg_escape(u->id);
if (!escaped)
return NULL;
if (slice)
return strjoin(u->manager->cgroup_root, "/", slice, "/", escaped, NULL);
else
return strjoin(u->manager->cgroup_root, "/", escaped, NULL);
}
int unit_set_cgroup_path(Unit *u, const char *path) {
_cleanup_free_ char *p = NULL;
int r;
assert(u);
if (path) {
p = strdup(path);
if (!p)
return -ENOMEM;
} else
p = NULL;
if (streq_ptr(u->cgroup_path, p))
return 0;
if (p) {
r = hashmap_put(u->manager->cgroup_unit, p, u);
if (r < 0)
return r;
}
unit_release_cgroup(u);
u->cgroup_path = p;
p = NULL;
return 1;
}
int unit_watch_cgroup(Unit *u) {
_cleanup_free_ char *events = NULL;
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
int r;
assert(u);
if (!u->cgroup_path)
return 0;
if (u->cgroup_inotify_wd >= 0)
return 0;
/* Only applies to the unified hierarchy */
r = cg_unified();
if (r < 0)
return log_unit_error_errno(u, r, "Failed detect wether the unified hierarchy is used: %m");
if (r == 0)
return 0;
/* Don't watch the root slice, it's pointless. */
if (unit_has_name(u, SPECIAL_ROOT_SLICE))
return 0;
r = hashmap_ensure_allocated(&u->manager->cgroup_inotify_wd_unit, &trivial_hash_ops);
if (r < 0)
return log_oom();
r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events", &events);
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
if (r < 0)
return log_oom();
u->cgroup_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
if (u->cgroup_inotify_wd < 0) {
if (errno == ENOENT) /* If the directory is already
* gone we don't need to track
* it, so this is not an error */
return 0;
return log_unit_error_errno(u, errno, "Failed to add inotify watch descriptor for control group %s: %m", u->cgroup_path);
}
r = hashmap_put(u->manager->cgroup_inotify_wd_unit, INT_TO_PTR(u->cgroup_inotify_wd), u);
if (r < 0)
return log_unit_error_errno(u, r, "Failed to add inotify watch descriptor to hash map: %m");
return 0;
}
static int unit_create_cgroup(
Unit *u,
CGroupMask target_mask,
CGroupMask enable_mask) {
CGroupContext *c;
int r;
assert(u);
c = unit_get_cgroup_context(u);
if (!c)
return 0;
if (!u->cgroup_path) {
_cleanup_free_ char *path = NULL;
path = unit_default_cgroup_path(u);
if (!path)
return log_oom();
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
r = unit_set_cgroup_path(u, path);
if (r == -EEXIST)
return log_unit_error_errno(u, r, "Control group %s exists already.", path);
if (r < 0)
return log_unit_error_errno(u, r, "Failed to set unit's control group path to %s: %m", path);
}
/* First, create our own group */
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
r = cg_create_everywhere(u->manager->cgroup_supported, target_mask, u->cgroup_path);
if (r < 0)
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
return log_unit_error_errno(u, r, "Failed to create cgroup %s: %m", u->cgroup_path);
/* Start watching it */
(void) unit_watch_cgroup(u);
/* Enable all controllers we need */
r = cg_enable_everywhere(u->manager->cgroup_supported, enable_mask, u->cgroup_path);
if (r < 0)
log_unit_warning_errno(u, r, "Failed to enable controllers on cgroup %s, ignoring: %m", u->cgroup_path);
/* Keep track that this is now realized */
u->cgroup_realized = true;
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
u->cgroup_realized_mask = target_mask;
u->cgroup_enabled_mask = enable_mask;
if (u->type != UNIT_SLICE && !c->delegate) {
/* Then, possibly move things over, but not if
* subgroups may contain processes, which is the case
* for slice and delegation units. */
r = cg_migrate_everywhere(u->manager->cgroup_supported, u->cgroup_path, u->cgroup_path, migrate_callback, u);
if (r < 0)
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
log_unit_warning_errno(u, r, "Failed to migrate cgroup from to %s, ignoring: %m", u->cgroup_path);
}
return 0;
}
int unit_attach_pids_to_cgroup(Unit *u) {
int r;
assert(u);
r = unit_realize_cgroup(u);
if (r < 0)
return r;
r = cg_attach_many_everywhere(u->manager->cgroup_supported, u->cgroup_path, u->pids, migrate_callback, u);
if (r < 0)
return r;
return 0;
}
static bool unit_has_mask_realized(Unit *u, CGroupMask target_mask, CGroupMask enable_mask) {
assert(u);
return u->cgroup_realized && u->cgroup_realized_mask == target_mask && u->cgroup_enabled_mask == enable_mask;
}
/* Check if necessary controllers and attributes for a unit are in place.
