Systemd/src/core/unit.c

3731 lines
113 KiB
C
Raw Normal View History

/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/
2010-01-26 21:39:06 +01:00
/***
This file is part of systemd.
Copyright 2010 Lennart Poettering
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see <http://www.gnu.org/licenses/>.
***/
2010-01-26 21:39:06 +01:00
#include <errno.h>
#include <string.h>
2010-01-27 00:15:56 +01:00
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>
2010-01-26 21:39:06 +01:00
#include "sd-id128.h"
#include "sd-messages.h"
2010-01-26 21:39:06 +01:00
#include "set.h"
#include "unit.h"
#include "macro.h"
#include "strv.h"
2012-05-07 21:36:12 +02:00
#include "path-util.h"
2010-01-26 21:39:06 +01:00
#include "load-fragment.h"
#include "load-dropin.h"
#include "log.h"
2010-04-15 03:11:11 +02:00
#include "unit-name.h"
2010-04-18 03:08:16 +02:00
#include "dbus-unit.h"
2010-06-18 04:22:59 +02:00
#include "special.h"
#include "cgroup-util.h"
#include "missing.h"
#include "mkdir.h"
#include "fileio-label.h"
#include "bus-common-errors.h"
#include "dbus.h"
#include "execute.h"
#include "dropin.h"
2015-04-10 20:43:52 +02:00
#include "formats-util.h"
2015-04-10 19:10:00 +02:00
#include "process-util.h"
2010-01-26 21:39:06 +01:00
const UnitVTable * const unit_vtable[_UNIT_TYPE_MAX] = {
[UNIT_SERVICE] = &service_vtable,
[UNIT_SOCKET] = &socket_vtable,
[UNIT_BUSNAME] = &busname_vtable,
2010-01-26 21:39:06 +01:00
[UNIT_TARGET] = &target_vtable,
[UNIT_SNAPSHOT] = &snapshot_vtable,
2010-01-26 21:39:06 +01:00
[UNIT_DEVICE] = &device_vtable,
[UNIT_MOUNT] = &mount_vtable,
[UNIT_AUTOMOUNT] = &automount_vtable,
[UNIT_SWAP] = &swap_vtable,
[UNIT_TIMER] = &timer_vtable,
[UNIT_PATH] = &path_vtable,
[UNIT_SLICE] = &slice_vtable,
[UNIT_SCOPE] = &scope_vtable
2010-01-26 21:39:06 +01:00
};
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
static void maybe_warn_about_dependency(Unit *u, const char *other, UnitDependency dependency);
Unit *unit_new(Manager *m, size_t size) {
2010-01-26 21:39:06 +01:00
Unit *u;
assert(m);
assert(size >= sizeof(Unit));
2010-01-26 21:39:06 +01:00
u = malloc0(size);
if (!u)
2010-01-26 21:39:06 +01:00
return NULL;
u->names = set_new(&string_hash_ops);
if (!u->names) {
2010-01-26 21:39:06 +01:00
free(u);
return NULL;
}
u->manager = m;
u->type = _UNIT_TYPE_INVALID;
u->deserialized_job = _JOB_TYPE_INVALID;
u->default_dependencies = true;
u->unit_file_state = _UNIT_FILE_STATE_INVALID;
u->unit_file_preset = -1;
u->on_failure_job_mode = JOB_REPLACE;
2010-01-26 21:39:06 +01:00
return u;
}
bool unit_has_name(Unit *u, const char *name) {
assert(u);
assert(name);
return !!set_get(u->names, (char*) name);
}
static void unit_init(Unit *u) {
CGroupContext *cc;
ExecContext *ec;
KillContext *kc;
assert(u);
assert(u->manager);
assert(u->type >= 0);
cc = unit_get_cgroup_context(u);
if (cc) {
cgroup_context_init(cc);
/* Copy in the manager defaults into the cgroup
* context, _before_ the rest of the settings have
* been initialized */
cc->cpu_accounting = u->manager->default_cpu_accounting;
cc->blockio_accounting = u->manager->default_blockio_accounting;
cc->memory_accounting = u->manager->default_memory_accounting;
}
ec = unit_get_exec_context(u);
if (ec)
exec_context_init(ec);
kc = unit_get_kill_context(u);
if (kc)
kill_context_init(kc);
if (UNIT_VTABLE(u)->init)
UNIT_VTABLE(u)->init(u);
}
2010-01-26 21:39:06 +01:00
int unit_add_name(Unit *u, const char *text) {
_cleanup_free_ char *s = NULL, *i = NULL;
2010-01-26 21:39:06 +01:00
UnitType t;
int r;
assert(u);
assert(text);
if (unit_name_is_valid(text, UNIT_NAME_TEMPLATE)) {
if (!u->instance)
2010-04-15 03:11:11 +02:00
return -EINVAL;
2010-01-26 21:39:06 +01:00
r = unit_name_replace_instance(text, u->instance, &s);
if (r < 0)
return r;
} else {
2010-04-15 03:11:11 +02:00
s = strdup(text);
if (!s)
return -ENOMEM;
}
2010-01-26 21:39:06 +01:00
if (set_contains(u->names, s))
return 0;
if (hashmap_contains(u->manager->units, s))
return -EEXIST;
if (!unit_name_is_valid(s, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE))
return -EINVAL;
t = unit_name_to_type(s);
if (t < 0)
return -EINVAL;
2010-01-26 21:39:06 +01:00
if (u->type != _UNIT_TYPE_INVALID && t != u->type)
return -EINVAL;
2010-01-26 21:39:06 +01:00
2013-10-22 01:54:10 +02:00
r = unit_name_to_instance(s, &i);
if (r < 0)
return r;
2010-01-26 21:39:06 +01:00
if (i && unit_vtable[t]->no_instances)
return -EINVAL;
2010-04-15 03:11:11 +02:00
/* Ensure that this unit is either instanced or not instanced,
* but not both. Note that we do allow names with different
* instance names however! */
if (u->type != _UNIT_TYPE_INVALID && !u->instance != !i)
return -EINVAL;
2010-04-15 03:11:11 +02:00
if (unit_vtable[t]->no_alias && !set_isempty(u->names))
return -EEXIST;
2010-04-15 03:11:11 +02:00
if (hashmap_size(u->manager->units) >= MANAGER_MAX_NAMES)
return -E2BIG;
2013-10-22 01:54:10 +02:00
r = set_put(u->names, s);
if (r < 0)
return r;
assert(r > 0);
2010-01-26 21:39:06 +01:00
2013-10-22 01:54:10 +02:00
r = hashmap_put(u->manager->units, s, u);
if (r < 0) {
(void) set_remove(u->names, s);
return r;
2010-01-26 21:39:06 +01:00
}
if (u->type == _UNIT_TYPE_INVALID) {
u->type = t;
u->id = s;
u->instance = i;
2010-04-15 03:11:11 +02:00
LIST_PREPEND(units_by_type, u->manager->units_by_type[t], u);
unit_init(u);
2010-01-26 21:39:06 +01:00
i = NULL;
}
2010-04-15 03:11:11 +02:00
s = NULL;
2010-04-15 03:11:11 +02:00
unit_add_to_dbus_queue(u);
return 0;
2010-01-26 21:39:06 +01:00
}
int unit_choose_id(Unit *u, const char *name) {
_cleanup_free_ char *t = NULL;
char *s, *i;
int r;
assert(u);
assert(name);
if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
2010-04-15 03:11:11 +02:00
if (!u->instance)
2010-04-15 03:11:11 +02:00
return -EINVAL;
r = unit_name_replace_instance(name, u->instance, &t);
if (r < 0)
return r;
2010-04-15 03:11:11 +02:00
name = t;
}
/* Selects one of the names of this unit as the id */
s = set_get(u->names, (char*) name);
2010-04-15 03:11:11 +02:00
if (!s)
return -ENOENT;
/* Determine the new instance from the new id */
2013-10-22 01:54:10 +02:00
r = unit_name_to_instance(s, &i);
if (r < 0)
return r;
u->id = s;
free(u->instance);
u->instance = i;
unit_add_to_dbus_queue(u);
2010-04-15 03:11:11 +02:00
return 0;
}
2010-01-29 03:18:09 +01:00
int unit_set_description(Unit *u, const char *description) {
char *s;
assert(u);
if (isempty(description))
s = NULL;
else {
s = strdup(description);
if (!s)
return -ENOMEM;
}
2010-01-29 03:18:09 +01:00
free(u->description);
u->description = s;
unit_add_to_dbus_queue(u);
2010-01-29 03:18:09 +01:00
return 0;
}
bool unit_check_gc(Unit *u) {
UnitActiveState state;
assert(u);
if (u->job)
return true;
if (u->nop_job)
return true;
state = unit_active_state(u);
/* If the unit is inactive and failed and no job is queued for
* it, then release its runtime resources */
if (UNIT_IS_INACTIVE_OR_FAILED(state) &&
UNIT_VTABLE(u)->release_resources)
UNIT_VTABLE(u)->release_resources(u);
/* But we keep the unit object around for longer when it is
* referenced or configured to not be gc'ed */
if (state != UNIT_INACTIVE)
return true;
if (UNIT_VTABLE(u)->no_gc)
core: add NOP jobs, job type collapsing Two of our current job types are special: JOB_TRY_RESTART, JOB_RELOAD_OR_START. They differ from other job types by being sensitive to the unit active state. They perform some action when the unit is active and some other action otherwise. This raises a question: when exactly should the unit state be checked to make the decision? Currently the unit state is checked when the job becomes runnable. It's more sensible to check the state immediately when the job is added by the user. When the user types "systemctl try-restart foo.service", he really intends to restart the service if it's running right now. If it isn't running right now, the restart is pointless. Consider the example (from Bugzilla[1]): sleep.service takes some time to start. hello.service has After=sleep.service. Both services get started. Two jobs will appear: hello.service/start waiting sleep.service/start running Then someone runs "systemctl try-restart hello.service". Currently the try-restart operation will block and wait for sleep.service/start to complete. The correct result is to complete the try-restart operation immediately with success, because hello.service is not running. The two original jobs must not be disturbed by this. To fix this we introduce two new concepts: - a new job type: JOB_NOP A JOB_NOP job does not do anything to the unit. It does not pull in any dependencies. It is always immediately runnable. When installed to a unit, it sits in a special slot (u->nop_job) where it never conflicts with the installed job (u->job) of a different type. It never merges with jobs of other types, but it can merge into an already installed JOB_NOP job. - "collapsing" of job types When a job of one of the two special types is added, the state of the unit is checked immediately and the job type changes: JOB_TRY_RESTART -> JOB_RESTART or JOB_NOP JOB_RELOAD_OR_START -> JOB_RELOAD or JOB_START Should a job type JOB_RELOAD_OR_START appear later during job merging, it collapses immediately afterwards. Collapsing actually makes some things simpler, because there are now fewer job types that are allowed in the transaction. [1] Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=753586
2012-04-25 11:58:27 +02:00
return true;
if (u->no_gc)
return true;
if (u->refs)
return true;
if (UNIT_VTABLE(u)->check_gc)
if (UNIT_VTABLE(u)->check_gc(u))
return true;
return false;
}
2010-01-26 21:39:06 +01:00
void unit_add_to_load_queue(Unit *u) {
assert(u);
assert(u->type != _UNIT_TYPE_INVALID);
2010-01-26 21:39:06 +01:00
if (u->load_state != UNIT_STUB || u->in_load_queue)
2010-01-26 21:39:06 +01:00
return;
LIST_PREPEND(load_queue, u->manager->load_queue, u);
u->in_load_queue = true;
2010-01-26 21:39:06 +01:00
}
2010-04-06 02:43:58 +02:00
void unit_add_to_cleanup_queue(Unit *u) {
assert(u);
if (u->in_cleanup_queue)
2010-04-06 02:43:58 +02:00
return;
LIST_PREPEND(cleanup_queue, u->manager->cleanup_queue, u);
u->in_cleanup_queue = true;
2010-04-06 02:43:58 +02:00
}
void unit_add_to_gc_queue(Unit *u) {
assert(u);
if (u->in_gc_queue || u->in_cleanup_queue)
return;
if (unit_check_gc(u))
return;
LIST_PREPEND(gc_queue, u->manager->gc_queue, u);
u->in_gc_queue = true;
u->manager->n_in_gc_queue ++;
}
void unit_add_to_dbus_queue(Unit *u) {
assert(u);
assert(u->type != _UNIT_TYPE_INVALID);
if (u->load_state == UNIT_STUB || u->in_dbus_queue)
return;
/* Shortcut things if nobody cares */
if (sd_bus_track_count(u->manager->subscribed) <= 0 &&
set_isempty(u->manager->private_buses)) {
u->sent_dbus_new_signal = true;
return;
}
LIST_PREPEND(dbus_queue, u->manager->dbus_unit_queue, u);
u->in_dbus_queue = true;
}
2010-01-26 21:39:06 +01:00
static void bidi_set_free(Unit *u, Set *s) {
Iterator i;
Unit *other;
assert(u);
/* Frees the set and makes sure we are dropped from the
* inverse pointers */
SET_FOREACH(other, s, i) {
UnitDependency d;
for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
set_remove(other->dependencies[d], u);
unit_add_to_gc_queue(other);
2010-01-26 21:39:06 +01:00
}
set_free(s);
}
static void unit_remove_transient(Unit *u) {
char **i;
assert(u);
if (!u->transient)
return;
if (u->fragment_path)
unlink(u->fragment_path);
STRV_FOREACH(i, u->dropin_paths) {
_cleanup_free_ char *p = NULL;
int r;
unlink(*i);
r = path_get_parent(*i, &p);
if (r >= 0)
rmdir(p);
}
}
static void unit_free_requires_mounts_for(Unit *u) {
char **j;
STRV_FOREACH(j, u->requires_mounts_for) {
char s[strlen(*j) + 1];
PATH_FOREACH_PREFIX_MORE(s, *j) {
char *y;
Set *x;
x = hashmap_get2(u->manager->units_requiring_mounts_for, s, (void**) &y);
if (!x)
continue;
set_remove(x, u);
if (set_isempty(x)) {
hashmap_remove(u->manager->units_requiring_mounts_for, y);
free(y);
set_free(x);
}
}
}
strv_free(u->requires_mounts_for);
u->requires_mounts_for = NULL;
}
static void unit_done(Unit *u) {
ExecContext *ec;
CGroupContext *cc;
assert(u);
if (u->type < 0)
return;
if (UNIT_VTABLE(u)->done)
UNIT_VTABLE(u)->done(u);
ec = unit_get_exec_context(u);
if (ec)
exec_context_done(ec);
cc = unit_get_cgroup_context(u);
if (cc)
cgroup_context_done(cc);
}
2010-01-26 21:39:06 +01:00
void unit_free(Unit *u) {
UnitDependency d;
Iterator i;
char *t;
assert(u);
if (u->manager->n_reloading <= 0)
unit_remove_transient(u);
bus_unit_send_removed_signal(u);
unit_done(u);
2010-06-04 22:31:33 +02:00
unit_free_requires_mounts_for(u);
SET_FOREACH(t, u->names, i)
hashmap_remove_value(u->manager->units, t, u);
2010-01-26 21:39:06 +01:00
if (u->job) {
Job *j = u->job;
job_uninstall(j);
job_free(j);
}
core: add NOP jobs, job type collapsing Two of our current job types are special: JOB_TRY_RESTART, JOB_RELOAD_OR_START. They differ from other job types by being sensitive to the unit active state. They perform some action when the unit is active and some other action otherwise. This raises a question: when exactly should the unit state be checked to make the decision? Currently the unit state is checked when the job becomes runnable. It's more sensible to check the state immediately when the job is added by the user. When the user types "systemctl try-restart foo.service", he really intends to restart the service if it's running right now. If it isn't running right now, the restart is pointless. Consider the example (from Bugzilla[1]): sleep.service takes some time to start. hello.service has After=sleep.service. Both services get started. Two jobs will appear: hello.service/start waiting sleep.service/start running Then someone runs "systemctl try-restart hello.service". Currently the try-restart operation will block and wait for sleep.service/start to complete. The correct result is to complete the try-restart operation immediately with success, because hello.service is not running. The two original jobs must not be disturbed by this. To fix this we introduce two new concepts: - a new job type: JOB_NOP A JOB_NOP job does not do anything to the unit. It does not pull in any dependencies. It is always immediately runnable. When installed to a unit, it sits in a special slot (u->nop_job) where it never conflicts with the installed job (u->job) of a different type. It never merges with jobs of other types, but it can merge into an already installed JOB_NOP job. - "collapsing" of job types When a job of one of the two special types is added, the state of the unit is checked immediately and the job type changes: JOB_TRY_RESTART -> JOB_RESTART or JOB_NOP JOB_RELOAD_OR_START -> JOB_RELOAD or JOB_START Should a job type JOB_RELOAD_OR_START appear later during job merging, it collapses immediately afterwards. Collapsing actually makes some things simpler, because there are now fewer job types that are allowed in the transaction. [1] Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=753586