*
* If so, do nothing.
* If not, create paths, move processes over, and set attributes.
*
* Returns 0 on success and < 0 on failure. */
static int unit_realize_cgroup_now(Unit *u, ManagerState state) {
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
CGroupMask target_mask, enable_mask;
int r;
assert(u);
if (u->in_cgroup_queue) {
LIST_REMOVE(cgroup_queue, u->manager->cgroup_queue, u);
u->in_cgroup_queue = false;
}
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
target_mask = unit_get_target_mask(u);
enable_mask = unit_get_enable_mask(u);
if (unit_has_mask_realized(u, target_mask, enable_mask))
return 0;
/* First, realize parents */
if (UNIT_ISSET(u->slice)) {
r = unit_realize_cgroup_now(UNIT_DEREF(u->slice), state);
if (r < 0)
return r;
}
/* And then do the real work */
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
r = unit_create_cgroup(u, target_mask, enable_mask);
if (r < 0)
return r;
/* Finally, apply the necessary attributes. */
cgroup_context_apply(u, target_mask, state);
return 0;
}
static void unit_add_to_cgroup_queue(Unit *u) {
if (u->in_cgroup_queue)
return;
2010-03-31 16:29:55 +02:00
LIST_PREPEND(cgroup_queue, u->manager->cgroup_queue, u);
u->in_cgroup_queue = true;
}
unsigned manager_dispatch_cgroup_queue(Manager *m) {
ManagerState state;
unsigned n = 0;
Unit *i;
int r;
state = manager_state(m);
while ((i = m->cgroup_queue)) {
assert(i->in_cgroup_queue);
r = unit_realize_cgroup_now(i, state);
if (r < 0)
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
log_warning_errno(r, "Failed to realize cgroups for queued unit %s, ignoring: %m", i->id);
n++;
}
return n;
2010-03-31 16:29:55 +02:00
}
static void unit_queue_siblings(Unit *u) {
Unit *slice;
/* This adds the siblings of the specified unit and the
* siblings of all parent units to the cgroup queue. (But
* neither the specified unit itself nor the parents.) */
while ((slice = UNIT_DEREF(u->slice))) {
Iterator i;
Unit *m;
SET_FOREACH(m, slice->dependencies[UNIT_BEFORE], i) {
if (m == u)
continue;
2010-03-31 16:29:55 +02:00
/* Skip units that have a dependency on the slice
* but aren't actually in it. */
if (UNIT_DEREF(m->slice) != slice)
2010-04-08 00:52:14 +02:00
continue;
2010-03-31 16:29:55 +02:00
/* No point in doing cgroup application for units
* without active processes. */
if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(m)))
continue;
/* If the unit doesn't need any new controllers
* and has current ones realized, it doesn't need
* any changes. */
if (unit_has_mask_realized(m, unit_get_target_mask(m), unit_get_enable_mask(m)))
continue;
unit_add_to_cgroup_queue(m);
2010-04-08 00:52:14 +02:00
}
u = slice;
2010-03-31 16:29:55 +02:00
}
}
int unit_realize_cgroup(Unit *u) {
assert(u);
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return 0;
2010-03-31 16:29:55 +02:00
/* So, here's the deal: when realizing the cgroups for this
* unit, we need to first create all parents, but there's more
* actually: for the weight-based controllers we also need to
* make sure that all our siblings (i.e. units that are in the
* same slice as we are) have cgroups, too. Otherwise, things
* would become very uneven as each of their processes would
* get as much resources as all our group together. This call
* will synchronously create the parent cgroups, but will
* defer work on the siblings to the next event loop
* iteration. */
/* Add all sibling slices to the cgroup queue. */
unit_queue_siblings(u);
/* And realize this one now (and apply the values) */
return unit_realize_cgroup_now(u, manager_state(u->manager));
2010-03-31 16:29:55 +02:00
}
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
void unit_release_cgroup(Unit *u) {
assert(u);
/* Forgets all cgroup details for this cgroup */
if (u->cgroup_path) {
(void) hashmap_remove(u->manager->cgroup_unit, u->cgroup_path);
u->cgroup_path = mfree(u->cgroup_path);
}
if (u->cgroup_inotify_wd >= 0) {
if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_inotify_wd) < 0)
log_unit_debug_errno(u, errno, "Failed to remove cgroup inotify watch %i for %s, ignoring", u->cgroup_inotify_wd, u->id);
(void) hashmap_remove(u->manager->cgroup_inotify_wd_unit, INT_TO_PTR(u->cgroup_inotify_wd));
u->cgroup_inotify_wd = -1;
}
}
void unit_prune_cgroup(Unit *u) {
2010-03-31 16:29:55 +02:00
int r;
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
bool is_root_slice;
2010-03-31 16:29:55 +02:00
assert(u);
2010-03-31 16:29:55 +02:00
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
/* Removes the cgroup, if empty and possible, and stops watching it. */
if (!u->cgroup_path)
return;
2010-03-31 16:29:55 +02:00
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
r = cg_trim_everywhere(u->manager->cgroup_supported, u->cgroup_path, !is_root_slice);
if (r < 0) {
log_unit_debug_errno(u, r, "Failed to destroy cgroup %s, ignoring: %m", u->cgroup_path);
return;
}
2010-03-31 16:29:55 +02:00
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
if (is_root_slice)
return;
unit_release_cgroup(u);
u->cgroup_realized = false;
u->cgroup_realized_mask = 0;
u->cgroup_enabled_mask = 0;
2010-03-31 16:29:55 +02:00
}
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
int unit_search_main_pid(Unit *u, pid_t *ret) {
_cleanup_fclose_ FILE *f = NULL;
pid_t pid = 0, npid, mypid;
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
int r;
assert(u);
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
assert(ret);
if (!u->cgroup_path)
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
return -ENXIO;
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, &f);
if (r < 0)
return r;
mypid = getpid();
while (cg_read_pid(f, &npid) > 0) {
pid_t ppid;
if (npid == pid)
continue;
2010-03-31 16:29:55 +02:00
/* Ignore processes that aren't our kids */
if (get_process_ppid(npid, &ppid) >= 0 && ppid != mypid)
continue;
2010-03-31 16:29:55 +02:00
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
if (pid != 0)
/* Dang, there's more than one daemonized PID
in this group, so we don't know what process
is the main process. */
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
return -ENODATA;
2010-03-31 16:29:55 +02:00
pid = npid;
2010-03-31 16:29:55 +02:00
}
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
*ret = pid;
return 0;
}
static int unit_watch_pids_in_path(Unit *u, const char *path) {
2015-09-02 20:46:22 +02:00
_cleanup_closedir_ DIR *d = NULL;
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
_cleanup_fclose_ FILE *f = NULL;
int ret = 0, r;
assert(u);
assert(path);
r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, path, &f);
if (r < 0)
ret = r;
else {
pid_t pid;
while ((r = cg_read_pid(f, &pid)) > 0) {
r = unit_watch_pid(u, pid);
if (r < 0 && ret >= 0)
ret = r;
}
if (r < 0 && ret >= 0)
ret = r;
}
r = cg_enumerate_subgroups(SYSTEMD_CGROUP_CONTROLLER, path, &d);
if (r < 0) {
if (ret >= 0)
ret = r;
} else {
char *fn;
while ((r = cg_read_subgroup(d, &fn)) > 0) {
_cleanup_free_ char *p = NULL;
p = strjoin(path, "/", fn, NULL);
free(fn);
if (!p)
return -ENOMEM;
r = unit_watch_pids_in_path(u, p);
if (r < 0 && ret >= 0)
ret = r;
}
if (r < 0 && ret >= 0)
ret = r;
}
return ret;
}
int unit_watch_all_pids(Unit *u) {
assert(u);
/* Adds all PIDs from our cgroup to the set of PIDs we
* watch. This is a fallback logic for cases where we do not
* get reliable cgroup empty notifications: we try to use
* SIGCHLD as replacement. */
if (!u->cgroup_path)
return -ENOENT;
if (cg_unified() > 0) /* On unified we can use proper notifications */
return 0;
return unit_watch_pids_in_path(u, u->cgroup_path);
}
int unit_notify_cgroup_empty(Unit *u) {
int r;
assert(u);
if (!u->cgroup_path)
return 0;
r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
if (r <= 0)
return r;
unit_add_to_gc_queue(u);
if (UNIT_VTABLE(u)->notify_cgroup_empty)
UNIT_VTABLE(u)->notify_cgroup_empty(u);
return 0;
}
static int on_cgroup_inotify_event(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
Manager *m = userdata;
assert(s);
assert(fd >= 0);
assert(m);
for (;;) {
union inotify_event_buffer buffer;
struct inotify_event *e;
ssize_t l;
l = read(fd, &buffer, sizeof(buffer));
if (l < 0) {
if (errno == EINTR || errno == EAGAIN)