2012-04-25 11:58:27 +02:00
if (u->nop_job) {
Job *j = u->nop_job;
job_uninstall(j);
job_free(j);
}
for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
bidi_set_free(u, u->dependencies[d]);
if (u->type != _UNIT_TYPE_INVALID)
LIST_REMOVE(units_by_type, u->manager->units_by_type[u->type], u);
2010-01-29 06:04:08 +01:00
if (u->in_load_queue)
LIST_REMOVE(load_queue, u->manager->load_queue, u);
2010-01-26 21:39:06 +01:00
if (u->in_dbus_queue)
LIST_REMOVE(dbus_queue, u->manager->dbus_unit_queue, u);
if (u->in_cleanup_queue)
LIST_REMOVE(cleanup_queue, u->manager->cleanup_queue, u);
2010-04-06 02:43:58 +02:00
if (u->in_gc_queue) {
LIST_REMOVE(gc_queue, u->manager->gc_queue, u);
u->manager->n_in_gc_queue--;
}
if (u->in_cgroup_queue)
LIST_REMOVE(cgroup_queue, u->manager->cgroup_queue, u);
2010-01-26 21:39:06 +01:00
if (u->cgroup_path) {
hashmap_remove(u->manager->cgroup_unit, u->cgroup_path);
free(u->cgroup_path);
}
manager_update_failed_units(u->manager, u, false);
set_remove(u->manager->startup_units, u);
free(u->description);
strv_free(u->documentation);
free(u->fragment_path);
free(u->source_path);
strv_free(u->dropin_paths);
free(u->instance);
2010-01-26 21:39:06 +01:00
free(u->job_timeout_reboot_arg);
set_free_free(u->names);
2010-01-26 21:39:06 +01:00
unit_unwatch_all_pids(u);
condition_free_list(u->conditions);
condition_free_list(u->asserts);
2013-06-18 02:07:35 +02:00
unit_ref_unset(&u->slice);
while (u->refs)
unit_ref_unset(u->refs);
2010-01-26 21:39:06 +01:00
free(u);
}
UnitActiveState unit_active_state(Unit *u) {
assert(u);
if (u->load_state == UNIT_MERGED)
return unit_active_state(unit_follow_merge(u));
/* After a reload it might happen that a unit is not correctly
* loaded but still has a process around. That's why we won't
* shortcut failed loading to UNIT_INACTIVE_FAILED. */
2010-01-26 21:39:06 +01:00
return UNIT_VTABLE(u)->active_state(u);
}
const char* unit_sub_state_to_string(Unit *u) {
assert(u);
return UNIT_VTABLE(u)->sub_state_to_string(u);
}
static int complete_move(Set **s, Set **other) {
int r;
2010-04-06 02:43:58 +02:00
assert(s);
assert(other);
2010-01-26 21:39:06 +01:00
2010-04-06 02:43:58 +02:00
if (!*other)
return 0;
2010-01-26 21:39:06 +01:00
if (*s) {
r = set_move(*s, *other);
if (r < 0)
return r;
} else {
2010-04-06 02:43:58 +02:00
*s = *other;
*other = NULL;
}
return 0;
2010-04-06 02:43:58 +02:00
}
2010-01-26 21:39:06 +01:00
static int merge_names(Unit *u, Unit *other) {
2010-04-06 02:43:58 +02:00
char *t;
Iterator i;
int r;
2010-01-26 21:39:06 +01:00
2010-04-06 02:43:58 +02:00
assert(u);
assert(other);
r = complete_move(&u->names, &other->names);
if (r < 0)
return r;
2010-04-06 02:43:58 +02:00
set_free_free(other->names);
other->names = NULL;
other->id = NULL;
2010-04-06 02:43:58 +02:00
SET_FOREACH(t, u->names, i)
assert_se(hashmap_replace(u->manager->units, t, u) == 0);
return 0;
2010-01-26 21:39:06 +01:00
}
static int reserve_dependencies(Unit *u, Unit *other, UnitDependency d) {
unsigned n_reserve;
assert(u);
assert(other);
assert(d < _UNIT_DEPENDENCY_MAX);
/*
* If u does not have this dependency set allocated, there is no need
* to reserve anything. In that case other's set will be transferred
* as a whole to u by complete_move().
*/
if (!u->dependencies[d])
return 0;
/* merge_dependencies() will skip a u-on-u dependency */
n_reserve = set_size(other->dependencies[d]) - !!set_get(other->dependencies[d], u);
return set_reserve(u->dependencies[d], n_reserve);
}
static void merge_dependencies(Unit *u, Unit *other, const char *other_id, UnitDependency d) {
2010-04-06 02:43:58 +02:00
Iterator i;
Unit *back;
2010-01-26 21:39:06 +01:00
int r;
2010-04-06 02:43:58 +02:00
assert(u);
assert(other);
assert(d < _UNIT_DEPENDENCY_MAX);
/* Fix backwards pointers */
SET_FOREACH(back, other->dependencies[d], i) {
2010-04-06 02:43:58 +02:00
UnitDependency k;
2013-10-22 01:54:10 +02:00
for (k = 0; k < _UNIT_DEPENDENCY_MAX; k++) {
/* Do not add dependencies between u and itself */
if (back == u) {
if (set_remove(back->dependencies[k], other))
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
maybe_warn_about_dependency(u, other_id, k);
} else {
r = set_remove_and_put(back->dependencies[k], other, u);
if (r == -EEXIST)
set_remove(back->dependencies[k], other);
else
assert(r >= 0 || r == -ENOENT);
}
2013-10-22 01:54:10 +02:00
}
2010-04-06 02:43:58 +02:00
}
/* Also do not move dependencies on u to itself */
back = set_remove(other->dependencies[d], u);
if (back)
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
maybe_warn_about_dependency(u, other_id, d);
/* The move cannot fail. The caller must have performed a reservation. */
assert_se(complete_move(&u->dependencies[d], &other->dependencies[d]) == 0);
2010-04-06 02:43:58 +02:00
set_free(other->dependencies[d]);
other->dependencies[d] = NULL;
2010-04-06 02:43:58 +02:00
}
int unit_merge(Unit *u, Unit *other) {
2010-01-26 21:39:06 +01:00
UnitDependency d;
const char *other_id = NULL;
int r;
2010-01-26 21:39:06 +01:00
assert(u);
assert(other);
assert(u->manager == other->manager);
assert(u->type != _UNIT_TYPE_INVALID);
2010-01-26 21:39:06 +01:00
other = unit_follow_merge(other);
2010-04-06 02:43:58 +02:00
if (other == u)
return 0;
if (u->type != other->type)
2010-04-15 03:11:11 +02:00
return -EINVAL;
if (!u->instance != !other->instance)
2010-01-26 21:39:06 +01:00
return -EINVAL;
if (other->load_state != UNIT_STUB &&
other->load_state != UNIT_NOT_FOUND)
2010-04-06 02:43:58 +02:00
return -EEXIST;
2010-01-26 21:39:06 +01:00
if (other->job)
return -EEXIST;
core: add NOP jobs, job type collapsing Two of our current job types are special: JOB_TRY_RESTART, JOB_RELOAD_OR_START. They differ from other job types by being sensitive to the unit active state. They perform some action when the unit is active and some other action otherwise. This raises a question: when exactly should the unit state be checked to make the decision? Currently the unit state is checked when the job becomes runnable. It's more sensible to check the state immediately when the job is added by the user. When the user types "systemctl try-restart foo.service", he really intends to restart the service if it's running right now. If it isn't running right now, the restart is pointless. Consider the example (from Bugzilla[1]): sleep.service takes some time to start. hello.service has After=sleep.service. Both services get started. Two jobs will appear: hello.service/start waiting sleep.service/start running Then someone runs "systemctl try-restart hello.service". Currently the try-restart operation will block and wait for sleep.service/start to complete. The correct result is to complete the try-restart operation immediately with success, because hello.service is not running. The two original jobs must not be disturbed by this. To fix this we introduce two new concepts: - a new job type: JOB_NOP A JOB_NOP job does not do anything to the unit. It does not pull in any dependencies. It is always immediately runnable. When installed to a unit, it sits in a special slot (u->nop_job) where it never conflicts with the installed job (u->job) of a different type. It never merges with jobs of other types, but it can merge into an already installed JOB_NOP job. - "collapsing" of job types When a job of one of the two special types is added, the state of the unit is checked immediately and the job type changes: JOB_TRY_RESTART -> JOB_RESTART or JOB_NOP JOB_RELOAD_OR_START -> JOB_RELOAD or JOB_START Should a job type JOB_RELOAD_OR_START appear later during job merging, it collapses immediately afterwards. Collapsing actually makes some things simpler, because there are now fewer job types that are allowed in the transaction. [1] Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=753586
2012-04-25 11:58:27 +02:00
if (other->nop_job)
return -EEXIST;
if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
return -EEXIST;
if (other->id)
other_id = strdupa(other->id);
/* Make reservations to ensure merge_dependencies() won't fail */
for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
r = reserve_dependencies(u, other, d);
/*
* We don't rollback reservations if we fail. We don't have
* a way to undo reservations. A reservation is not a leak.
*/
if (r < 0)
return r;
}
2010-01-26 21:39:06 +01:00
/* Merge names */
r = merge_names(u, other);
if (r < 0)
return r;
2010-01-26 21:39:06 +01:00
/* Redirect all references */
while (other->refs)
unit_ref_set(other->refs, u);
2010-01-26 21:39:06 +01:00
/* Merge dependencies */
for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
merge_dependencies(u, other, other_id, d);
2010-01-26 21:39:06 +01:00
other->load_state = UNIT_MERGED;
other->merged_into = u;
2010-04-06 02:43:58 +02:00
/* If there is still some data attached to the other node, we
* don't need it anymore, and can free it. */
if (other->load_state != UNIT_STUB)
if (UNIT_VTABLE(other)->done)
UNIT_VTABLE(other)->done(other);
unit_add_to_dbus_queue(u);
2010-04-06 02:43:58 +02:00
unit_add_to_cleanup_queue(other);
return 0;
}
int unit_merge_by_name(Unit *u, const char *name) {
Unit *other;
2010-04-15 03:11:11 +02:00
int r;
_cleanup_free_ char *s = NULL;
2010-04-06 02:43:58 +02:00
assert(u);
assert(name);
if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
if (!u->instance)
2010-04-15 03:11:11 +02:00
return -EINVAL;
r = unit_name_replace_instance(name, u->instance, &s);
if (r < 0)
return r;
2010-04-15 03:11:11 +02:00
name = s;
}
other = manager_get_unit(u->manager, name);
if (other)
return unit_merge(u, other);
2010-04-06 02:43:58 +02:00
return unit_add_name(u, name);
2010-04-06 02:43:58 +02:00
}
Unit* unit_follow_merge(Unit *u) {
assert(u);
while (u->load_state == UNIT_MERGED)
assert_se(u = u->merged_into);
2010-04-06 02:43:58 +02:00
return u;
}
int unit_add_exec_dependencies(Unit *u, ExecContext *c) {
int r;
assert(u);
assert(c);
if (c->working_directory) {
r = unit_require_mounts_for(u, c->working_directory);
if (r < 0)
return r;
}
if (c->root_directory) {
r = unit_require_mounts_for(u, c->root_directory);
if (r < 0)
return r;
}
if (u->manager->running_as != MANAGER_SYSTEM)
return 0;
if (c->private_tmp) {
r = unit_require_mounts_for(u, "/tmp");
if (r < 0)
return r;
r = unit_require_mounts_for(u, "/var/tmp");
if (r < 0)
return r;
}
if (c->std_output != EXEC_OUTPUT_KMSG &&
c->std_output != EXEC_OUTPUT_SYSLOG &&
c->std_output != EXEC_OUTPUT_JOURNAL &&
c->std_output != EXEC_OUTPUT_KMSG_AND_CONSOLE &&
c->std_output != EXEC_OUTPUT_SYSLOG_AND_CONSOLE &&
c->std_output != EXEC_OUTPUT_JOURNAL_AND_CONSOLE &&
c->std_error != EXEC_OUTPUT_KMSG &&
c->std_error != EXEC_OUTPUT_SYSLOG &&
c->std_error != EXEC_OUTPUT_JOURNAL &&
c->std_error != EXEC_OUTPUT_KMSG_AND_CONSOLE &&
c->std_error != EXEC_OUTPUT_JOURNAL_AND_CONSOLE &&
c->std_error != EXEC_OUTPUT_SYSLOG_AND_CONSOLE)
2010-04-06 02:43:58 +02:00
return 0;
/* If syslog or kernel logging is requested, make sure our own
* logging daemon is run first. */
r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_JOURNALD_SOCKET, NULL, true);
if (r < 0)
return r;
2010-04-06 02:43:58 +02:00
2010-01-26 21:39:06 +01:00
return 0;
}
const char *unit_description(Unit *u) {
assert(u);
if (u->description)
return u->description;
2010-01-26 21:39:06 +01:00
return strna(u->id);
2010-01-26 21:39:06 +01:00
}
void unit_dump(Unit *u, FILE *f, const char *prefix) {
char *t, **j;
2010-01-26 21:39:06 +01:00
UnitDependency d;
Iterator i;
2010-02-03 14:21:48 +01:00
const char *prefix2;
char
timestamp1[FORMAT_TIMESTAMP_MAX],
timestamp2[FORMAT_TIMESTAMP_MAX],
timestamp3[FORMAT_TIMESTAMP_MAX],
timestamp4[FORMAT_TIMESTAMP_MAX],
timespan[FORMAT_TIMESPAN_MAX];
Unit *following;
_cleanup_set_free_ Set *following_set = NULL;
int r;
2010-01-26 21:39:06 +01:00
assert(u);
assert(u->type >= 0);
2010-01-26 21:39:06 +01:00
prefix = strempty(prefix);
prefix2 = strjoina(prefix, "\t");
2010-01-26 21:39:06 +01:00
fprintf(f,
"%s-> Unit %s:\n"
2010-01-26 21:39:06 +01:00
"%s\tDescription: %s\n"
2010-04-15 03:11:11 +02:00
"%s\tInstance: %s\n"
2010-01-26 21:39:06 +01:00
"%s\tUnit Load State: %s\n"
2010-04-10 04:43:57 +02:00
"%s\tUnit Active State: %s\n"
"%s\tInactive Exit Timestamp: %s\n"
2010-04-10 04:43:57 +02:00
"%s\tActive Enter Timestamp: %s\n"
"%s\tActive Exit Timestamp: %s\n"
"%s\tInactive Enter Timestamp: %s\n"
"%s\tGC Check Good: %s\n"
"%s\tNeed Daemon Reload: %s\n"
"%s\tTransient: %s\n"
"%s\tSlice: %s\n"
"%s\tCGroup: %s\n"
"%s\tCGroup realized: %s\n"
"%s\tCGroup mask: 0x%x\n"
"%s\tCGroup members mask: 0x%x\n",
prefix, u->id,
2010-01-26 21:39:06 +01:00
prefix, unit_description(u),
prefix, strna(u->instance),
prefix, unit_load_state_to_string(u->load_state),
2010-04-10 04:43:57 +02:00
prefix, unit_active_state_to_string(unit_active_state(u)),
prefix, strna(format_timestamp(timestamp1, sizeof(timestamp1), u->inactive_exit_timestamp.realtime)),
prefix, strna(format_timestamp(timestamp2, sizeof(timestamp2), u->active_enter_timestamp.realtime)),
prefix, strna(format_timestamp(timestamp3, sizeof(timestamp3), u->active_exit_timestamp.realtime)),
prefix, strna(format_timestamp(timestamp4, sizeof(timestamp4), u->inactive_enter_timestamp.realtime)),
prefix, yes_no(unit_check_gc(u)),
prefix, yes_no(unit_need_daemon_reload(u)),
prefix, yes_no(u->transient),
prefix, strna(unit_slice_name(u)),
prefix, strna(u->cgroup_path),
prefix, yes_no(u->cgroup_realized),
prefix, u->cgroup_realized_mask,
prefix, u->cgroup_members_mask);
2010-01-27 00:15:56 +01:00
SET_FOREACH(t, u->names, i)
2010-01-26 21:39:06 +01:00
fprintf(f, "%s\tName: %s\n", prefix, t);
STRV_FOREACH(j, u->documentation)
fprintf(f, "%s\tDocumentation: %s\n", prefix, *j);
following = unit_following(u);
if (following)
fprintf(f, "%s\tFollowing: %s\n", prefix, following->id);