return 0;
return log_error_errno(errno, "Failed to read control group inotify events: %m");
}
FOREACH_INOTIFY_EVENT(e, buffer, l) {
Unit *u;
if (e->wd < 0)
/* Queue overflow has no watch descriptor */
continue;
if (e->mask & IN_IGNORED)
/* The watch was just removed */
continue;
u = hashmap_get(m->cgroup_inotify_wd_unit, INT_TO_PTR(e->wd));
if (!u) /* Not that inotify might deliver
* events for a watch even after it
* was removed, because it was queued
* before the removal. Let's ignore
* this here safely. */
continue;
(void) unit_notify_cgroup_empty(u);
}
}
2010-03-31 16:29:55 +02:00
}
int manager_setup_cgroup(Manager *m) {
_cleanup_free_ char *path = NULL;
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
CGroupController c;
int r, unified;
char *e;
2010-03-31 16:29:55 +02:00
assert(m);
/* 1. Determine hierarchy */
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
m->cgroup_root = mfree(m->cgroup_root);
r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 0, &m->cgroup_root);
if (r < 0)
return log_error_errno(r, "Cannot determine cgroup we are running in: %m");
2010-03-31 16:29:55 +02:00
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
/* Chop off the init scope, if we are already located in it */
e = endswith(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
/* LEGACY: Also chop off the system slice if we are in
* it. This is to support live upgrades from older systemd
* versions where PID 1 was moved there. Also see
* cg_get_root_path(). */
if (!e && MANAGER_IS_SYSTEM(m)) {
e = endswith(m->cgroup_root, "/" SPECIAL_SYSTEM_SLICE);
if (!e)
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
e = endswith(m->cgroup_root, "/system"); /* even more legacy */
}
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
if (e)
*e = 0;
/* And make sure to store away the root value without trailing
* slash, even for the root dir, so that we can easily prepend
* it everywhere. */
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
while ((e = endswith(m->cgroup_root, "/")))
*e = 0;
2010-03-31 16:29:55 +02:00
/* 2. Show data */
r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, NULL, &path);
if (r < 0)
return log_error_errno(r, "Cannot find cgroup mount point: %m");
2010-03-31 16:29:55 +02:00
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
unified = cg_unified();
if (unified < 0)
return log_error_errno(r, "Couldn't determine if we are running in the unified hierarchy: %m");
if (unified > 0)
log_debug("Unified cgroup hierarchy is located at %s.", path);
else
log_debug("Using cgroup controller " SYSTEMD_CGROUP_CONTROLLER ". File system hierarchy is at %s.", path);
if (!m->test_run) {
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
const char *scope_path;
/* 3. Install agent */
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
if (unified) {
/* In the unified hierarchy we can get
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
* cgroup empty notifications via inotify. */
m->cgroup_inotify_event_source = sd_event_source_unref(m->cgroup_inotify_event_source);
safe_close(m->cgroup_inotify_fd);
m->cgroup_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC);
if (m->cgroup_inotify_fd < 0)
return log_error_errno(errno, "Failed to create control group inotify object: %m");
r = sd_event_add_io(m->event, &m->cgroup_inotify_event_source, m->cgroup_inotify_fd, EPOLLIN, on_cgroup_inotify_event, m);
if (r < 0)
return log_error_errno(r, "Failed to watch control group inotify object: %m");
core: use an AF_UNIX/SOCK_DGRAM socket for cgroup agent notification dbus-daemon currently uses a backlog of 30 on its D-bus system bus socket. On overloaded systems this means that only 30 connections may be queued without dbus-daemon processing them before further connection attempts fail. Our cgroups-agent binary so far used D-Bus for its messaging, and hitting this limit hence may result in us losing cgroup empty messages. This patch adds a seperate cgroup agent socket of type AF_UNIX/SOCK_DGRAM. Since sockets of these types need no connection set up, no listen() backlog applies. Our cgroup-agent binary will hence simply block as long as it can't enqueue its datagram message, so that we won't lose cgroup empty messages as likely anymore. This also rearranges the ordering of the processing of SIGCHLD signals, service notification messages (sd_notify()...) and the two types of cgroup notifications (inotify for the unified hierarchy support, and agent for the classic hierarchy support). We now always process events for these in the following order: 1. service notification messages (SD_EVENT_PRIORITY_NORMAL-7) 2. SIGCHLD signals (SD_EVENT_PRIORITY_NORMAL-6) 3. cgroup inotify and cgroup agent (SD_EVENT_PRIORITY_NORMAL-5) This is because when receiving SIGCHLD we invalidate PID information, which we need to process the service notification messages which are bound to PIDs. Hence the order between the first two items. And we want to process SIGCHLD metadata to detect whether a service is gone, before using cgroup notifications, to decide when a service is gone, since the former carries more useful metadata. Related to this: https://bugs.freedesktop.org/show_bug.cgi?id=95264 https://github.com/systemd/systemd/issues/1961
2016-05-04 20:43:23 +02:00
/* Process cgroup empty notifications early, but after service notifications and SIGCHLD. Also
* see handling of cgroup agent notifications, for the classic cgroup hierarchy support. */
r = sd_event_source_set_priority(m->cgroup_inotify_event_source, SD_EVENT_PRIORITY_NORMAL-5);
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
if (r < 0)
return log_error_errno(r, "Failed to set priority of inotify event source: %m");
(void) sd_event_source_set_description(m->cgroup_inotify_event_source, "cgroup-inotify");
} else if (MANAGER_IS_SYSTEM(m)) {
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
/* On the legacy hierarchy we only get
* notifications via cgroup agents. (Which
* isn't really reliable, since it does not
* generate events when control groups with
* children run empty. */
r = cg_install_release_agent(SYSTEMD_CGROUP_CONTROLLER, SYSTEMD_CGROUP_AGENT_PATH);
if (r < 0)
log_warning_errno(r, "Failed to install release agent, ignoring: %m");
else if (r > 0)
log_debug("Installed release agent.");
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
else if (r == 0)
log_debug("Release agent already installed.");
}
2010-03-31 16:29:55 +02:00
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
/* 4. Make sure we are in the special "init.scope" unit in the root slice. */
scope_path = strjoina(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
r = cg_create_and_attach(SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
if (r < 0)
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
return log_error_errno(r, "Failed to create %s control group: %m", scope_path);
/* also, move all other userspace processes remaining
* in the root cgroup into that scope. */
r = cg_migrate(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, SYSTEMD_CGROUP_CONTROLLER, scope_path, false);
if (r < 0)
log_warning_errno(r, "Couldn't move remaining userspace processes, ignoring: %m");
/* 5. And pin it, so that it cannot be unmounted */
safe_close(m->pin_cgroupfs_fd);
m->pin_cgroupfs_fd = open(path, O_RDONLY|O_CLOEXEC|O_DIRECTORY|O_NOCTTY|O_NONBLOCK);
if (m->pin_cgroupfs_fd < 0)
return log_error_errno(errno, "Failed to open pin file: %m");
2015-01-26 15:29:14 +01:00
/* 6. Always enable hierarchical support if it exists... */
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
if (!unified)
(void) cg_set_attribute("memory", "/", "memory.use_hierarchy", "1");
}
/* 7. Figure out which controllers are supported */
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
r = cg_mask_supported(&m->cgroup_supported);
if (r < 0)
return log_error_errno(r, "Failed to determine supported controllers: %m");
for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++)
log_debug("Controller '%s' supported: %s", cgroup_controller_to_string(c), yes_no(m->cgroup_supported & CGROUP_CONTROLLER_TO_MASK(c)));
return 0;
2010-03-31 16:29:55 +02:00
}
void manager_shutdown_cgroup(Manager *m, bool delete) {