r = unit_following_set(u, &following_set);
if (r >= 0) {
Unit *other;
SET_FOREACH(other, following_set, i)
fprintf(f, "%s\tFollowing Set Member: %s\n", prefix, other->id);
}
if (u->fragment_path)
fprintf(f, "%s\tFragment Path: %s\n", prefix, u->fragment_path);
2010-04-06 02:43:58 +02:00
if (u->source_path)
fprintf(f, "%s\tSource Path: %s\n", prefix, u->source_path);
STRV_FOREACH(j, u->dropin_paths)
2013-04-02 16:24:45 +02:00
fprintf(f, "%s\tDropIn Path: %s\n", prefix, *j);
if (u->job_timeout > 0)
fprintf(f, "%s\tJob Timeout: %s\n", prefix, format_timespan(timespan, sizeof(timespan), u->job_timeout, 0));
if (u->job_timeout_action != FAILURE_ACTION_NONE)
fprintf(f, "%s\tJob Timeout Action: %s\n", prefix, failure_action_to_string(u->job_timeout_action));
if (u->job_timeout_reboot_arg)
fprintf(f, "%s\tJob Timeout Reboot Argument: %s\n", prefix, u->job_timeout_reboot_arg);
condition_dump_list(u->conditions, f, prefix, condition_type_to_string);
condition_dump_list(u->asserts, f, prefix, assert_type_to_string);
if (dual_timestamp_is_set(&u->condition_timestamp))
2011-03-17 04:36:19 +01:00
fprintf(f,
"%s\tCondition Timestamp: %s\n"
"%s\tCondition Result: %s\n",
prefix, strna(format_timestamp(timestamp1, sizeof(timestamp1), u->condition_timestamp.realtime)),
prefix, yes_no(u->condition_result));
2011-03-17 04:36:19 +01:00
if (dual_timestamp_is_set(&u->assert_timestamp))
fprintf(f,
"%s\tAssert Timestamp: %s\n"
"%s\tAssert Result: %s\n",
prefix, strna(format_timestamp(timestamp1, sizeof(timestamp1), u->assert_timestamp.realtime)),
prefix, yes_no(u->assert_result));
2010-01-26 21:39:06 +01:00
for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
Unit *other;
SET_FOREACH(other, u->dependencies[d], i)
fprintf(f, "%s\t%s: %s\n", prefix, unit_dependency_to_string(d), other->id);
2010-01-26 21:39:06 +01:00
}
if (!strv_isempty(u->requires_mounts_for)) {
fprintf(f,
"%s\tRequiresMountsFor:", prefix);
STRV_FOREACH(j, u->requires_mounts_for)
fprintf(f, " %s", *j);
fputs("\n", f);
}
if (u->load_state == UNIT_LOADED) {
fprintf(f,
"%s\tStopWhenUnneeded: %s\n"
"%s\tRefuseManualStart: %s\n"
"%s\tRefuseManualStop: %s\n"
2011-04-07 04:11:31 +02:00
"%s\tDefaultDependencies: %s\n"
"%s\tOnFailureJobMode: %s\n"
"%s\tIgnoreOnIsolate: %s\n"
"%s\tIgnoreOnSnapshot: %s\n",
prefix, yes_no(u->stop_when_unneeded),
prefix, yes_no(u->refuse_manual_start),
prefix, yes_no(u->refuse_manual_stop),
prefix, yes_no(u->default_dependencies),
prefix, job_mode_to_string(u->on_failure_job_mode),
prefix, yes_no(u->ignore_on_isolate),
prefix, yes_no(u->ignore_on_snapshot));
2010-04-06 02:43:58 +02:00
if (UNIT_VTABLE(u)->dump)
UNIT_VTABLE(u)->dump(u, f, prefix2);
} else if (u->load_state == UNIT_MERGED)
fprintf(f,
"%s\tMerged into: %s\n",
prefix, u->merged_into->id);
else if (u->load_state == UNIT_ERROR)
fprintf(f, "%s\tLoad Error Code: %s\n", prefix, strerror(-u->load_error));
2010-01-26 21:39:06 +01:00
if (u->job)
job_dump(u->job, f, prefix2);
2010-01-26 21:39:06 +01:00
core: add NOP jobs, job type collapsing Two of our current job types are special: JOB_TRY_RESTART, JOB_RELOAD_OR_START. They differ from other job types by being sensitive to the unit active state. They perform some action when the unit is active and some other action otherwise. This raises a question: when exactly should the unit state be checked to make the decision? Currently the unit state is checked when the job becomes runnable. It's more sensible to check the state immediately when the job is added by the user. When the user types "systemctl try-restart foo.service", he really intends to restart the service if it's running right now. If it isn't running right now, the restart is pointless. Consider the example (from Bugzilla[1]): sleep.service takes some time to start. hello.service has After=sleep.service. Both services get started. Two jobs will appear: hello.service/start waiting sleep.service/start running Then someone runs "systemctl try-restart hello.service". Currently the try-restart operation will block and wait for sleep.service/start to complete. The correct result is to complete the try-restart operation immediately with success, because hello.service is not running. The two original jobs must not be disturbed by this. To fix this we introduce two new concepts: - a new job type: JOB_NOP A JOB_NOP job does not do anything to the unit. It does not pull in any dependencies. It is always immediately runnable. When installed to a unit, it sits in a special slot (u->nop_job) where it never conflicts with the installed job (u->job) of a different type. It never merges with jobs of other types, but it can merge into an already installed JOB_NOP job. - "collapsing" of job types When a job of one of the two special types is added, the state of the unit is checked immediately and the job type changes: JOB_TRY_RESTART -> JOB_RESTART or JOB_NOP JOB_RELOAD_OR_START -> JOB_RELOAD or JOB_START Should a job type JOB_RELOAD_OR_START appear later during job merging, it collapses immediately afterwards. Collapsing actually makes some things simpler, because there are now fewer job types that are allowed in the transaction. [1] Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=753586
2012-04-25 11:58:27 +02:00
if (u->nop_job)
job_dump(u->nop_job, f, prefix2);
2010-01-26 21:39:06 +01:00
}
/* Common implementation for multiple backends */
int unit_load_fragment_and_dropin(Unit *u) {
2010-04-06 02:43:58 +02:00
int r;
assert(u);
2013-10-22 01:54:10 +02:00
/* Load a .{service,socket,...} file */
r = unit_load_fragment(u);
if (r < 0)
2010-04-06 02:43:58 +02:00
return r;
if (u->load_state == UNIT_STUB)
2010-04-06 02:43:58 +02:00
return -ENOENT;
/* Load drop-in directory data */
r = unit_load_dropin(unit_follow_merge(u));
if (r < 0)
2010-04-06 02:43:58 +02:00
return r;
return 0;
}
/* Common implementation for multiple backends */
int unit_load_fragment_and_dropin_optional(Unit *u) {
2010-04-06 02:43:58 +02:00
int r;
2010-01-26 21:39:06 +01:00
assert(u);
2010-04-06 02:43:58 +02:00
/* Same as unit_load_fragment_and_dropin(), but whether
* something can be loaded or not doesn't matter. */
/* Load a .service file */
r = unit_load_fragment(u);
if (r < 0)
2010-01-26 21:39:06 +01:00
return r;
if (u->load_state == UNIT_STUB)
u->load_state = UNIT_LOADED;
2010-01-28 02:44:47 +01:00
2010-01-26 21:39:06 +01:00
/* Load drop-in directory data */
r = unit_load_dropin(unit_follow_merge(u));
if (r < 0)
2010-01-26 21:39:06 +01:00
return r;
2010-04-06 02:43:58 +02:00
return 0;
2010-01-26 21:39:06 +01:00
}
int unit_add_default_target_dependency(Unit *u, Unit *target) {
assert(u);
assert(target);
if (target->type != UNIT_TARGET)
return 0;
/* Only add the dependency if both units are loaded, so that
* that loop check below is reliable */
if (u->load_state != UNIT_LOADED ||
target->load_state != UNIT_LOADED)
return 0;
/* If either side wants no automatic dependencies, then let's
* skip this */
if (!u->default_dependencies ||
!target->default_dependencies)
return 0;
/* Don't create loops */
if (set_get(target->dependencies[UNIT_BEFORE], u))
return 0;
return unit_add_dependency(target, UNIT_AFTER, u, true);
}
static int unit_add_target_dependencies(Unit *u) {
static const UnitDependency deps[] = {
UNIT_REQUIRED_BY,
UNIT_REQUIRED_BY_OVERRIDABLE,
UNIT_WANTED_BY,
UNIT_BOUND_BY
};
Unit *target;
Iterator i;
unsigned k;
int r = 0;
assert(u);
for (k = 0; k < ELEMENTSOF(deps); k++)
SET_FOREACH(target, u->dependencies[deps[k]], i) {
r = unit_add_default_target_dependency(u, target);
if (r < 0)
return r;
}
return r;
}
static int unit_add_slice_dependencies(Unit *u) {
assert(u);
if (!unit_get_cgroup_context(u))
return 0;
if (UNIT_ISSET(u->slice))
return unit_add_two_dependencies(u, UNIT_AFTER, UNIT_WANTS, UNIT_DEREF(u->slice), true);
if (streq(u->id, SPECIAL_ROOT_SLICE))
return 0;
return unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_WANTS, SPECIAL_ROOT_SLICE, NULL, true);
}
static int unit_add_mount_dependencies(Unit *u) {
char **i;
int r;
assert(u);
STRV_FOREACH(i, u->requires_mounts_for) {
char prefix[strlen(*i) + 1];
PATH_FOREACH_PREFIX_MORE(prefix, *i) {
Unit *m;
r = manager_get_unit_by_path(u->manager, prefix, ".mount", &m);
if (r < 0)
return r;
if (r == 0)
continue;
if (m == u)
continue;
if (m->load_state != UNIT_LOADED)
continue;
r = unit_add_dependency(u, UNIT_AFTER, m, true);
if (r < 0)
return r;
if (m->fragment_path) {
r = unit_add_dependency(u, UNIT_REQUIRES, m, true);
if (r < 0)
return r;
}
}
}
return 0;
}
static int unit_add_startup_units(Unit *u) {
CGroupContext *c;
c = unit_get_cgroup_context(u);
if (!c)
return 0;
if (c->startup_cpu_shares == (unsigned long) -1 &&
c->startup_blockio_weight == (unsigned long) -1)
return 0;
return set_put(u->manager->startup_units, u);
}
2010-01-26 21:39:06 +01:00
int unit_load(Unit *u) {
int r;
assert(u);
if (u->in_load_queue) {
LIST_REMOVE(load_queue, u->manager->load_queue, u);
u->in_load_queue = false;
2010-01-26 21:39:06 +01:00
}
if (u->type == _UNIT_TYPE_INVALID)
return -EINVAL;
if (u->load_state != UNIT_STUB)
2010-01-26 21:39:06 +01:00
return 0;
if (UNIT_VTABLE(u)->load) {
r = UNIT_VTABLE(u)->load(u);
if (r < 0)
2010-01-26 21:39:06 +01:00
goto fail;
}
2010-04-06 02:43:58 +02:00
if (u->load_state == UNIT_STUB) {
2010-04-06 02:43:58 +02:00
r = -ENOENT;
goto fail;
}
if (u->load_state == UNIT_LOADED) {
r = unit_add_target_dependencies(u);
if (r < 0)
goto fail;
r = unit_add_slice_dependencies(u);
if (r < 0)
goto fail;
r = unit_add_mount_dependencies(u);
if (r < 0)
goto fail;
r = unit_add_startup_units(u);
if (r < 0)
goto fail;
if (u->on_failure_job_mode == JOB_ISOLATE && set_size(u->dependencies[UNIT_ON_FAILURE]) > 1) {
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_error(u, "More than one OnFailure= dependencies specified but OnFailureJobMode=isolate set. Refusing.");
r = -EINVAL;
goto fail;
}
unit_update_cgroup_members_masks(u);
}
assert((u->load_state != UNIT_MERGED) == !u->merged_into);
2010-04-06 02:43:58 +02:00
unit_add_to_dbus_queue(unit_follow_merge(u));
unit_add_to_gc_queue(u);
2010-01-26 21:39:06 +01:00
return 0;
fail:
u->load_state = u->load_state == UNIT_STUB ? UNIT_NOT_FOUND : UNIT_ERROR;
u->load_error = r;
unit_add_to_dbus_queue(u);
unit_add_to_gc_queue(u);
2010-04-06 02:43:58 +02:00
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_debug_errno(u, r, "Failed to load configuration: %m");
2010-04-06 02:43:58 +02:00
2010-01-26 21:39:06 +01:00
return r;
}
static bool unit_condition_test_list(Unit *u, Condition *first, const char *(*to_string)(ConditionType t)) {
Condition *c;
int triggered = -1;
assert(u);
assert(to_string);
/* If the condition list is empty, then it is true */
if (!first)
return true;
/* Otherwise, if all of the non-trigger conditions apply and
* if any of the trigger conditions apply (unless there are
* none) we return true */
LIST_FOREACH(conditions, c, first) {
int r;
r = condition_test(c);
if (r < 0)
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_warning(u,
"Couldn't determine result for %s=%s%s%s, assuming failed: %m",
to_string(c->type),
c->trigger ? "|" : "",
c->negate ? "!" : "",
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
c->parameter);
else
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_debug(u,
"%s=%s%s%s %s.",
to_string(c->type),
c->trigger ? "|" : "",
c->negate ? "!" : "",
c->parameter,
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
condition_result_to_string(c->result));
if (!c->trigger && r <= 0)
return false;
if (c->trigger && triggered <= 0)
triggered = r > 0;
}
return triggered != 0;
}
static bool unit_condition_test(Unit *u) {
assert(u);
dual_timestamp_get(&u->condition_timestamp);
u->condition_result = unit_condition_test_list(u, u->conditions, condition_type_to_string);
return u->condition_result;
}
static bool unit_assert_test(Unit *u) {
assert(u);
dual_timestamp_get(&u->assert_timestamp);
u->assert_result = unit_condition_test_list(u, u->asserts, assert_type_to_string);
return u->assert_result;
}
_pure_ static const char* unit_get_status_message_format(Unit *u, JobType t) {
const UnitStatusMessageFormats *format_table;
assert(u);
assert(t >= 0);
assert(t < _JOB_TYPE_MAX);
if (t != JOB_START && t != JOB_STOP)
return NULL;
format_table = &UNIT_VTABLE(u)->status_message_formats;
if (!format_table)
return NULL;
return format_table->starting_stopping[t == JOB_STOP];
}
_pure_ static const char *unit_get_status_message_format_try_harder(Unit *u, JobType t) {
const char *format;
assert(u);
assert(t >= 0);
assert(t < _JOB_TYPE_MAX);
format = unit_get_status_message_format(u, t);
if (format)
return format;
/* Return generic strings */
if (t == JOB_START)
return "Starting %s.";
else if (t == JOB_STOP)
return "Stopping %s.";
else if (t == JOB_RELOAD)
return "Reloading %s.";
return NULL;
}
static void unit_status_print_starting_stopping(Unit *u, JobType t) {
const char *format;
assert(u);
/* We only print status messages for selected units on
* selected operations. */
format = unit_get_status_message_format(u, t);
if (!format)
return;
DISABLE_WARNING_FORMAT_NONLITERAL;
unit_status_printf(u, "", format);
REENABLE_WARNING;
}
static void unit_status_log_starting_stopping_reloading(Unit *u, JobType t) {
const char *format;
char buf[LINE_MAX];
sd_id128_t mid;
assert(u);
if (t != JOB_START && t != JOB_STOP && t != JOB_RELOAD)
return;
if (log_on_console())
return;
/* We log status messages for all units and all operations. */
format = unit_get_status_message_format_try_harder(u, t);
if (!format)
return;
DISABLE_WARNING_FORMAT_NONLITERAL;
snprintf(buf, sizeof(buf), format, unit_description(u));
REENABLE_WARNING;
mid = t == JOB_START ? SD_MESSAGE_UNIT_STARTING :
t == JOB_STOP ? SD_MESSAGE_UNIT_STOPPING :
SD_MESSAGE_UNIT_RELOADING;
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
/* Note that we deliberately use LOG_MESSAGE() instead of
* LOG_UNIT_MESSAGE() here, since this is supposed to mimic
* closely what is written to screen using the status output,
* which is supposed the highest level, friendliest output
* possible, which means we should avoid the low-level unit
* name. */
log_struct(LOG_INFO,
LOG_MESSAGE_ID(mid),
LOG_UNIT_ID(u),
LOG_MESSAGE("%s", buf),
NULL);
}
2010-01-26 21:39:06 +01:00
/* Errors:
* -EBADR: This unit type does not support starting.