2010-03-31 16:29:55 +02:00
assert(m);
/* We can't really delete the group, since we are in it. But
* let's trim it. */
if (delete && m->cgroup_root)
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
(void) cg_trim(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, false);
m->cgroup_inotify_wd_unit = hashmap_free(m->cgroup_inotify_wd_unit);
m->cgroup_inotify_event_source = sd_event_source_unref(m->cgroup_inotify_event_source);
m->cgroup_inotify_fd = safe_close(m->cgroup_inotify_fd);
2010-03-31 16:29:55 +02:00
m->pin_cgroupfs_fd = safe_close(m->pin_cgroupfs_fd);
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
m->cgroup_root = mfree(m->cgroup_root);
2010-03-31 16:29:55 +02:00
}
Unit* manager_get_unit_by_cgroup(Manager *m, const char *cgroup) {
char *p;
Unit *u;
assert(m);
assert(cgroup);
u = hashmap_get(m->cgroup_unit, cgroup);
if (u)
return u;
2013-03-22 06:01:04 +01:00
p = strdupa(cgroup);
for (;;) {
char *e;
e = strrchr(p, '/');
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
if (!e || e == p)
return hashmap_get(m->cgroup_unit, SPECIAL_ROOT_SLICE);
*e = 0;
u = hashmap_get(m->cgroup_unit, p);
if (u)
return u;
}
}
Unit *manager_get_unit_by_pid_cgroup(Manager *m, pid_t pid) {
_cleanup_free_ char *cgroup = NULL;
int r;
2010-03-31 16:29:55 +02:00
assert(m);
if (pid <= 0)
return NULL;
r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &cgroup);
if (r < 0)
return NULL;
return manager_get_unit_by_cgroup(m, cgroup);
}
Unit *manager_get_unit_by_pid(Manager *m, pid_t pid) {
Unit *u;
assert(m);
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
if (pid <= 0)
return NULL;
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
if (pid == 1)
return hashmap_get(m->units, SPECIAL_INIT_SCOPE);
u = hashmap_get(m->watch_pids1, PID_TO_PTR(pid));
if (u)
return u;
u = hashmap_get(m->watch_pids2, PID_TO_PTR(pid));
if (u)
return u;
return manager_get_unit_by_pid_cgroup(m, pid);
}
int manager_notify_cgroup_empty(Manager *m, const char *cgroup) {
Unit *u;
assert(m);
assert(cgroup);
core: use an AF_UNIX/SOCK_DGRAM socket for cgroup agent notification dbus-daemon currently uses a backlog of 30 on its D-bus system bus socket. On overloaded systems this means that only 30 connections may be queued without dbus-daemon processing them before further connection attempts fail. Our cgroups-agent binary so far used D-Bus for its messaging, and hitting this limit hence may result in us losing cgroup empty messages. This patch adds a seperate cgroup agent socket of type AF_UNIX/SOCK_DGRAM. Since sockets of these types need no connection set up, no listen() backlog applies. Our cgroup-agent binary will hence simply block as long as it can't enqueue its datagram message, so that we won't lose cgroup empty messages as likely anymore. This also rearranges the ordering of the processing of SIGCHLD signals, service notification messages (sd_notify()...) and the two types of cgroup notifications (inotify for the unified hierarchy support, and agent for the classic hierarchy support). We now always process events for these in the following order: 1. service notification messages (SD_EVENT_PRIORITY_NORMAL-7) 2. SIGCHLD signals (SD_EVENT_PRIORITY_NORMAL-6) 3. cgroup inotify and cgroup agent (SD_EVENT_PRIORITY_NORMAL-5) This is because when receiving SIGCHLD we invalidate PID information, which we need to process the service notification messages which are bound to PIDs. Hence the order between the first two items. And we want to process SIGCHLD metadata to detect whether a service is gone, before using cgroup notifications, to decide when a service is gone, since the former carries more useful metadata. Related to this: https://bugs.freedesktop.org/show_bug.cgi?id=95264 https://github.com/systemd/systemd/issues/1961
2016-05-04 20:43:23 +02:00
log_debug("Got cgroup empty notification for: %s", cgroup);
u = manager_get_unit_by_cgroup(m, cgroup);
if (!u)
return 0;
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
return unit_notify_cgroup_empty(u);
}
int unit_get_memory_current(Unit *u, uint64_t *ret) {
_cleanup_free_ char *v = NULL;
int r;
assert(u);
assert(ret);
if (!u->cgroup_path)
return -ENODATA;
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
if ((u->cgroup_realized_mask & CGROUP_MASK_MEMORY) == 0)
return -ENODATA;
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
if (cg_unified() <= 0)
r = cg_get_attribute("memory", u->cgroup_path, "memory.usage_in_bytes", &v);
else
r = cg_get_attribute("memory", u->cgroup_path, "memory.current", &v);
if (r == -ENOENT)
return -ENODATA;
if (r < 0)
return r;
return safe_atou64(v, ret);
}
int unit_get_tasks_current(Unit *u, uint64_t *ret) {
_cleanup_free_ char *v = NULL;
int r;
assert(u);
assert(ret);
if (!u->cgroup_path)
return -ENODATA;
if ((u->cgroup_realized_mask & CGROUP_MASK_PIDS) == 0)
return -ENODATA;
r = cg_get_attribute("pids", u->cgroup_path, "pids.current", &v);
if (r == -ENOENT)
return -ENODATA;
if (r < 0)
return r;
return safe_atou64(v, ret);
}
static int unit_get_cpu_usage_raw(Unit *u, nsec_t *ret) {
_cleanup_free_ char *v = NULL;
uint64_t ns;
int r;
assert(u);
assert(ret);
if (!u->cgroup_path)
return -ENODATA;
core: unified cgroup hierarchy support This patch set adds full support the new unified cgroup hierarchy logic of modern kernels. A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is added. If specified the unified hierarchy is mounted to /sys/fs/cgroup instead of a tmpfs. No further hierarchies are mounted. The kernel command line option defaults to off. We can turn it on by default as soon as the kernel's APIs regarding this are stabilized (but even then downstream distros might want to turn this off, as this will break any tools that access cgroupfs directly). It is possibly to choose for each boot individually whether the unified or the legacy hierarchy is used. nspawn will by default provide the legacy hierarchy to containers if the host is using it, and the unified otherwise. However it is possible to run containers with the unified hierarchy on a legacy host and vice versa, by setting the $UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0, respectively. The unified hierarchy provides reliable cgroup empty notifications for the first time, via inotify. To make use of this we maintain one manager-wide inotify fd, and each cgroup to it. This patch also removes cg_delete() which is unused now. On kernel 4.2 only the "memory" controller is compatible with the unified hierarchy, hence that's the only controller systemd exposes when booted in unified heirarchy mode. This introduces a new enum for enumerating supported controllers, plus a related enum for the mask bits mapping to it. The core is changed to make use of this everywhere. This moves PID 1 into a new "init.scope" implicit scope unit in the root slice. This is necessary since on the unified hierarchy cgroups may either contain subgroups or processes but not both. PID 1 hence has to move out of the root cgroup (strictly speaking the root cgroup is the only one where processes and subgroups are still allowed, but in order to support containers nicey, we move PID 1 into the new scope in all cases.) This new unit is also used on legacy hierarchy setups. It's actually pretty useful on all systems, as it can then be used to filter journal messages coming from PID 1, and so on. The root slice ("-.slice") is now implicitly created and started (and does not require a unit file on disk anymore), since that's where "init.scope" is located and the slice needs to be started before the scope can. To check whether we are in unified or legacy hierarchy mode we use statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in legacy mode, if it reports cgroupfs we are in unified mode. This patch set carefuly makes sure that cgls and cgtop continue to work as desired. When invoking nspawn as a service it will implicitly create two subcgroups in the cgroup it is using, one to move the nspawn process into, the other to move the actual container processes into. This is done because of the requirement that cgroups may either contain processes or other subgroups.