* -EALREADY: Unit is already started.
* -EAGAIN: An operation is already in progress. Retry later.
* -ECANCELED: Too many requests for now.
* -EPROTO: Assert failed
2010-01-26 21:39:06 +01:00
*/
int unit_start(Unit *u) {
UnitActiveState state;
2010-11-14 23:26:53 +01:00
Unit *following;
int r;
2010-01-26 21:39:06 +01:00
assert(u);
if (u->load_state != UNIT_LOADED)
return -EINVAL;
/* If this is already started, then this will succeed. Note
* that this will even succeed if this unit is not startable
* by the user. This is relied on to detect when we need to
* wait for units and when waiting is finished. */
2010-01-26 21:39:06 +01:00
state = unit_active_state(u);
if (UNIT_IS_ACTIVE_OR_RELOADING(state))
return -EALREADY;
/* If the conditions failed, don't do anything at all. If we
* already are activating this call might still be useful to
* speed up activation in case there is some hold-off time,
* but we don't want to recheck the condition in that case. */
if (state != UNIT_ACTIVATING &&
!unit_condition_test(u)) {
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_debug(u, "Starting requested but condition failed. Not starting unit.");
return -EALREADY;
}
/* If the asserts failed, fail the entire job */
if (state != UNIT_ACTIVATING &&
!unit_assert_test(u)) {
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_notice(u, "Starting requested but asserts failed.");
return -EPROTO;
}
2010-11-14 23:26:53 +01:00
/* Forward to the main object, if we aren't it. */
following = unit_following(u);
if (following) {
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_debug(u, "Redirecting start request from %s to %s.", u->id, following->id);
2010-11-14 23:26:53 +01:00
return unit_start(following);
}
if (!unit_supported(u))
return -EOPNOTSUPP;
2010-11-14 23:26:53 +01:00
/* If it is stopped, but we cannot start it, then fail */
if (!UNIT_VTABLE(u)->start)
return -EBADR;
2010-01-26 21:39:06 +01:00
/* We don't suppress calls to ->start() here when we are
* already starting, to allow this request to be used as a
* "hurry up" call, for example when the unit is in some "auto
* restart" state where it waits for a holdoff timer to elapse
* before it will start again. */
unit_add_to_dbus_queue(u);
r = UNIT_VTABLE(u)->start(u);
if (r <= 0)
return r;
/* Log if the start function actually did something */
unit_status_log_starting_stopping_reloading(u, JOB_START);
unit_status_print_starting_stopping(u, JOB_START);
return r;
2010-01-26 21:39:06 +01:00
}
bool unit_can_start(Unit *u) {
assert(u);
return !!UNIT_VTABLE(u)->start;
}
2010-08-30 22:45:46 +02:00
bool unit_can_isolate(Unit *u) {
assert(u);
return unit_can_start(u) &&
u->allow_isolate;
2010-08-30 22:45:46 +02:00
}
2010-01-26 21:39:06 +01:00
/* Errors:
* -EBADR: This unit type does not support stopping.
* -EALREADY: Unit is already stopped.
* -EAGAIN: An operation is already in progress. Retry later.
*/
int unit_stop(Unit *u) {
UnitActiveState state;
2010-11-14 23:26:53 +01:00
Unit *following;
int r;
2010-01-26 21:39:06 +01:00
assert(u);
state = unit_active_state(u);
if (UNIT_IS_INACTIVE_OR_FAILED(state))
2010-01-26 21:39:06 +01:00
return -EALREADY;
following = unit_following(u);
if (following) {
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_debug(u, "Redirecting stop request from %s to %s.", u->id, following->id);
2010-11-14 23:26:53 +01:00
return unit_stop(following);
}
if (!UNIT_VTABLE(u)->stop)
return -EBADR;
unit_add_to_dbus_queue(u);
r = UNIT_VTABLE(u)->stop(u);
if (r <= 0)
return r;
unit_status_log_starting_stopping_reloading(u, JOB_STOP);
unit_status_print_starting_stopping(u, JOB_STOP);
return r;
2010-01-26 21:39:06 +01:00
}
/* Errors:
* -EBADR: This unit type does not support reloading.
* -ENOEXEC: Unit is not started.
* -EAGAIN: An operation is already in progress. Retry later.
*/
int unit_reload(Unit *u) {
UnitActiveState state;
2010-11-14 23:26:53 +01:00
Unit *following;
int r;
2010-01-26 21:39:06 +01:00
assert(u);
if (u->load_state != UNIT_LOADED)
return -EINVAL;
2010-01-26 21:39:06 +01:00
if (!unit_can_reload(u))
return -EBADR;
state = unit_active_state(u);
if (state == UNIT_RELOADING)
2010-01-26 21:39:06 +01:00
return -EALREADY;
if (state != UNIT_ACTIVE) {
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_warning(u, "Unit cannot be reloaded because it is inactive.");
2010-01-26 21:39:06 +01:00
return -ENOEXEC;
}
2010-01-26 21:39:06 +01:00
2013-10-22 01:54:10 +02:00
following = unit_following(u);
if (following) {
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_debug(u, "Redirecting reload request from %s to %s.", u->id, following->id);
2010-11-14 23:26:53 +01:00
return unit_reload(following);
}
unit_add_to_dbus_queue(u);
r = UNIT_VTABLE(u)->reload(u);
if (r <= 0)
return r;
unit_status_log_starting_stopping_reloading(u, JOB_RELOAD);
return r;
2010-01-26 21:39:06 +01:00
}
bool unit_can_reload(Unit *u) {
assert(u);
if (!UNIT_VTABLE(u)->reload)
return false;
if (!UNIT_VTABLE(u)->can_reload)
return true;
return UNIT_VTABLE(u)->can_reload(u);
}
static void unit_check_unneeded(Unit *u) {
Iterator i;
Unit *other;
assert(u);
/* If this service shall be shut down when unneeded then do
* so. */
if (!u->stop_when_unneeded)
return;
if (!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)))
return;
SET_FOREACH(other, u->dependencies[UNIT_REQUIRED_BY], i)
if (unit_active_or_pending(other))
return;
SET_FOREACH(other, u->dependencies[UNIT_REQUIRED_BY_OVERRIDABLE], i)
if (unit_active_or_pending(other))
return;
SET_FOREACH(other, u->dependencies[UNIT_WANTED_BY], i)
if (unit_active_or_pending(other))
return;
SET_FOREACH(other, u->dependencies[UNIT_BOUND_BY], i)
if (unit_active_or_pending(other))
return;
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_info(u, "Unit not needed anymore. Stopping.");
/* Ok, nobody needs us anymore. Sniff. Then let's commit suicide */
manager_add_job(u->manager, JOB_STOP, u, JOB_FAIL, true, NULL, NULL);
}
static void unit_check_binds_to(Unit *u) {
bool stop = false;
Unit *other;
Iterator i;
assert(u);
if (u->job)
return;
if (unit_active_state(u) != UNIT_ACTIVE)
return;
SET_FOREACH(other, u->dependencies[UNIT_BINDS_TO], i) {
if (other->job)
continue;
if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
continue;
stop = true;
break;
}
if (!stop)
return;
assert(other);
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_info(u, "Unit is bound to inactive unit %s. Stopping, too.", other->id);
/* A unit we need to run is gone. Sniff. Let's stop this. */
manager_add_job(u->manager, JOB_STOP, u, JOB_FAIL, true, NULL, NULL);
}
2010-01-26 21:39:06 +01:00
static void retroactively_start_dependencies(Unit *u) {
Iterator i;
Unit *other;
assert(u);
assert(UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)));
SET_FOREACH(other, u->dependencies[UNIT_REQUIRES], i)
if (!set_get(u->dependencies[UNIT_AFTER], other) &&
!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, true, NULL, NULL);
SET_FOREACH(other, u->dependencies[UNIT_BINDS_TO], i)
if (!set_get(u->dependencies[UNIT_AFTER], other) &&
!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, true, NULL, NULL);
2010-01-26 21:39:06 +01:00
SET_FOREACH(other, u->dependencies[UNIT_REQUIRES_OVERRIDABLE], i)
if (!set_get(u->dependencies[UNIT_AFTER], other) &&
!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
manager_add_job(u->manager, JOB_START, other, JOB_FAIL, false, NULL, NULL);
2010-01-26 21:39:06 +01:00
SET_FOREACH(other, u->dependencies[UNIT_WANTS], i)
if (!set_get(u->dependencies[UNIT_AFTER], other) &&
!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
manager_add_job(u->manager, JOB_START, other, JOB_FAIL, false, NULL, NULL);
2010-01-26 21:39:06 +01:00
SET_FOREACH(other, u->dependencies[UNIT_CONFLICTS], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, true, NULL, NULL);
SET_FOREACH(other, u->dependencies[UNIT_CONFLICTED_BY], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, true, NULL, NULL);
2010-01-26 21:39:06 +01:00
}
static void retroactively_stop_dependencies(Unit *u) {
Iterator i;
Unit *other;
assert(u);
assert(UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)));
/* Pull down units which are bound to us recursively if enabled */
SET_FOREACH(other, u->dependencies[UNIT_BOUND_BY], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, true, NULL, NULL);
}
static void check_unneeded_dependencies(Unit *u) {
Iterator i;
Unit *other;
assert(u);
assert(UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)));
/* Garbage collect services that might not be needed anymore, if enabled */
SET_FOREACH(other, u->dependencies[UNIT_REQUIRES], i)
2010-01-26 21:39:06 +01:00
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
unit_check_unneeded(other);
SET_FOREACH(other, u->dependencies[UNIT_REQUIRES_OVERRIDABLE], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
unit_check_unneeded(other);
SET_FOREACH(other, u->dependencies[UNIT_WANTS], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
unit_check_unneeded(other);
SET_FOREACH(other, u->dependencies[UNIT_REQUISITE], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
unit_check_unneeded(other);
SET_FOREACH(other, u->dependencies[UNIT_REQUISITE_OVERRIDABLE], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
unit_check_unneeded(other);
SET_FOREACH(other, u->dependencies[UNIT_BINDS_TO], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
unit_check_unneeded(other);
2010-01-26 21:39:06 +01:00
}
void unit_start_on_failure(Unit *u) {
Unit *other;
Iterator i;
assert(u);
if (set_size(u->dependencies[UNIT_ON_FAILURE]) <= 0)
2011-04-07 04:11:31 +02:00
return;
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_info(u, "Triggering OnFailure= dependencies.");
2011-04-07 04:11:31 +02:00
SET_FOREACH(other, u->dependencies[UNIT_ON_FAILURE], i) {
2011-04-07 04:11:31 +02:00
int r;
r = manager_add_job(u->manager, JOB_START, other, u->on_failure_job_mode, true, NULL, NULL);
if (r < 0)
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_error_errno(u, r, "Failed to enqueue OnFailure= job: %m");
2011-04-07 04:11:31 +02:00
}
}
void unit_trigger_notify(Unit *u) {
Unit *other;
Iterator i;
assert(u);
SET_FOREACH(other, u->dependencies[UNIT_TRIGGERED_BY], i)
if (UNIT_VTABLE(other)->trigger_notify)
UNIT_VTABLE(other)->trigger_notify(other, u);
}
void unit_notify(Unit *u, UnitActiveState os, UnitActiveState ns, bool reload_success) {
Manager *m;
bool unexpected;
2010-01-26 21:39:06 +01:00
assert(u);
assert(os < _UNIT_ACTIVE_STATE_MAX);
assert(ns < _UNIT_ACTIVE_STATE_MAX);
/* Note that this is called for all low-level state changes,
* even if they might map to the same high-level
2014-05-23 20:56:42 +02:00
* UnitActiveState! That means that ns == os is an expected
* behavior here. For example: if a mount point is remounted
* this function will be called too! */
2010-01-26 21:39:06 +01:00
m = u->manager;
/* Update timestamps for state changes */
if (m->n_reloading <= 0) {
dual_timestamp ts;
dual_timestamp_get(&ts);
if (UNIT_IS_INACTIVE_OR_FAILED(os) && !UNIT_IS_INACTIVE_OR_FAILED(ns))
u->inactive_exit_timestamp = ts;
else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_INACTIVE_OR_FAILED(ns))
u->inactive_enter_timestamp = ts;
if (!UNIT_IS_ACTIVE_OR_RELOADING(os) && UNIT_IS_ACTIVE_OR_RELOADING(ns))
u->active_enter_timestamp = ts;
else if (UNIT_IS_ACTIVE_OR_RELOADING(os) && !UNIT_IS_ACTIVE_OR_RELOADING(ns))
u->active_exit_timestamp = ts;
}
2010-01-26 21:39:06 +01:00
2014-05-23 20:56:42 +02:00
/* Keep track of failed units */
manager_update_failed_units(u->manager, u, ns == UNIT_FAILED);
/* Make sure the cgroup is always removed when we become inactive */
if (UNIT_IS_INACTIVE_OR_FAILED(ns))
unit_destroy_cgroup_if_empty(u);
2010-07-10 17:34:42 +02:00
/* Note that this doesn't apply to RemainAfterExit services exiting
* successfully, since there's no change of state in that case. Which is
* why it is handled in service_set_state() */
if (UNIT_IS_INACTIVE_OR_FAILED(os) != UNIT_IS_INACTIVE_OR_FAILED(ns)) {
ExecContext *ec;
ec = unit_get_exec_context(u);
if (ec && exec_context_may_touch_console(ec)) {
if (UNIT_IS_INACTIVE_OR_FAILED(ns)) {
m->n_on_console --;
if (m->n_on_console == 0)
/* unset no_console_output flag, since the console is free */
m->no_console_output = false;
} else
m->n_on_console ++;
}
}
if (u->job) {
unexpected = false;
2010-01-26 21:39:06 +01:00
if (u->job->state == JOB_WAITING)
2010-01-26 21:39:06 +01:00
/* So we reached a different state for this
* job. Let's see if we can run it now if it
* failed previously due to EAGAIN. */
job_add_to_run_queue(u->job);
2010-01-26 21:39:06 +01:00
/* Let's check whether this state change constitutes a
* finished job, or maybe contradicts a running job and
* hence needs to invalidate jobs. */
2010-01-26 21:39:06 +01:00
switch (u->job->type) {
2010-01-26 21:39:06 +01:00
case JOB_START:
case JOB_VERIFY_ACTIVE:
2010-01-26 21:39:06 +01:00
if (UNIT_IS_ACTIVE_OR_RELOADING(ns))
job_finish_and_invalidate(u->job, JOB_DONE, true);
else if (u->job->state == JOB_RUNNING && ns != UNIT_ACTIVATING) {
unexpected = true;
if (UNIT_IS_INACTIVE_OR_FAILED(ns))
job_finish_and_invalidate(u->job, ns == UNIT_FAILED ? JOB_FAILED : JOB_DONE, true);
}
2010-01-26 21:39:06 +01:00
break;
2010-01-26 21:39:06 +01:00
case JOB_RELOAD:
case JOB_RELOAD_OR_START:
2010-01-26 21:39:06 +01:00
if (u->job->state == JOB_RUNNING) {
if (ns == UNIT_ACTIVE)
job_finish_and_invalidate(u->job, reload_success ? JOB_DONE : JOB_FAILED, true);
else if (ns != UNIT_ACTIVATING && ns != UNIT_RELOADING) {
unexpected = true;
if (UNIT_IS_INACTIVE_OR_FAILED(ns))
job_finish_and_invalidate(u->job, ns == UNIT_FAILED ? JOB_FAILED : JOB_DONE, true);
}
}
2010-01-26 21:39:06 +01:00
break;
2010-01-26 21:39:06 +01:00
case JOB_STOP:
case JOB_RESTART:
case JOB_TRY_RESTART:
2010-01-26 21:39:06 +01:00
if (UNIT_IS_INACTIVE_OR_FAILED(ns))
job_finish_and_invalidate(u->job, JOB_DONE, true);
else if (u->job->state == JOB_RUNNING && ns != UNIT_DEACTIVATING) {
unexpected = true;
job_finish_and_invalidate(u->job, JOB_FAILED, true);
}
2010-01-26 21:39:06 +01:00
break;
2010-01-26 21:39:06 +01:00
default:
assert_not_reached("Job type unknown");
2010-01-26 21:39:06 +01:00
}
} else
unexpected = true;
if (m->n_reloading <= 0) {
/* If this state change happened without being
* requested by a job, then let's retroactively start
* or stop dependencies. We skip that step when
* deserializing, since we don't want to create any
* additional jobs just because something is already
* activated. */
if (unexpected) {
if (UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_ACTIVE_OR_ACTIVATING(ns))
retroactively_start_dependencies(u);
else if (UNIT_IS_ACTIVE_OR_ACTIVATING(os) && UNIT_IS_INACTIVE_OR_DEACTIVATING(ns))
retroactively_stop_dependencies(u);
}
/* stop unneeded units regardless if going down was expected or not */
if (UNIT_IS_INACTIVE_OR_DEACTIVATING(ns))
check_unneeded_dependencies(u);
if (ns != os && ns == UNIT_FAILED) {
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_notice(u, "Unit entered failed state.");
unit_start_on_failure(u);
}
}
/* Some names are special */
if (UNIT_IS_ACTIVE_OR_RELOADING(ns)) {
if (unit_has_name(u, SPECIAL_DBUS_SERVICE))
2014-05-23 20:56:42 +02:00
/* The bus might have just become available,
* hence try to connect to it, if we aren't
* yet connected. */
bus_init(m, true);
if (u->type == UNIT_SERVICE &&
!UNIT_IS_ACTIVE_OR_RELOADING(os) &&
m->n_reloading <= 0) {
/* Write audit record if we have just finished starting up */
manager_send_unit_audit(m, u, AUDIT_SERVICE_START, true);
u->in_audit = true;
}
if (!UNIT_IS_ACTIVE_OR_RELOADING(os))
manager_send_unit_plymouth(m, u);
} else {
/* We don't care about D-Bus here, since we'll get an
* asynchronous notification for it anyway. */
if (u->type == UNIT_SERVICE &&
UNIT_IS_INACTIVE_OR_FAILED(ns) &&
!UNIT_IS_INACTIVE_OR_FAILED(os) &&
m->n_reloading <= 0) {
/* Hmm, if there was no start record written
* write it now, so that we always have a nice
* pair */
if (!u->in_audit) {
manager_send_unit_audit(m, u, AUDIT_SERVICE_START, ns == UNIT_INACTIVE);
if (ns == UNIT_INACTIVE)
manager_send_unit_audit(m, u, AUDIT_SERVICE_STOP, true);
} else
/* Write audit record if we have just finished shutting down */
manager_send_unit_audit(m, u, AUDIT_SERVICE_STOP, ns == UNIT_INACTIVE);
u->in_audit = false;
}
}
manager_recheck_journal(m);
unit_trigger_notify(u);
if (u->manager->n_reloading <= 0) {
/* Maybe we finished startup and are now ready for
* being stopped because unneeded? */
unit_check_unneeded(u);
/* Maybe we finished startup, but something we needed
* has vanished? Let's die then. (This happens when
* something BindsTo= to a Type=oneshot unit, as these
* units go directly from starting to inactive,
* without ever entering started.) */
unit_check_binds_to(u);
}
unit_add_to_dbus_queue(u);
unit_add_to_gc_queue(u);
2010-01-26 21:39:06 +01:00
}
int unit_watch_pid(Unit *u, pid_t pid) {
int q, r;
2010-01-26 21:39:06 +01:00
assert(u);
assert(pid >= 1);
/* Watch a specific PID. We only support one or two units
* watching each PID for now, not more. */
r = set_ensure_allocated(&u->pids, NULL);
if (r < 0)
return r;
r = hashmap_ensure_allocated(&u->manager->watch_pids1, NULL);
if (r < 0)
return r;
r = hashmap_put(u->manager->watch_pids1, LONG_TO_PTR(pid), u);
if (r == -EEXIST) {
r = hashmap_ensure_allocated(&u->manager->watch_pids2, NULL);
if (r < 0)
return r;
r = hashmap_put(u->manager->watch_pids2, LONG_TO_PTR(pid), u);
}
q = set_put(u->pids, LONG_TO_PTR(pid));
if (q < 0)
return q;
return r;
2010-01-26 21:39:06 +01:00
}
void unit_unwatch_pid(Unit *u, pid_t pid) {
assert(u);
assert(pid >= 1);
hashmap_remove_value(u->manager->watch_pids1, LONG_TO_PTR(pid), u);
hashmap_remove_value(u->manager->watch_pids2, LONG_TO_PTR(pid), u);
set_remove(u->pids, LONG_TO_PTR(pid));
}
void unit_unwatch_all_pids(Unit *u) {
assert(u);
while (!set_isempty(u->pids))
unit_unwatch_pid(u, PTR_TO_LONG(set_first(u->pids)));
set_free(u->pids);
u->pids = NULL;
}
static int unit_watch_pids_in_path(Unit *u, const char *path) {
_cleanup_closedir_ DIR *d = NULL;
_cleanup_fclose_ FILE *f = NULL;
int ret = 0, r;
assert(u);
assert(path);
/* Adds all PIDs from a specific cgroup path to the set of PIDs we watch. */
r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, path, &f);
if (r >= 0) {
pid_t pid;
while ((r = cg_read_pid(f, &pid)) > 0) {
r = unit_watch_pid(u, pid);
if (r < 0 && ret >= 0)
ret = r;
}
if (r < 0 && ret >= 0)
ret = r;
} else if (ret >= 0)
ret = r;
r = cg_enumerate_subgroups(SYSTEMD_CGROUP_CONTROLLER, path, &d);
if (r >= 0) {
char *fn;
while ((r = cg_read_subgroup(d, &fn)) > 0) {
_cleanup_free_ char *p = NULL;
p = strjoin(path, "/", fn, NULL);
free(fn);
if (!p)
return -ENOMEM;
r = unit_watch_pids_in_path(u, p);
if (r < 0 && ret >= 0)
ret = r;
}
if (r < 0 && ret >= 0)
ret = r;
} else if (ret >= 0)
ret = r;
return ret;
}
int unit_watch_all_pids(Unit *u) {
assert(u);
/* Adds all PIDs from our cgroup to the set of PIDs we watch */
if (!u->cgroup_path)
return -ENOENT;
return unit_watch_pids_in_path(u, u->cgroup_path);
}
void unit_tidy_watch_pids(Unit *u, pid_t except1, pid_t except2) {
Iterator i;
void *e;
assert(u);
/* Cleans dead PIDs from our list */
SET_FOREACH(e, u->pids, i) {
pid_t pid = PTR_TO_LONG(e);
if (pid == except1 || pid == except2)
continue;
if (!pid_is_unwaited(pid))
unit_unwatch_pid(u, pid);
}
2010-01-26 21:39:06 +01:00
}
bool unit_job_is_applicable(Unit *u, JobType j) {
assert(u);
assert(j >= 0 && j < _JOB_TYPE_MAX);
switch (j) {
case JOB_VERIFY_ACTIVE:
case JOB_START:
case JOB_STOP:
core: add NOP jobs, job type collapsing Two of our current job types are special: JOB_TRY_RESTART, JOB_RELOAD_OR_START. They differ from other job types by being sensitive to the unit active state. They perform some action when the unit is active and some other action otherwise. This raises a question: when exactly should the unit state be checked to make the decision? Currently the unit state is checked when the job becomes runnable. It's more sensible to check the state immediately when the job is added by the user. When the user types "systemctl try-restart foo.service", he really intends to restart the service if it's running right now. If it isn't running right now, the restart is pointless. Consider the example (from Bugzilla[1]): sleep.service takes some time to start. hello.service has After=sleep.service. Both services get started. Two jobs will appear: hello.service/start waiting sleep.service/start running Then someone runs "systemctl try-restart hello.service". Currently the try-restart operation will block and wait for sleep.service/start to complete. The correct result is to complete the try-restart operation immediately with success, because hello.service is not running. The two original jobs must not be disturbed by this. To fix this we introduce two new concepts: - a new job type: JOB_NOP A JOB_NOP job does not do anything to the unit. It does not pull in any dependencies. It is always immediately runnable. When installed to a unit, it sits in a special slot (u->nop_job) where it never conflicts with the installed job (u->job) of a different type. It never merges with jobs of other types, but it can merge into an already installed JOB_NOP job. - "collapsing" of job types When a job of one of the two special types is added, the state of the unit is checked immediately and the job type changes: JOB_TRY_RESTART -> JOB_RESTART or JOB_NOP JOB_RELOAD_OR_START -> JOB_RELOAD or JOB_START Should a job type JOB_RELOAD_OR_START appear later during job merging, it collapses immediately afterwards. Collapsing actually makes some things simpler, because there are now fewer job types that are allowed in the transaction. [1] Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=753586
2012-04-25 11:58:27 +02:00
case JOB_NOP:
2010-01-26 21:39:06 +01:00
return true;
case JOB_RESTART:
case JOB_TRY_RESTART:
return unit_can_start(u);
case JOB_RELOAD:
return unit_can_reload(u);
case JOB_RELOAD_OR_START:
return unit_can_reload(u) && unit_can_start(u);
default:
assert_not_reached("Invalid job type");
}
}
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
static void maybe_warn_about_dependency(Unit *u, const char *other, UnitDependency dependency) {
assert(u);
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
/* Only warn about some unit types */
if (!IN_SET(dependency, UNIT_CONFLICTS, UNIT_CONFLICTED_BY, UNIT_BEFORE, UNIT_AFTER, UNIT_ON_FAILURE, UNIT_TRIGGERS, UNIT_TRIGGERED_BY))
return;
2014-08-18 22:25:24 +02:00
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
if (streq_ptr(u->id, other))
log_unit_warning(u, "Dependency %s=%s dropped", unit_dependency_to_string(dependency), u->id);
else
log_unit_warning(u, "Dependency %s=%s dropped, merged into %s", unit_dependency_to_string(dependency), strna(other), u->id);
}
int unit_add_dependency(Unit *u, UnitDependency d, Unit *other, bool add_reference) {
2010-01-26 21:39:06 +01:00
static const UnitDependency inverse_table[_UNIT_DEPENDENCY_MAX] = {
[UNIT_REQUIRES] = UNIT_REQUIRED_BY,
2010-04-15 03:11:11 +02:00
[UNIT_REQUIRES_OVERRIDABLE] = UNIT_REQUIRED_BY_OVERRIDABLE,
2010-01-26 21:39:06 +01:00
[UNIT_WANTS] = UNIT_WANTED_BY,
[UNIT_REQUISITE] = UNIT_REQUIRED_BY,
2010-04-15 03:11:11 +02:00
[UNIT_REQUISITE_OVERRIDABLE] = UNIT_REQUIRED_BY_OVERRIDABLE,
[UNIT_BINDS_TO] = UNIT_BOUND_BY,
[UNIT_PART_OF] = UNIT_CONSISTS_OF,
2010-01-26 21:39:06 +01:00
[UNIT_REQUIRED_BY] = _UNIT_DEPENDENCY_INVALID,
2010-04-15 03:11:11 +02:00
[UNIT_REQUIRED_BY_OVERRIDABLE] = _UNIT_DEPENDENCY_INVALID,
2010-01-26 21:39:06 +01:00
[UNIT_WANTED_BY] = _UNIT_DEPENDENCY_INVALID,
[UNIT_BOUND_BY] = UNIT_BINDS_TO,
[UNIT_CONSISTS_OF] = UNIT_PART_OF,
[UNIT_CONFLICTS] = UNIT_CONFLICTED_BY,
[UNIT_CONFLICTED_BY] = UNIT_CONFLICTS,
2010-01-26 21:39:06 +01:00
[UNIT_BEFORE] = UNIT_AFTER,
[UNIT_AFTER] = UNIT_BEFORE,
[UNIT_ON_FAILURE] = _UNIT_DEPENDENCY_INVALID,
[UNIT_REFERENCES] = UNIT_REFERENCED_BY,
[UNIT_REFERENCED_BY] = UNIT_REFERENCES,
[UNIT_TRIGGERS] = UNIT_TRIGGERED_BY,
[UNIT_TRIGGERED_BY] = UNIT_TRIGGERS,
[UNIT_PROPAGATES_RELOAD_TO] = UNIT_RELOAD_PROPAGATED_FROM,
[UNIT_RELOAD_PROPAGATED_FROM] = UNIT_PROPAGATES_RELOAD_TO,
[UNIT_JOINS_NAMESPACE_OF] = UNIT_JOINS_NAMESPACE_OF,
2010-01-26 21:39:06 +01:00
};
int r, q = 0, v = 0, w = 0;
Unit *orig_u = u, *orig_other = other;
2010-01-26 21:39:06 +01:00
assert(u);
assert(d >= 0 && d < _UNIT_DEPENDENCY_MAX);
assert(other);
u = unit_follow_merge(u);
other = unit_follow_merge(other);
2010-01-26 21:39:06 +01:00
/* We won't allow dependencies on ourselves. We will not
* consider them an error however. */
if (u == other) {
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
maybe_warn_about_dependency(orig_u, orig_other->id, d);
2010-01-26 21:39:06 +01:00
return 0;
}
2010-01-26 21:39:06 +01:00
r = set_ensure_allocated(&u->dependencies[d], NULL);
if (r < 0)
2010-01-26 21:39:06 +01:00
return r;
if (inverse_table[d] != _UNIT_DEPENDENCY_INVALID) {
r = set_ensure_allocated(&other->dependencies[inverse_table[d]], NULL);
if (r < 0)
return r;
}
if (add_reference) {
r = set_ensure_allocated(&u->dependencies[UNIT_REFERENCES], NULL);
if (r < 0)
return r;
r = set_ensure_allocated(&other->dependencies[UNIT_REFERENCED_BY], NULL);
if (r < 0)
return r;
}
2010-01-26 21:39:06 +01:00
q = set_put(u->dependencies[d], other);
if (q < 0)
return q;
2010-01-26 21:39:06 +01:00
if (inverse_table[d] != _UNIT_DEPENDENCY_INVALID && inverse_table[d] != d) {
v = set_put(other->dependencies[inverse_table[d]], u);
if (v < 0) {
r = v;
goto fail;
}
}
if (add_reference) {
w = set_put(u->dependencies[UNIT_REFERENCES], other);
if (w < 0) {
r = w;
goto fail;
}
r = set_put(other->dependencies[UNIT_REFERENCED_BY], u);
if (r < 0)
goto fail;
2010-01-26 21:39:06 +01:00
}
unit_add_to_dbus_queue(u);
2010-01-26 21:39:06 +01:00
return 0;
fail:
if (q > 0)
set_remove(u->dependencies[d], other);
if (v > 0)
set_remove(other->dependencies[inverse_table[d]], u);
if (w > 0)
set_remove(u->dependencies[UNIT_REFERENCES], other);
return r;
2010-01-26 21:39:06 +01:00
}
2010-01-27 00:15:56 +01:00
int unit_add_two_dependencies(Unit *u, UnitDependency d, UnitDependency e, Unit *other, bool add_reference) {
int r;
assert(u);
2014-08-18 22:25:24 +02:00
r = unit_add_dependency(u, d, other, add_reference);
if (r < 0)
return r;
return unit_add_dependency(u, e, other, add_reference);
}
static int resolve_template(Unit *u, const char *name, const char*path, char **buf, const char **ret) {
int r;
2010-04-15 03:11:11 +02:00
assert(u);
assert(name || path);
assert(buf);
assert(ret);
2010-04-15 03:11:11 +02:00
if (!name)
name = basename(path);
2010-04-15 03:11:11 +02:00
if (!unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
*buf = NULL;
*ret = name;
return 0;
2010-04-15 03:11:11 +02:00
}
if (u->instance)
r = unit_name_replace_instance(name, u->instance, buf);
2010-04-15 03:11:11 +02:00
else {
_cleanup_free_ char *i = NULL;
2010-04-15 03:11:11 +02:00
r = unit_name_to_prefix(u->id, &i);
if (r < 0)
return r;
2010-04-15 03:11:11 +02:00
r = unit_name_replace_instance(name, i, buf);
2010-04-15 03:11:11 +02:00
}
if (r < 0)
return r;
2010-04-15 03:11:11 +02:00
*ret = *buf;
return 0;
2010-04-15 03:11:11 +02:00
}
int unit_add_dependency_by_name(Unit *u, UnitDependency d, const char *name, const char *path, bool add_reference) {
_cleanup_free_ char *buf = NULL;
Unit *other;
int r;
2010-04-15 03:11:11 +02:00
assert(u);
assert(name || path);
r = resolve_template(u, name, path, &buf, &name);
if (r < 0)
return r;
r = manager_load_unit(u->manager, name, path, NULL, &other);
if (r < 0)
return r;
2010-04-15 03:11:11 +02:00
return unit_add_dependency(u, d, other, add_reference);
}
int unit_add_two_dependencies_by_name(Unit *u, UnitDependency d, UnitDependency e, const char *name, const char *path, bool add_reference) {
_cleanup_free_ char *buf = NULL;
Unit *other;
int r;
assert(u);
assert(name || path);
r = resolve_template(u, name, path, &buf, &name);
if (r < 0)
return r;
2014-08-18 22:25:24 +02:00
r = manager_load_unit(u->manager, name, path, NULL, &other);
if (r < 0)
return r;
2014-08-18 22:25:24 +02:00
return unit_add_two_dependencies(u, d, e, other, add_reference);
}
int unit_add_dependency_by_name_inverse(Unit *u, UnitDependency d, const char *name, const char *path, bool add_reference) {
_cleanup_free_ char *buf = NULL;
Unit *other;
int r;
2010-04-15 03:11:11 +02:00
assert(u);
assert(name || path);
r = resolve_template(u, name, path, &buf, &name);
if (r < 0)
return r;
2014-08-18 22:25:24 +02:00
r = manager_load_unit(u->manager, name, path, NULL, &other);
if (r < 0)
return r;
2010-04-15 03:11:11 +02:00
2014-08-18 22:25:24 +02:00
return unit_add_dependency(other, d, u, add_reference);
}
int unit_add_two_dependencies_by_name_inverse(Unit *u, UnitDependency d, UnitDependency e, const char *name, const char *path, bool add_reference) {
_cleanup_free_ char *buf = NULL;
Unit *other;
int r;
assert(u);
assert(name || path);
r = resolve_template(u, name, path, &buf, &name);
2014-08-18 22:25:24 +02:00
if (r < 0)
return r;
r = manager_load_unit(u->manager, name, path, NULL, &other);
2014-08-18 22:25:24 +02:00
if (r < 0)
return r;
return unit_add_two_dependencies(other, d, e, u, add_reference);
}
2010-01-27 00:15:56 +01:00
int set_unit_path(const char *p) {
/* This is mostly for debug purposes */
if (setenv("SYSTEMD_UNIT_PATH", p, 0) < 0)
return -errno;
2010-01-27 00:15:56 +01:00
return 0;
}
2010-01-28 06:44:30 +01:00
char *unit_dbus_path(Unit *u) {
assert(u);
if (!u->id)
return NULL;
return unit_dbus_path_from_name(u->id);
}
char *unit_default_cgroup_path(Unit *u) {
_cleanup_free_ char *escaped = NULL, *slice = NULL;
int r;
assert(u);
if (unit_has_name(u, SPECIAL_ROOT_SLICE))
return strdup(u->manager->cgroup_root);
if (UNIT_ISSET(u->slice) && !unit_has_name(UNIT_DEREF(u->slice), SPECIAL_ROOT_SLICE)) {
r = cg_slice_to_path(UNIT_DEREF(u->slice)->id, &slice);
if (r < 0)
return NULL;
}
escaped = cg_escape(u->id);
if (!escaped)
return NULL;
if (slice)
return strjoin(u->manager->cgroup_root, "/", slice, "/", escaped, NULL);
else
return strjoin(u->manager->cgroup_root, "/", escaped, NULL);
}
int unit_add_default_slice(Unit *u, CGroupContext *c) {
_cleanup_free_ char *b = NULL;
const char *slice_name;
Unit *slice;
int r;
assert(u);
assert(c);
if (UNIT_ISSET(u->slice))
return 0;
if (u->instance) {
_cleanup_free_ char *prefix = NULL, *escaped = NULL;
/* Implicitly place all instantiated units in their
* own per-template slice */
r = unit_name_to_prefix(u->id, &prefix);
if (r < 0)
return r;
/* The prefix is already escaped, but it might include
* "-" which has a special meaning for slice units,
* hence escape it here extra. */
escaped = unit_name_escape(prefix);
if (!escaped)
return -ENOMEM;
if (u->manager->running_as == MANAGER_SYSTEM)
b = strjoin("system-", escaped, ".slice", NULL);
else
b = strappend(escaped, ".slice");
if (!b)
return -ENOMEM;
slice_name = b;
} else
slice_name =
u->manager->running_as == MANAGER_SYSTEM
? SPECIAL_SYSTEM_SLICE
: SPECIAL_ROOT_SLICE;
r = manager_load_unit(u->manager, slice_name, NULL, NULL, &slice);
if (r < 0)
return r;
unit_ref_set(&u->slice, slice);
return 0;
}
const char *unit_slice_name(Unit *u) {
assert(u);
if (!UNIT_ISSET(u->slice))
return NULL;
return UNIT_DEREF(u->slice)->id;
}
int unit_load_related_unit(Unit *u, const char *type, Unit **_found) {
_cleanup_free_ char *t = NULL;
int r;
assert(u);
assert(type);
assert(_found);
r = unit_name_change_suffix(u->id, type, &t);
if (r < 0)
return r;
if (unit_has_name(u, t))
return -EINVAL;
r = manager_load_unit(u->manager, t, NULL, NULL, _found);
2010-04-15 03:11:11 +02:00
assert(r < 0 || *_found != u);
return r;
}
int unit_watch_bus_name(Unit *u, const char *name) {
assert(u);
assert(name);
/* Watch a specific name on the bus. We only support one unit
* watching each name for now. */
return hashmap_put(u->manager->watch_bus, name, u);
}
void unit_unwatch_bus_name(Unit *u, const char *name) {
assert(u);
assert(name);
hashmap_remove_value(u->manager->watch_bus, name, u);
}
2010-04-21 03:27:44 +02:00
bool unit_can_serialize(Unit *u) {
assert(u);
return UNIT_VTABLE(u)->serialize && UNIT_VTABLE(u)->deserialize_item;
}
int unit_serialize(Unit *u, FILE *f, FDSet *fds, bool serialize_jobs) {
2010-04-21 03:27:44 +02:00
int r;
assert(u);
assert(f);
assert(fds);
if (unit_can_serialize(u)) {
ExecRuntime *rt;
2010-04-21 03:27:44 +02:00
r = UNIT_VTABLE(u)->serialize(u, f, fds);
if (r < 0)
return r;
rt = unit_get_exec_runtime(u);
if (rt) {
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
r = exec_runtime_serialize(u, rt, f, fds);
if (r < 0)
return r;
}
core: add NOP jobs, job type collapsing Two of our current job types are special: JOB_TRY_RESTART, JOB_RELOAD_OR_START. They differ from other job types by being sensitive to the unit active state. They perform some action when the unit is active and some other action otherwise. This raises a question: when exactly should the unit state be checked to make the decision? Currently the unit state is checked when the job becomes runnable. It's more sensible to check the state immediately when the job is added by the user. When the user types "systemctl try-restart foo.service", he really intends to restart the service if it's running right now. If it isn't running right now, the restart is pointless. Consider the example (from Bugzilla[1]): sleep.service takes some time to start. hello.service has After=sleep.service. Both services get started. Two jobs will appear: hello.service/start waiting sleep.service/start running Then someone runs "systemctl try-restart hello.service". Currently the try-restart operation will block and wait for sleep.service/start to complete. The correct result is to complete the try-restart operation immediately with success, because hello.service is not running. The two original jobs must not be disturbed by this. To fix this we introduce two new concepts: - a new job type: JOB_NOP A JOB_NOP job does not do anything to the unit. It does not pull in any dependencies. It is always immediately runnable. When installed to a unit, it sits in a special slot (u->nop_job) where it never conflicts with the installed job (u->job) of a different type. It never merges with jobs of other types, but it can merge into an already installed JOB_NOP job. - "collapsing" of job types When a job of one of the two special types is added, the state of the unit is checked immediately and the job type changes: JOB_TRY_RESTART -> JOB_RESTART or JOB_NOP JOB_RELOAD_OR_START -> JOB_RELOAD or JOB_START Should a job type JOB_RELOAD_OR_START appear later during job merging, it collapses immediately afterwards. Collapsing actually makes some things simpler, because there are now fewer job types that are allowed in the transaction. [1] Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=753586
2012-04-25 11:58:27 +02:00
}
dual_timestamp_serialize(f, "inactive-exit-timestamp", &u->inactive_exit_timestamp);
dual_timestamp_serialize(f, "active-enter-timestamp", &u->active_enter_timestamp);
dual_timestamp_serialize(f, "active-exit-timestamp", &u->active_exit_timestamp);
dual_timestamp_serialize(f, "inactive-enter-timestamp", &u->inactive_enter_timestamp);
dual_timestamp_serialize(f, "condition-timestamp", &u->condition_timestamp);
dual_timestamp_serialize(f, "assert-timestamp", &u->assert_timestamp);
2011-03-17 04:36:19 +01:00
if (dual_timestamp_is_set(&u->condition_timestamp))
unit_serialize_item(u, f, "condition-result", yes_no(u->condition_result));
2010-10-27 00:01:12 +02:00
if (dual_timestamp_is_set(&u->assert_timestamp))
unit_serialize_item(u, f, "assert-result", yes_no(u->assert_result));
unit_serialize_item(u, f, "transient", yes_no(u->transient));
unit_serialize_item_format(u, f, "cpuacct-usage-base", "%" PRIu64, u->cpuacct_usage_base);
if (u->cgroup_path)
unit_serialize_item(u, f, "cgroup", u->cgroup_path);
if (serialize_jobs) {
if (u->job) {
fprintf(f, "job\n");
job_serialize(u->job, f, fds);
}
if (u->nop_job) {
fprintf(f, "job\n");
job_serialize(u->nop_job, f, fds);
}
}
2010-04-21 03:27:44 +02:00
/* End marker */
fputc('\n', f);
return 0;
}
void unit_serialize_item_format(Unit *u, FILE *f, const char *key, const char *format, ...) {
va_list ap;
assert(u);
assert(f);
assert(key);
assert(format);
fputs(key, f);
fputc('=', f);
va_start(ap, format);
vfprintf(f, format, ap);
va_end(ap);
fputc('\n', f);
}
void unit_serialize_item(Unit *u, FILE *f, const char *key, const char *value) {
assert(u);
assert(f);
assert(key);
assert(value);
fprintf(f, "%s=%s\n", key, value);
}
static int unit_set_cgroup_path(Unit *u, const char *path) {
_cleanup_free_ char *p = NULL;
int r;
assert(u);
if (path) {
p = strdup(path);
if (!p)
return -ENOMEM;
} else
p = NULL;
if (streq_ptr(u->cgroup_path, p))
return 0;
if (p) {
r = hashmap_put(u->manager->cgroup_unit, p, u);
if (r < 0)
return r;
}
if (u->cgroup_path) {
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_debug(u, "Changing cgroup path from %s to %s.", u->cgroup_path, strna(p));
hashmap_remove(u->manager->cgroup_unit, u->cgroup_path);
free(u->cgroup_path);
}
u->cgroup_path = p;
p = NULL;
return 0;
}
2010-04-21 03:27:44 +02:00
int unit_deserialize(Unit *u, FILE *f, FDSet *fds) {
2013-11-28 01:24:56 +01:00
ExecRuntime **rt = NULL;
size_t offset;
2010-04-21 03:27:44 +02:00
int r;
assert(u);
assert(f);
assert(fds);
offset = UNIT_VTABLE(u)->exec_runtime_offset;
if (offset > 0)
rt = (ExecRuntime**) ((uint8_t*) u + offset);
2010-04-21 03:27:44 +02:00
for (;;) {
char line[LINE_MAX], *l, *v;
2010-04-21 03:27:44 +02:00
size_t k;
if (!fgets(line, sizeof(line), f)) {
if (feof(f))
return 0;
return -errno;
}
char_array_0(line);
2010-04-21 03:27:44 +02:00
l = strstrip(line);
/* End marker */
if (isempty(l))
2010-04-21 03:27:44 +02:00
return 0;
k = strcspn(l, "=");
if (l[k] == '=') {
l[k] = 0;
v = l+k+1;
} else
v = l+k;
if (streq(l, "job")) {
if (v[0] == '\0') {
/* new-style serialized job */
Job *j;
j = job_new_raw(u);
if (!j)
return log_oom();
r = job_deserialize(j, f, fds);
if (r < 0) {
job_free(j);
return r;
}
r = hashmap_put(u->manager->jobs, UINT32_TO_PTR(j->id), j);
if (r < 0) {
job_free(j);
return r;
}