2015-09-01 19:22:36 +02:00
if ((u->cgroup_realized_mask & CGROUP_MASK_CPUACCT) == 0)
return -ENODATA;
r = cg_get_attribute("cpuacct", u->cgroup_path, "cpuacct.usage", &v);
if (r == -ENOENT)
return -ENODATA;
if (r < 0)
return r;
r = safe_atou64(v, &ns);
if (r < 0)
return r;
*ret = ns;
return 0;
}
int unit_get_cpu_usage(Unit *u, nsec_t *ret) {
nsec_t ns;
int r;
r = unit_get_cpu_usage_raw(u, &ns);
if (r < 0)
return r;
if (ns > u->cpuacct_usage_base)
ns -= u->cpuacct_usage_base;
else
ns = 0;
*ret = ns;
return 0;
}
int unit_reset_cpu_usage(Unit *u) {
nsec_t ns;
int r;
assert(u);
r = unit_get_cpu_usage_raw(u, &ns);
if (r < 0) {
u->cpuacct_usage_base = 0;
return r;
}
u->cpuacct_usage_base = ns;
return 0;
}
bool unit_cgroup_delegate(Unit *u) {
CGroupContext *c;
assert(u);
c = unit_get_cgroup_context(u);
if (!c)
return false;
return c->delegate;
}
void unit_invalidate_cgroup(Unit *u, CGroupMask m) {
assert(u);
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return;
if (m == 0)
return;
/* always invalidate compat pairs together */
if (m & (CGROUP_MASK_IO | CGROUP_MASK_BLKIO))
m |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
if ((u->cgroup_realized_mask & m) == 0)
return;
u->cgroup_realized_mask &= ~m;
unit_add_to_cgroup_queue(u);
}
void manager_invalidate_startup_units(Manager *m) {
Iterator i;
Unit *u;
assert(m);
SET_FOREACH(u, m->startup_units, i)
core: add io controller support on the unified hierarchy On the unified hierarchy, blkio controller is renamed to io and the interface is changed significantly. * blkio.weight and blkio.weight_device are consolidated into io.weight which uses the standardized weight range [1, 10000] with 100 as the default value. * blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max. Expansion of throttling features is being worked on to support work-conserving absolute limits (io.low and io.high). * All stats are consolidated into io.stats. This patchset adds support for the new interface. As the interface has been revamped and new features are expected to be added, it seems best to treat it as a separate controller rather than trying to expand the blkio settings although we might add automatic translation if only blkio settings are specified. * io.weight handling is mostly identical to blkio.weight[_device] handling except that the weight range is different. * Both read and write bandwidth settings are consolidated into CGroupIODeviceLimit which describes all limits applicable to the device. This makes it less painful to add new limits. * "max" can be used to specify the maximum limit which is equivalent to no config for max limits and treated as such. If a given CGroupIODeviceLimit doesn't contain any non-default configs, the config struct is discarded once the no limit config is applied to cgroup. * lookup_blkio_device() is renamed to lookup_block_device(). Signed-off-by: Tejun Heo <htejun@fb.com>
2016-05-05 22:42:55 +02:00
unit_invalidate_cgroup(u, CGROUP_MASK_CPU|CGROUP_MASK_IO|CGROUP_MASK_BLKIO);
}
static const char* const cgroup_device_policy_table[_CGROUP_DEVICE_POLICY_MAX] = {
[CGROUP_AUTO] = "auto",
[CGROUP_CLOSED] = "closed",
[CGROUP_STRICT] = "strict",
};
DEFINE_STRING_TABLE_LOOKUP(cgroup_device_policy, CGroupDevicePolicy);