core: add NOP jobs, job type collapsing Two of our current job types are special: JOB_TRY_RESTART, JOB_RELOAD_OR_START. They differ from other job types by being sensitive to the unit active state. They perform some action when the unit is active and some other action otherwise. This raises a question: when exactly should the unit state be checked to make the decision? Currently the unit state is checked when the job becomes runnable. It's more sensible to check the state immediately when the job is added by the user. When the user types "systemctl try-restart foo.service", he really intends to restart the service if it's running right now. If it isn't running right now, the restart is pointless. Consider the example (from Bugzilla[1]): sleep.service takes some time to start. hello.service has After=sleep.service. Both services get started. Two jobs will appear: hello.service/start waiting sleep.service/start running Then someone runs "systemctl try-restart hello.service". Currently the try-restart operation will block and wait for sleep.service/start to complete. The correct result is to complete the try-restart operation immediately with success, because hello.service is not running. The two original jobs must not be disturbed by this. To fix this we introduce two new concepts: - a new job type: JOB_NOP A JOB_NOP job does not do anything to the unit. It does not pull in any dependencies. It is always immediately runnable. When installed to a unit, it sits in a special slot (u->nop_job) where it never conflicts with the installed job (u->job) of a different type. It never merges with jobs of other types, but it can merge into an already installed JOB_NOP job. - "collapsing" of job types When a job of one of the two special types is added, the state of the unit is checked immediately and the job type changes: JOB_TRY_RESTART -> JOB_RESTART or JOB_NOP JOB_RELOAD_OR_START -> JOB_RELOAD or JOB_START Should a job type JOB_RELOAD_OR_START appear later during job merging, it collapses immediately afterwards. Collapsing actually makes some things simpler, because there are now fewer job types that are allowed in the transaction. [1] Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=753586
2012-04-25 11:58:27 +02:00
r = job_install_deserialized(j);
if (r < 0) {
hashmap_remove(u->manager->jobs, UINT32_TO_PTR(j->id));
job_free(j);
return r;
}
} else {
/* legacy */
JobType type;
type = job_type_from_string(v);
if (type < 0)
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_debug(u, "Failed to parse job type value: %s", v);
else
u->deserialized_job = type;
}
continue;
} else if (streq(l, "inactive-exit-timestamp")) {
dual_timestamp_deserialize(v, &u->inactive_exit_timestamp);
continue;
} else if (streq(l, "active-enter-timestamp")) {
dual_timestamp_deserialize(v, &u->active_enter_timestamp);
continue;
} else if (streq(l, "active-exit-timestamp")) {
dual_timestamp_deserialize(v, &u->active_exit_timestamp);
continue;
} else if (streq(l, "inactive-enter-timestamp")) {
dual_timestamp_deserialize(v, &u->inactive_enter_timestamp);
continue;
2011-03-17 04:36:19 +01:00
} else if (streq(l, "condition-timestamp")) {
dual_timestamp_deserialize(v, &u->condition_timestamp);
2011-03-17 04:36:19 +01:00
continue;
} else if (streq(l, "assert-timestamp")) {
dual_timestamp_deserialize(v, &u->assert_timestamp);
continue;
2011-03-17 04:36:19 +01:00
} else if (streq(l, "condition-result")) {
r = parse_boolean(v);
if (r < 0)
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_debug(u, "Failed to parse condition result value %s, ignoring.", v);
2011-03-17 04:36:19 +01:00
else
u->condition_result = r;
2011-03-29 23:32:31 +02:00
continue;
} else if (streq(l, "assert-result")) {
r = parse_boolean(v);
if (r < 0)
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_debug(u, "Failed to parse assert result value %s, ignoring.", v);
else
u->assert_result = r;
continue;
} else if (streq(l, "transient")) {
r = parse_boolean(v);
if (r < 0)
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_debug(u, "Failed to parse transient bool %s, ignoring.", v);
else
u->transient = r;
continue;
} else if (streq(l, "cpuacct-usage-base")) {
r = safe_atou64(v, &u->cpuacct_usage_base);
if (r < 0)
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_debug(u, "Failed to parse CPU usage %s, ignoring.", v);
continue;
} else if (streq(l, "cgroup")) {
r = unit_set_cgroup_path(u, v);
if (r < 0)
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_debug_errno(u, r, "Failed to set cgroup path %s, ignoring: %m", v);
continue;
}
if (unit_can_serialize(u)) {
if (rt) {
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
r = exec_runtime_deserialize_item(u, rt, l, v, fds);
if (r < 0) {
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_warning(u, "Failed to deserialize runtime parameter '%s', ignoring.", l);
continue;
}
/* Returns positive if key was handled by the call */
if (r > 0)
continue;
}
r = UNIT_VTABLE(u)->deserialize_item(u, l, v, fds);
if (r < 0)
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_warning(u, "Failed to deserialize unit parameter '%s', ignoring.", l);
}
2010-04-21 03:27:44 +02:00
}
}
int unit_add_node_link(Unit *u, const char *what, bool wants) {
Unit *device;
_cleanup_free_ char *e = NULL;
int r;
assert(u);
/* Adds in links to the device node that this unit is based on */
if (isempty(what))
return 0;
if (!is_device_path(what))
return 0;
/* When device units aren't supported (such as in a
* container), don't create dependencies on them. */
if (!unit_type_supported(UNIT_DEVICE))
return 0;
r = unit_name_from_path(what, ".device", &e);
if (r < 0)
return r;
r = manager_load_unit(u->manager, e, NULL, NULL, &device);
if (r < 0)
return r;
r = unit_add_two_dependencies(u, UNIT_AFTER, u->manager->running_as == MANAGER_SYSTEM ? UNIT_BINDS_TO : UNIT_WANTS, device, true);
if (r < 0)
return r;
if (wants) {
r = unit_add_dependency(device, UNIT_WANTS, u, false);
if (r < 0)
return r;
}
return 0;
}
2010-04-21 03:27:44 +02:00
int unit_coldplug(Unit *u) {
int r;
assert(u);
/* Make sure we don't enter a loop, when coldplugging
* recursively. */
if (u->coldplugged)
return 0;
u->coldplugged = true;
if (UNIT_VTABLE(u)->coldplug) {
r = UNIT_VTABLE(u)->coldplug(u);
if (r < 0)
return r;
}
if (u->job) {
r = job_coldplug(u->job);
if (r < 0)
return r;
} else if (u->deserialized_job >= 0) {
/* legacy */
r = manager_add_job(u->manager, u->deserialized_job, u, JOB_IGNORE_REQUIREMENTS, false, NULL, NULL);
if (r < 0)
return r;
u->deserialized_job = _JOB_TYPE_INVALID;
}
return 0;
}
void unit_status_printf(Unit *u, const char *status, const char *unit_status_msg_format) {
DISABLE_WARNING_FORMAT_NONLITERAL;
manager_status_printf(u->manager, STATUS_TYPE_NORMAL,
status, unit_status_msg_format, unit_description(u));
REENABLE_WARNING;
}
bool unit_need_daemon_reload(Unit *u) {
_cleanup_strv_free_ char **t = NULL;
char **path;
struct stat st;
unsigned loaded_cnt, current_cnt;
assert(u);
if (u->fragment_path) {
zero(st);
if (stat(u->fragment_path, &st) < 0)
/* What, cannot access this anymore? */
return true;
if (u->fragment_mtime > 0 &&
timespec_load(&st.st_mtim) != u->fragment_mtime)
return true;
}
if (u->source_path) {
zero(st);
if (stat(u->source_path, &st) < 0)
return true;
if (u->source_mtime > 0 &&
timespec_load(&st.st_mtim) != u->source_mtime)
return true;
}
(void) unit_find_dropin_paths(u, &t);
loaded_cnt = strv_length(t);
current_cnt = strv_length(u->dropin_paths);
if (loaded_cnt == current_cnt) {
if (loaded_cnt == 0)
return false;
if (strv_overlap(u->dropin_paths, t)) {
STRV_FOREACH(path, u->dropin_paths) {
zero(st);
if (stat(*path, &st) < 0)
return true;
if (u->dropin_mtime > 0 &&
timespec_load(&st.st_mtim) > u->dropin_mtime)
return true;
}
return false;
} else
return true;
} else
return true;
}
void unit_reset_failed(Unit *u) {
assert(u);
if (UNIT_VTABLE(u)->reset_failed)
UNIT_VTABLE(u)->reset_failed(u);
}
Unit *unit_following(Unit *u) {
assert(u);
if (UNIT_VTABLE(u)->following)
return UNIT_VTABLE(u)->following(u);
return NULL;
}
bool unit_stop_pending(Unit *u) {
2010-09-01 03:35:04 +02:00
assert(u);
/* This call does check the current state of the unit. It's
* hence useful to be called from state change calls of the
* unit itself, where the state isn't updated yet. This is
* different from unit_inactive_or_pending() which checks both
* the current state and for a queued job. */
2010-09-01 03:35:04 +02:00
return u->job && u->job->type == JOB_STOP;
}
bool unit_inactive_or_pending(Unit *u) {
assert(u);
/* Returns true if the unit is inactive or going down */
2010-09-01 03:35:04 +02:00
if (UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)))
return true;
if (unit_stop_pending(u))
2010-09-01 03:35:04 +02:00
return true;
return false;
}
bool unit_active_or_pending(Unit *u) {
assert(u);
/* Returns true if the unit is active or going up */
if (UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)))
return true;
if (u->job &&
(u->job->type == JOB_START ||
u->job->type == JOB_RELOAD_OR_START ||
u->job->type == JOB_RESTART))
return true;
return false;
}
int unit_kill(Unit *u, KillWho w, int signo, sd_bus_error *error) {
2010-10-22 16:11:50 +02:00
assert(u);
assert(w >= 0 && w < _KILL_WHO_MAX);
assert(signo > 0);
assert(signo < _NSIG);
if (!UNIT_VTABLE(u)->kill)
return -EOPNOTSUPP;
2010-10-22 16:11:50 +02:00
return UNIT_VTABLE(u)->kill(u, w, signo, error);
2010-10-22 16:11:50 +02:00
}
static Set *unit_pid_set(pid_t main_pid, pid_t control_pid) {
Set *pid_set;
int r;
pid_set = set_new(NULL);
if (!pid_set)
return NULL;
/* Exclude the main/control pids from being killed via the cgroup */
if (main_pid > 0) {
r = set_put(pid_set, LONG_TO_PTR(main_pid));
if (r < 0)
goto fail;
}
if (control_pid > 0) {
r = set_put(pid_set, LONG_TO_PTR(control_pid));
if (r < 0)
goto fail;
}
return pid_set;
fail:
set_free(pid_set);
return NULL;
}
int unit_kill_common(
Unit *u,
KillWho who,
int signo,
pid_t main_pid,
pid_t control_pid,
sd_bus_error *error) {
int r = 0;
if (who == KILL_MAIN && main_pid <= 0) {
if (main_pid < 0)
return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no main processes", unit_type_to_string(u->type));
else
return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No main process to kill");
}
if (who == KILL_CONTROL && control_pid <= 0) {
if (control_pid < 0)
return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no control processes", unit_type_to_string(u->type));
else
return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No control process to kill");
}
if (who == KILL_CONTROL || who == KILL_ALL)
if (control_pid > 0)
if (kill(control_pid, signo) < 0)
r = -errno;
if (who == KILL_MAIN || who == KILL_ALL)
if (main_pid > 0)
if (kill(main_pid, signo) < 0)
r = -errno;
if (who == KILL_ALL && u->cgroup_path) {
_cleanup_set_free_ Set *pid_set = NULL;
int q;
/* Exclude the main/control pids from being killed via the cgroup */
pid_set = unit_pid_set(main_pid, control_pid);
if (!pid_set)
return -ENOMEM;
q = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, signo, false, true, false, pid_set);
if (q < 0 && q != -EAGAIN && q != -ESRCH && q != -ENOENT)
r = q;
}
return r;
}
int unit_following_set(Unit *u, Set **s) {
assert(u);
assert(s);
if (UNIT_VTABLE(u)->following_set)
return UNIT_VTABLE(u)->following_set(u, s);
*s = NULL;
return 0;
}
2011-07-31 18:28:02 +02:00
UnitFileState unit_get_unit_file_state(Unit *u) {
assert(u);
if (u->unit_file_state < 0 && u->fragment_path)
u->unit_file_state = unit_file_get_state(
u->manager->running_as == MANAGER_SYSTEM ? UNIT_FILE_SYSTEM : UNIT_FILE_USER,
NULL, basename(u->fragment_path));
2011-07-31 18:28:02 +02:00
return u->unit_file_state;
2011-07-31 18:28:02 +02:00
}
int unit_get_unit_file_preset(Unit *u) {
assert(u);
if (u->unit_file_preset < 0 && u->fragment_path)
u->unit_file_preset = unit_file_query_preset(
u->manager->running_as == MANAGER_SYSTEM ? UNIT_FILE_SYSTEM : UNIT_FILE_USER,
NULL, basename(u->fragment_path));
return u->unit_file_preset;
}
Unit* unit_ref_set(UnitRef *ref, Unit *u) {
assert(ref);
assert(u);
if (ref->unit)
unit_ref_unset(ref);
ref->unit = u;
LIST_PREPEND(refs, u->refs, ref);
return u;
}
void unit_ref_unset(UnitRef *ref) {
assert(ref);
if (!ref->unit)
return;
LIST_REMOVE(refs, ref->unit->refs, ref);
ref->unit = NULL;
}
int unit_patch_contexts(Unit *u) {
CGroupContext *cc;
ExecContext *ec;
unsigned i;
int r;
assert(u);
/* Patch in the manager defaults into the exec and cgroup
* contexts, _after_ the rest of the settings have been
* initialized */
ec = unit_get_exec_context(u);
if (ec) {
/* This only copies in the ones that need memory */
for (i = 0; i < _RLIMIT_MAX; i++)
if (u->manager->rlimit[i] && !ec->rlimit[i]) {
ec->rlimit[i] = newdup(struct rlimit, u->manager->rlimit[i], 1);
if (!ec->rlimit[i])
return -ENOMEM;
}
if (u->manager->running_as == MANAGER_USER &&
!ec->working_directory) {
r = get_home_dir(&ec->working_directory);
if (r < 0)
return r;
/* Allow user services to run, even if the
* home directory is missing */
ec->working_directory_missing_ok = true;
}
if (u->manager->running_as == MANAGER_USER &&
(ec->syscall_whitelist ||
!set_isempty(ec->syscall_filter) ||
!set_isempty(ec->syscall_archs) ||
ec->address_families_whitelist ||
!set_isempty(ec->address_families)))
ec->no_new_privileges = true;
if (ec->private_devices)
ec->capability_bounding_set_drop |= (uint64_t) 1ULL << (uint64_t) CAP_MKNOD;
}
cc = unit_get_cgroup_context(u);
if (cc) {
if (ec &&
ec->private_devices &&
cc->device_policy == CGROUP_AUTO)
cc->device_policy = CGROUP_CLOSED;
}
return 0;
}
ExecContext *unit_get_exec_context(Unit *u) {
size_t offset;
assert(u);
if (u->type < 0)
return NULL;
offset = UNIT_VTABLE(u)->exec_context_offset;
if (offset <= 0)
return NULL;
return (ExecContext*) ((uint8_t*) u + offset);
}
KillContext *unit_get_kill_context(Unit *u) {
size_t offset;
assert(u);
if (u->type < 0)
return NULL;
offset = UNIT_VTABLE(u)->kill_context_offset;
if (offset <= 0)
return NULL;
return (KillContext*) ((uint8_t*) u + offset);
}
CGroupContext *unit_get_cgroup_context(Unit *u) {
size_t offset;
if (u->type < 0)
return NULL;
offset = UNIT_VTABLE(u)->cgroup_context_offset;
if (offset <= 0)
return NULL;
return (CGroupContext*) ((uint8_t*) u + offset);
}
ExecRuntime *unit_get_exec_runtime(Unit *u) {
size_t offset;
if (u->type < 0)
return NULL;
offset = UNIT_VTABLE(u)->exec_runtime_offset;
if (offset <= 0)
return NULL;
return *(ExecRuntime**) ((uint8_t*) u + offset);
}
static int unit_drop_in_dir(Unit *u, UnitSetPropertiesMode mode, bool transient, char **dir) {
if (u->manager->running_as == MANAGER_USER) {
int r;
if (mode == UNIT_PERSISTENT && !transient)
r = user_config_home(dir);
else
r = user_runtime_dir(dir);
if (r == 0)
return -ENOENT;
return r;
}
if (mode == UNIT_PERSISTENT && !transient)
*dir = strdup("/etc/systemd/system");
else
*dir = strdup("/run/systemd/system");
if (!*dir)
return -ENOMEM;
return 0;
}
static int unit_drop_in_file(Unit *u,
UnitSetPropertiesMode mode, const char *name, char **p, char **q) {
_cleanup_free_ char *dir = NULL;
int r;
assert(u);
r = unit_drop_in_dir(u, mode, u->transient, &dir);
if (r < 0)
return r;
return drop_in_file(dir, u->id, 50, name, p, q);
}
int unit_write_drop_in(Unit *u, UnitSetPropertiesMode mode, const char *name, const char *data) {
_cleanup_free_ char *dir = NULL, *p = NULL, *q = NULL;
int r;
assert(u);
if (!IN_SET(mode, UNIT_PERSISTENT, UNIT_RUNTIME))
return 0;
r = unit_drop_in_dir(u, mode, u->transient, &dir);
if (r < 0)
return r;
r = write_drop_in(dir, u->id, 50, name, data);
if (r < 0)
return r;
r = drop_in_file(dir, u->id, 50, name, &p, &q);
if (r < 0)
return r;
r = strv_extend(&u->dropin_paths, q);
if (r < 0)
return r;
strv_sort(u->dropin_paths);
strv_uniq(u->dropin_paths);
u->dropin_mtime = now(CLOCK_REALTIME);
return 0;
}
int unit_write_drop_in_format(Unit *u, UnitSetPropertiesMode mode, const char *name, const char *format, ...) {
_cleanup_free_ char *p = NULL;
va_list ap;
int r;
assert(u);
assert(name);
assert(format);
if (!IN_SET(mode, UNIT_PERSISTENT, UNIT_RUNTIME))
return 0;
va_start(ap, format);
r = vasprintf(&p, format, ap);
va_end(ap);
if (r < 0)
return -ENOMEM;
return unit_write_drop_in(u, mode, name, p);
}
int unit_write_drop_in_private(Unit *u, UnitSetPropertiesMode mode, const char *name, const char *data) {
_cleanup_free_ char *ndata = NULL;
assert(u);
assert(name);
assert(data);
if (!UNIT_VTABLE(u)->private_section)
return -EINVAL;
if (!IN_SET(mode, UNIT_PERSISTENT, UNIT_RUNTIME))
return 0;
ndata = strjoin("[", UNIT_VTABLE(u)->private_section, "]\n", data, NULL);
if (!ndata)
return -ENOMEM;
return unit_write_drop_in(u, mode, name, ndata);
}
int unit_write_drop_in_private_format(Unit *u, UnitSetPropertiesMode mode, const char *name, const char *format, ...) {
_cleanup_free_ char *p = NULL;
va_list ap;
int r;
assert(u);
assert(name);
assert(format);
if (!IN_SET(mode, UNIT_PERSISTENT, UNIT_RUNTIME))
return 0;
va_start(ap, format);
r = vasprintf(&p, format, ap);
va_end(ap);
if (r < 0)
return -ENOMEM;
return unit_write_drop_in_private(u, mode, name, p);
}
int unit_remove_drop_in(Unit *u, UnitSetPropertiesMode mode, const char *name) {
_cleanup_free_ char *p = NULL, *q = NULL;
int r;
assert(u);
if (!IN_SET(mode, UNIT_PERSISTENT, UNIT_RUNTIME))
return 0;
r = unit_drop_in_file(u, mode, name, &p, &q);
if (r < 0)
return r;
if (unlink(q) < 0)
r = errno == ENOENT ? 0 : -errno;
else
r = 1;
rmdir(p);
return r;
}
int unit_make_transient(Unit *u) {
int r;
assert(u);
u->load_state = UNIT_STUB;
u->load_error = 0;
u->transient = true;
free(u->fragment_path);
u->fragment_path = NULL;
if (u->manager->running_as == MANAGER_USER) {
_cleanup_free_ char *c = NULL;
r = user_runtime_dir(&c);
if (r < 0)
return r;
if (r == 0)
return -ENOENT;
u->fragment_path = strjoin(c, "/", u->id, NULL);
if (!u->fragment_path)
return -ENOMEM;
mkdir_p(c, 0755);
} else {
u->fragment_path = strappend("/run/systemd/system/", u->id);
if (!u->fragment_path)
return -ENOMEM;
mkdir_p("/run/systemd/system", 0755);
}
return write_string_file_atomic_label(u->fragment_path, "# Transient stub");
}
int unit_kill_context(
Unit *u,
KillContext *c,
KillOperation k,
pid_t main_pid,
pid_t control_pid,
bool main_pid_alien) {
int sig, wait_for_exit = false, r;
assert(u);
assert(c);
if (c->kill_mode == KILL_NONE)
return 0;
switch (k) {
case KILL_KILL:
sig = SIGKILL;
break;
case KILL_ABORT:
sig = SIGABRT;
break;
case KILL_TERMINATE:
sig = c->kill_signal;
break;
default:
assert_not_reached("KillOperation unknown");
}
if (main_pid > 0) {
r = kill_and_sigcont(main_pid, sig);
if (r < 0 && r != -ESRCH) {
_cleanup_free_ char *comm = NULL;
get_process_comm(main_pid, &comm);
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_warning_errno(u, r, "Failed to kill main process " PID_FMT " (%s): %m", main_pid, strna(comm));
} else {
if (!main_pid_alien)
wait_for_exit = true;
if (c->send_sighup && k != KILL_KILL)
kill(main_pid, SIGHUP);
}
}
if (control_pid > 0) {
r = kill_and_sigcont(control_pid, sig);
if (r < 0 && r != -ESRCH) {
_cleanup_free_ char *comm = NULL;
get_process_comm(control_pid, &comm);
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_warning_errno(u, r, "Failed to kill control process " PID_FMT " (%s): %m", control_pid, strna(comm));
} else {
wait_for_exit = true;
if (c->send_sighup && k != KILL_KILL)
kill(control_pid, SIGHUP);
}
}
if ((c->kill_mode == KILL_CONTROL_GROUP || (c->kill_mode == KILL_MIXED && k == KILL_KILL)) && u->cgroup_path) {
_cleanup_set_free_ Set *pid_set = NULL;
/* Exclude the main/control pids from being killed via the cgroup */
pid_set = unit_pid_set(main_pid, control_pid);
if (!pid_set)
return -ENOMEM;
r = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, sig, true, true, false, pid_set);
if (r < 0) {
if (r != -EAGAIN && r != -ESRCH && r != -ENOENT)
core,network: major per-object logging rework This changes log_unit_info() (and friends) to take a real Unit* object insted of just a unit name as parameter. The call will now prefix all logged messages with the unit name, thus allowing the unit name to be dropped from the various passed romat strings, simplifying invocations drastically, and unifying log output across messages. Also, UNIT= vs. USER_UNIT= is now derived from the Manager object attached to the Unit object, instead of getpid(). This has the benefit of correcting the field for --test runs. Also contains a couple of other logging improvements: - Drops a couple of strerror() invocations in favour of using %m. - Not only .mount units now warn if a symlinks exist for the mount point already, .automount units do that too, now. - A few invocations of log_struct() that didn't actually pass any additional structured data have been replaced by simpler invocations of log_unit_info() and friends. - For structured data a new LOG_UNIT_MESSAGE() macro has been added, that works like LOG_MESSAGE() but prefixes the message with the unit name. Similar, there's now LOG_LINK_MESSAGE() and LOG_NETDEV_MESSAGE(). - For structured data new LOG_UNIT_ID(), LOG_LINK_INTERFACE(), LOG_NETDEV_INTERFACE() macros have been added that generate the necessary per object fields. The old log_unit_struct() call has been removed in favour of these new macros used in raw log_struct() invocations. In addition to removing one more function call this allows generated structured log messages that contain two object fields, as necessary for example for network interfaces that are joined into another network interface, and whose messages shall be indexed by both. - The LOG_ERRNO() macro has been removed, in favour of log_struct_errno(). The latter has the benefit of ensuring that %m in format strings is properly resolved to the specified error number. - A number of logging messages have been converted to use log_unit_info() instead of log_info() - The client code in sysv-generator no longer #includes core code from src/core/. - log_unit_full_errno() has been removed, log_unit_full() instead takes an errno now, too. - log_unit_info(), log_link_info(), log_netdev_info() and friends, now avoid double evaluation of their parameters
2015-05-11 20:38:21 +02:00
log_unit_warning_errno(u, r, "Failed to kill control group: %m");
} else if (r > 0) {
/* FIXME: For now, we will not wait for the
* cgroup members to die, simply because
* cgroup notification is unreliable. It
* doesn't work at all in containers, and
* outside of containers it can be confused
* easily by leaving directories in the
* cgroup. */
/* wait_for_exit = true; */
if (c->send_sighup && k != KILL_KILL) {
set_free(pid_set);
pid_set = unit_pid_set(main_pid, control_pid);
if (!pid_set)
return -ENOMEM;
cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, SIGHUP, false, true, false, pid_set);
}
}
}
return wait_for_exit;
}
int unit_require_mounts_for(Unit *u, const char *path) {
char prefix[strlen(path) + 1], *p;
int r;
assert(u);
assert(path);
/* Registers a unit for requiring a certain path and all its
* prefixes. We keep a simple array of these paths in the
* unit, since its usually short. However, we build a prefix
* table for all possible prefixes so that new appearing mount
* units can easily determine which units to make themselves a
* dependency of. */
if (!path_is_absolute(path))
return -EINVAL;
p = strdup(path);
if (!p)
return -ENOMEM;
path_kill_slashes(p);
if (!path_is_safe(p)) {
free(p);
return -EPERM;
}
if (strv_contains(u->requires_mounts_for, p)) {
free(p);
return 0;
}
r = strv_consume(&u->requires_mounts_for, p);
if (r < 0)
return r;
PATH_FOREACH_PREFIX_MORE(prefix, p) {
Set *x;
x = hashmap_get(u->manager->units_requiring_mounts_for, prefix);
if (!x) {
char *q;
2015-04-24 19:54:29 +02:00
r = hashmap_ensure_allocated(&u->manager->units_requiring_mounts_for, &string_hash_ops);
if (r < 0)
return r;
q = strdup(prefix);
if (!q)
return -ENOMEM;
x = set_new(NULL);
if (!x) {
free(q);
return -ENOMEM;
}
r = hashmap_put(u->manager->units_requiring_mounts_for, q, x);
if (r < 0) {
free(q);
set_free(x);
return r;
}
}
r = set_put(x, u);
if (r < 0)
return r;
}
return 0;
}
int unit_setup_exec_runtime(Unit *u) {
ExecRuntime **rt;
size_t offset;
Iterator i;
Unit *other;
offset = UNIT_VTABLE(u)->exec_runtime_offset;
assert(offset > 0);
2014-08-30 17:13:16 +02:00
/* Check if there already is an ExecRuntime for this unit? */
rt = (ExecRuntime**) ((uint8_t*) u + offset);
if (*rt)
return 0;
/* Try to get it from somebody else */
SET_FOREACH(other, u->dependencies[UNIT_JOINS_NAMESPACE_OF], i) {
*rt = unit_get_exec_runtime(other);
if (*rt) {
exec_runtime_ref(*rt);
return 0;
}
}
return exec_runtime_make(rt, unit_get_exec_context(u), u->id);
}
bool unit_type_supported(UnitType t) {
if (_unlikely_(t < 0))
return false;
if (_unlikely_(t >= _UNIT_TYPE_MAX))
return false;
if (!unit_vtable[t]->supported)
return true;
return unit_vtable[t]->supported();
}
void unit_warn_if_dir_nonempty(Unit *u, const char* where) {
int r;
assert(u);
assert(where);
r = dir_is_empty(where);
if (r > 0)
return;
if (r < 0) {
log_unit_warning_errno(u, r, "Failed to check directory %s: %m", where);
return;
}
log_struct(LOG_NOTICE,
LOG_MESSAGE_ID(SD_MESSAGE_OVERMOUNTING),
LOG_UNIT_ID(u),
LOG_UNIT_MESSAGE(u, "Directory %s to mount over is not empty, mounting anyway.", where),
"WHERE=%s", where,
NULL);
}
int unit_fail_if_symlink(Unit *u, const char* where) {
int r;
assert(u);
assert(where);
r = is_symlink(where);
if (r < 0) {
log_unit_debug_errno(u, r, "Failed to check symlink %s, ignoring: %m", where);
return 0;
}
if (r == 0)
return 0;
log_struct(LOG_ERR,
LOG_MESSAGE_ID(SD_MESSAGE_OVERMOUNTING),
LOG_UNIT_ID(u),
LOG_UNIT_MESSAGE(u, "Mount on symlink %s not allowed.", where),
"WHERE=%s", where,
NULL);
return -ELOOP;
}
static const char* const unit_active_state_table[_UNIT_ACTIVE_STATE_MAX] = {
[UNIT_ACTIVE] = "active",
[UNIT_RELOADING] = "reloading",
[UNIT_INACTIVE] = "inactive",
[UNIT_FAILED] = "failed",
[UNIT_ACTIVATING] = "activating",
[UNIT_DEACTIVATING] = "deactivating"
};
DEFINE_STRING_TABLE_LOOKUP(unit_active_state, UnitActiveState);